最新苏教版六年级数学下册知识点
苏教版六年级数学下册知识点梳理归纳及复习要点

苏教版六年级数学下册知识点梳理归纳及复习要点一、知识点梳理归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。
长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
苏教版六年级下册数学知识要点总结

苏教版六年级下册数学知识要点总结
本文档旨在总结苏教版六年级下册数学课程的主要知识要点,
帮助学生复和掌握相关知识。
1. 整数的运算
- 整数的加法和减法运算:正数与正数相加、负数与负数相加、正数与负数相加的规律
- 整数的乘法和除法运算:正数与正数相乘、负数与负数相乘、正数与负数相乘的规律
- 整数的运算定律:加法和乘法的结合律、交换律和分配律
2. 分数的运算
- 分数的加法和减法运算:通分、化简、按规定格式进行计算
- 分数的乘法和除法运算:乘法的规律、除法的规律、分子分
母的计算
3. 小数的认识与运算
- 小数的表示方法:有限小数和循环小数
- 小数的加法和减法运算:按规定格式进行计算
- 小数的乘法和除法运算:乘法的规律、除法的规律、小数位数的控制
4. 平面图形的认识与计算
- 点、线、面的基本概念与特征
- 三角形、四边形、圆的性质与判断
- 平面镶嵌图形的认识与构造
5. 条形统计图的制作与分析
- 数据收集与整理
- 条形统计图的制作步骤
- 数据的分析与解读
以上是苏教版六年级下册数学课程的主要知识要点总结。
希望这份文档能够对学生的学习和复习有所帮助。
苏教版六年级下册数学知识点

苏教版六年级下册数学知识点一、二位数的计算1. 加法和减法:掌握两位数的加法和减法运算方法,如54+28、76-35等。
2. 乘法和除法:学习两位数与一位数的乘法和除法,如47×3、82÷5等。
二、三位数的计算1. 加法和减法:掌握三位数的加法和减法运算方法,如325+287、756-438等。
2. 乘法和除法:学习三位数与一位数的乘法和除法,如526×4、948÷6等。
三、四位数的计算1. 加法和减法:掌握四位数的加法和减法运算方法,如3245+1789、4796-2534等。
2. 乘法和除法:学习四位数与一位数的乘法和除法,如3764×7、8924÷3等。
四、小数的认识和运算1. 小数的读法和写法:学习正确读写小数,如0.75读作零点七五。
2. 小数的加法和减法:掌握小数的加法和减法运算方法,如0.35+0.82、1.53-0.67等。
3. 小数的乘法和除法:学习小数与整数的乘法和除法,如0.6×5、3.24÷2等。
五、分数的认识和运算1. 分数的概念:理解分数的概念和意义,如1/2表示一个整体被分成两份。
2. 分数的表示和读法:学习用分数表示数的一部分,如2/3读作二分之三。
3. 分数的加法和减法:掌握分数的加法和减法运算方法,如1/4+2/3、3/5-1/3等。
4. 分数的乘法和除法:学习分数的乘法和除法运算方法,如1/2×3/4、2/3÷1/5等。
六、面积的计算1. 长方形的面积:了解长方形面积的概念,学习计算长方形的面积,如长6厘米、宽4厘米的长方形的面积是多少?2. 正方形的面积:认识正方形面积的特点,学习计算正方形的面积,如边长为5米的正方形的面积是多少?3. 平行四边形的面积:了解平行四边形面积的计算方法,通过实际例子计算平行四边形面积。
七、图形的旋转和翻转1. 图形的旋转:认识图形的旋转概念,学习按规律旋转图形的方法。
苏教版六年级数学下册知识点梳理

苏教版六年级数学下册知识点梳理
苏教版六年级数学下册知识点总结
第一单元:百分数的应用(2课时)
大分率减小分率等于相差的分率,实分率减计分率等于实比计多的分率。
利息等于本金乘以利率乘以时间,实际售价等于原价乘以折扣。
第二单元:圆柱和圆锥(3课时)
圆的直径是圆的两个切点之间的距离,半径是圆心到圆上任一点的距离,周长是圆的边界长度,面积是圆内部的区域。
圆柱是一个由一个圆和它的平行剖面所组成的几何体,侧面积等于圆周长乘以高,表面积等于两个底面积加上侧面积,体积等于底面积乘以高。
圆锥是一个由一个圆和一个顶点所组成的几何体,体积等于圆柱体积的1/3.
第三单元:比例(1课时)
两个比相等的式子叫做比例。
基本性质是两个外项的积等于两个内项的积。
比例尺是图上距离与实际距离的比值,应注意面积变化。
第四单元:确定位置(5课时)
知道物体的方向和距离,就能确定物体的位置。
方向标包括上北下南左西右东。
第五单元:正比例和反比例(1课时)
路程与时间的比例是速度,单价与数量的乘积是总价。
第六单元:解决问题的策略(1课时)
学会用转化的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。
第七单元:统计(5课时)
扇形统计图可以清楚地表示出各部分数量同总数量之间的关系。
众数是一组数据出现次数最多的数,中位数是一组数据中正中间的一个数或中间两个数的平均数,平均数是总数之和除以个数。
苏教版六年级数学下册知识点总结

苏教版六年级数学下册知识点梳理第一单元百分数的应用1、一个数比另一个数多(少)百分之几、一个数的百分之几是多少1)求一个数比另一个数多(少)百分之几,用除法。
一个数比另一个数多(少)的量÷单位“1”=一个数比另一个数多(少)百分之几2)计算中,遇到除不尽时,一般保留三位小数。
(百分号前面的数保留一位小数)3)在报纸杂志、广播电视和日常生活中,经常用到百分点。
有时也会看到“–数字%”,这种结果叫做负增长。
4)求一个数的百分之几是多少,用乘法计算。
单位“1”×百分数=一个数的百分之几5)在计算一个数的百分之几是多少中,可以先把百分数转化成分数或者小数来计算。
2、利息1)存入银行的钱叫做本金,取款时银行除了还给本金外,另外付给的钱叫做利息。
利息占本金的百分率叫做利率,按年计算的叫做年利率,按月计算的叫做月利率。
2)利息=本金×利率×时间3)个人月收入(元数)以下不征税,超过部分的标准:不超过500元(500元)部分5%超过500~2000元的部分(1500元)10%超过2000~5000元的部分15%3、折扣1)原价×折扣=现价2)商店有时要把商品减价,按原价的百分之几出售,通常称打“折”出售。
如原价的85%,就是打八五折(几折写汉字)3)几成表示百分之几十,几成几表示百分之几十几。
如三成五表示35%。
第二单元圆柱和圆锥1、认识圆柱和圆锥1)圆柱上、下两个面叫做圆柱的底面,围成圆柱的曲面叫做圆柱的侧面,圆柱两个底面之间的距离叫做圆柱的高,圆柱有无数条高。
2)圆锥的底面是一个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。
3)2、圆柱的表面积1)S 柱=S 底面×2+侧面S 柱=πr ²×2 +πdh (2πrh)3、圆柱和圆锥的体积 1)V 柱= S 底面×高V 柱= πr ²h2)V 锥= S 底面×高V 锥=31πr ² h第三单元 比例1、放大和缩小把一个图形按n : 1的比放大,把一个图形按1 : n 的比缩小,放大后 :放大前 缩小后 :缩小前2、 表示两个比相等的式子叫做比例。
苏教版六年级数学下册全册知识清单知识归纳总复习

习”后面是几就读作几。
0是最小的自然数,但0不是最小的一位数,最小的一位数是1。
易错点:误认为75.075读作七十五点七十五。
要注意读小数部分时一定要从高位起,依次读出每个数位上的数字,即使是连续的几个0,也要一一读出来。
小数的计数单位是0.1,0.01,0.001…是十进制分数的另一种表现形式。
正、负数表示两种具有相反意义的量。
小数部分·的整数部分,余数就是带分数的分数部分的分子,原分母不变。
③整数化成假分数的方法:把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。
④带分数化成假分数的方法:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子。
(2)判断一个分数能否化成有限小数的方法。
a.要看这个分数是不是最简分数。
b.如果是最简分数,就要看其分母中含有哪些质因数。
如果分母中只含有质因数2和5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,这个分数就不能化成有限小数。
(3)分数、小数与百分数之间的互化。
四、常见的量1. 常见的计量单位及其进率。
(1)质量单位及其进率。
①常见的质量单位有吨.........、.千克..、.克.。
. ②1吨=1000千克 1千克=1000克 (2)时间单位及其进率。
①时间单位有世纪.......、.年.、.月.、.日.、.时.、.分.、.秒.,.季度..、.星.期等。
...②日、时、分、秒等时间单位的关系。
③1世纪=100年 1日=24时 1时=60分 1分=60秒 1星期=7日④平年、闰年的判断方法。
根据公历年份判断........,.一般情况下.....,.整百、整千的年份是.........400...的倍数...,.其他年份是.....4.的倍数的都是闰年........,.反之则是平年。
.......(3)人民币的单位及其进率。
①人民币的单位有元........、.角.、.分.。
苏教版六年级下册数学知识点

苏教版六年级下册数学知识点在苏教版六年级下册数学的学习中,学生们将接触到一系列新的数学概念和技能,这些知识点对于他们日后的数学学习至关重要。
以下是一些主要的数学知识点:1. 分数的加减法:学生们将学习如何对分数进行加减运算,包括同分母和异分母分数的加减。
2. 分数的乘除法:乘除法是分数运算中更复杂的一部分,学生们需要掌握分数乘以整数、分数乘以分数,以及分数除以整数和分数的计算方法。
3. 分数的混合运算:混合运算包括了分数的加减乘除,以及如何正确地应用运算顺序。
4. 百分数的应用:学生们将学习如何将分数转换为百分数,并理解百分数在日常生活中的应用,比如折扣和利率。
5. 比例和比例尺:比例是数学中的一个重要概念,学生们将学习如何设置比例,解决比例问题,以及理解比例尺在地图和图表中的应用。
6. 圆的周长和面积:圆是几何学中的基础形状之一,学生们将学习圆的周长和面积的计算公式。
7. 长方体和正方体的体积:立体几何是数学的一个重要分支,学生们将学习如何计算长方体和正方体的体积。
8. 统计图表:学生们将学习如何收集数据,并通过条形图、饼图和折线图等统计图表来展示数据。
9. 简单的方程:方程是解决数学问题的重要工具,学生们将学习如何设置和解决简单的一元一次方程。
10. 几何图形的变换:学生们将了解几何图形的平移、旋转和对称等变换。
11. 数学思维和解题技巧:除了具体的知识点,学生们还将培养数学思维,学习如何分析问题、提出假设和验证结论。
在教学过程中,教师应该鼓励学生们通过实际操作和探索来理解这些概念,同时通过练习和应用来巩固所学知识。
通过这样的学习,学生们不仅能够掌握数学知识,还能够培养解决问题的能力。
希望这些知识点能够帮助学生们在数学学习上取得进步。
最新苏教版六年级(上下两册)数学课本目录及知识点

1)长方体和正方体16个面,8个顶点,12条棱2正方体是特殊的长方体3长方体表面积=(长×宽+长×高+宽×高)×2;正方体表面积=棱长×棱长×64长方体体积=长×宽×高;正方体体积=棱长×棱长×棱长(a3=a·a·a)5长方体(或正方体)的体积=底面积×高6体积:物体所占空间的大小7容积:容器所能容纳物体的体积81L=1dm3;1ml=1cm3表面涂色的正方体(3面涂色有8个;2面涂色12的倍数;1面涂色是6的倍数)2)分数乘法1分子乘分子,分母乘分母,再约分2倒数:乘积是1的两个数互为倒数,0没有倒数3)分数除法1除以一个数(0除外),等于乘它的倒数2除号与比号,比的前项与后项3比:两个数相除又叫两个数的比,比的前项除以比的后项所得的商叫做比值4比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变 树叶中的比4)解决问题的策略1画线段图理解题意2解设X解决应用题5)分数四则混合运算1运算顺序,乘法分配律2简便运算6)百分数1百分数又叫做百分比或百分率2百分数与小数相互转换,除不尽时保留三位小数3出勤率、合格率、含糖率、含盐率4利息=本金×利率×时间5折扣、交税、几成互联网的普及7)整理与复习1)扇形统计图1扇形统计图:部分与整体的占比关系;折线统计图:反映数量的增减变化情况;条形统计图:直观地看出数量的多少2扇形统计图看出数量多少3求整体用除法,求部分用乘法2)圆柱和圆锥1圆柱:两个底面(圆形),一个侧面(长方形)2圆锥:一哥底面(圆形),一个侧面(扇形)3圆柱表面积S=2πr2+2πrh(两圆一侧);体积V=πr2h4圆锥V=13πr2h3)解决问题的策略:画图、列举、解设4)比例1比例:表示两个比相等的式子2比例的基本性质:两个外项积等于两个内项积3解比例4比例尺:图上比实际面积的变化:长度比是n:1,面积比是n2:15)确定位置1北偏西、北偏东、南偏西、南偏北2方向+距离6)正比例和反比例1比值(商)一定,正比例:同增减,同步变化2乘积一定,反比例:你增我减,你减我增,变化相反大树有多高7)总复习1数与代数:数的认识、常见的量、数的运算、式与方程、正比例和反比例2图形与几何:图形的认识测量、图形的运动、图形与位置3统计与可能性:统计、可能性制定旅游计划绘制平面图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版六年级数学下册知识点第一单元百分数的应用知识点一、“求数A比数B多(少)百分之几?”的实际问题分解题目:已知条件:数A、数B;求:两数差的百分数解题方法:(大数-小数)÷单位“1”例1:东山村去年原计划造林16公顷,实际造林20公顷。
实际造林比原计划多百分之几?解: (实际造林-原计划造林)÷原计划造林( 20 - 16 )÷ 16 =25%答:实际造林比原计划多25%。
例2:东山村去年原计划造林16公顷,实际造林20公顷。
原计划造林比实际少百分之几?解: (实际造林-原计划造林)÷实际造林( 20 - 16 )÷ 20 =20%答:实际造林比原计划少20%。
知识点二、“数A比数B多(少)百分之几,求数A是多少?”的实际问题分解题目:已知条件:数B、两数和(差)的百分数求:数A(非单位“1”)解题方法:数B×(1+百分数)——两数和的方法数B×(1-百分数)——两数差的方法例1:东山村去年原计划造林16公顷,实际造林比原计划多25%,实际造林多少公顷?解析:从题目“实际造林比原计划多25%”中,可以看出“数A”是“实际造林”,“数B”是“原计划造林”,“两数和的百分数”是“25%”。
根据公式可以得到:数B×(1+百分数)16 ×(1+25%) =20(公顷)答:实际造林20公顷。
例2:东山村去年实际造林20公顷,原计划造林比实际少20%,原计划造林多少公顷?解析:从题目“原计划造林比实际少20%”中,可以看出“数A”是“原计划造林”,“数B”是“实际造林”,“两数差的百分数”是“20%”。
根据公式可以得到:数B×(1-百分数)20 ×(1-20%) =16(公顷)答:原计划造林16公顷。
知识点三、“数A比数B多(少)百分之几,求数B是多少?”分解题目:已知条件:数A、两数和(差)的百分数求:数B(单位“1”)解题方法:数A÷(1+百分数)——两数和的方法数A÷(1-百分数)——两数差的方法例1:东山村去年原计划造林16公顷,比实际造林少20%,实际造林多少公顷?解析:从题目“比实际造林多25%”中,可以看出“数A”是“原计划造林”,在“比”之前省略了,“数B”是“实际造林”,“两数差的百分数”是“20%”。
根据公式可以得到:一个数÷(1-百分数)16 ÷(1-20%) =20(公顷)答:实际造林20公顷。
例2:东山村去年实际造林20公顷,比原计划多25%,原计划造林多少公顷?解析:从题目“比原计划多25%”中,可以看出“数A”是“实际造林”,在“比”之前省略了,“数B”是“原计划造林”,“两数和的百分数”是“25%”。
根据公式可以得到:一个数÷(1+百分数)20 ÷(1+25%) =16(公顷)答:原计划造林16公顷。
知识点四、应纳税额的计算方法分解题目:求应纳税额实际上就是求一个数的百分之几是多少,用乘法计算。
解题方法:应纳税额=收入额×税率例1:星光书店去年十二月份的营业额是60万元。
如果按营业额的5%缴纳营业税,这个书店去年十二月份应缴纳营业税多少万元?解:收入额×税率=应纳税额60 ×5% = 3(万元)答:应缴纳营业税3万元。
知识点五:利息的计算方法名词解释:①本金:存入银行的钱。
②利息(应得利息):取款时银行除还给本金外,另外付给的钱。
③利率:利息占本金的百分率。
按年计算的叫做年利率;按月计算的叫做月利率。
④利息税:利息所征收的个人所得税,一般是利息税率的5%。
⑤纯利息/实得利息:扣除利息税后的利息。
解题方法:①利息=本金×利率×时间②纯利息=利息×(1-5%)=本金×利率×时间×95% 或者=利息-利息税例1:2007年8月20日,一年定期存款的年利率是 3.87%。
李爷爷把50000元存入银行,一年以后按5%缴纳利息税,应缴纳利息税多少元?解析:本题求利息税。
题目中已知利息税率5%,还告诉了本金、年利率和存款时间,所以根据公式:应缴纳利息税=利息×利息税率=本金×年利率×存款时间×利息税率50000×3.87%×1 ×5% =96.75元答:应缴纳利息税96.75元。
知识点六:折扣(成数)计算方法名词解释:①折扣:商店经常把商品减价,按原价的百分之几出售,通常称为打折出售,简称为折扣。
②折扣与百分数的关系:打几折就是按原价的百分之几出售或说降价了(1-百分之几)出售。
③标价:商品摆放柜台出售的价格,包括成本和利润两部分。
④售价:商品的成交价格。
售价经常等于或小于标价。
⑤成数:表示一个数是另一个数十分之几的数。
通常用在工农生产中表示生产的增长状况。
几成就是十分之几。
“二成”就是十分之二,就是百分之二十。
⑥利润率:利润占成本的百分率。
解题方法:①售价(现价)=标价(原价)×折扣折扣=售价(现价)÷标价(原价)标价(原价)=售价(现价)÷折扣②利润率=利润÷成本例1:一本书原价是30元,现在明明少花9元买到这本书,现在这本书打几折销售?解析:本题求折扣,就要知道现价和原价。
原价是30元,现价是30-9=21元。
根据公式:折扣=现价÷原价21 ÷30 =70%=七折答:现在这本书打七折销售。
知识点七:列方程解决稍复杂的百分数实际问题的解题方法步骤:①审题:1,读懂题;2,列出等量关系式②设未知数,列方程③解方程,检验并写答。
解题方法:本单元的应用题一般设单位“1”为未知数。
例1:一个机械加工厂,十月份生产零件2000个,比原计划多生产25%,多生产多少个零件?解析:本题中的单位“1”是原计划生产的零件,所以十月份生产零件比原计划多25%x个。
等量关系:原计划生产的零件+比原计划多生产的零件=十月份生产的零件设:原计划生产零件x个。
X+25%X=2000X=16001600×25%=400个答:多生产400个零件。
第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆柱的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2π(rh+r2)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
解:12.56÷3.14÷2=2厘米2×π×(2×12.56+22)=182.8736平方厘米答:做一个这样的罐头盒需要182.8736平方厘米铁皮。
知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S 底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。
相关公式:①已知半径和高,V圆柱=πr2h②已知直径和高,V圆柱=π(d÷2)2h③已知周长和高,V圆柱=π(C÷2π)2h难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。
得到的结论:圆柱的底面周长等于长方体的两条长的和;圆柱的半径等于长方体的宽;圆柱的高等于长方体的高;圆柱的体积等于长方体的体积;★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。
知识点五:圆锥体积的计算方法理解掌握:根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积3 / 6是圆柱的三分之一。
用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。
相关公式:只需要在圆柱的相关公式前面乘以三分之一。
①已知半径和高,V圆锥=1/3πr2h②已知直径和高,V圆锥=1/3π(d÷2)2h③已知周长和高,V圆锥=1/3π(C÷2π)2h重点解析:在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。
例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重 1.7吨,这堆沙子共重多少吨?解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)2h1/3×3.14×(12.56÷2÷3.14)2×1.5=6.28立方米6.28×1.7=10.676吨答:这堆沙子共重10.676吨。
知识点七:圆柱和圆锥的横截面理解掌握:★圆柱横截面的分割方法:①按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。
②按平行于底面分割,这样分割的横截面是圆。
圆锥横截面的分割方法:①按圆锥的高分割,这样分割的横截面是等腰三角形。
②按平行于底面分割,这样分割的横截面是圆。
第三单元比例知识点一:图像的放大和缩小理解掌握:把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n;把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。
知识点二:比例的意义理解掌握:1、比例:表示两个比相等的式子。