简易逻辑练习题(包含详细答案)
逻辑灵活测试题及答案

逻辑灵活测试题及答案1. 题目:如果所有的苹果都是水果,所有的水果都是食物,那么苹果是食物吗?答案:是的,苹果是食物。
2. 题目:如果一个数是偶数,那么它一定能被2整除。
如果一个数是4的倍数,那么它一定是偶数吗?答案:是的,如果一个数是4的倍数,那么它一定是偶数。
3. 题目:如果所有的狗都是哺乳动物,而所有的猫也是哺乳动物,那么狗和猫是同类吗?答案:不是,狗和猫是不同的物种,尽管它们都属于哺乳动物。
4. 题目:如果一个物体是红色的,那么它的颜色是红色。
如果一个物体的颜色是蓝色,那么它是红色的吗?答案:不是,如果一个物体的颜色是蓝色,那么它不是红色的。
5. 题目:如果所有的学生都需要参加考试,那么没有学生需要参加考试吗?答案:不是,如果所有的学生都需要参加考试,那么所有学生都需要参加考试。
6. 题目:如果一个数是奇数,那么它不能被2整除。
如果一个数是3的倍数,那么它是奇数吗?答案:不一定,一个数是3的倍数并不意味着它是奇数,因为3的倍数中也有偶数。
7. 题目:如果所有的鸟都会飞,那么企鹅是鸟吗?答案:是的,企鹅是鸟,但它们不会飞。
8. 题目:如果所有的植物都需要水,那么仙人掌需要水吗?答案:是的,仙人掌需要水,尽管它们能在干旱环境中生存。
9. 题目:如果所有的金属都是导电的,那么塑料是金属吗?答案:不是,塑料不是金属,它们通常不导电。
10. 题目:如果所有的正方形都是四边形,那么四边形都是正方形吗?答案:不是,四边形包括正方形,但并非所有的四边形都是正方形。
11. 题目:如果所有的人都需要氧气才能生存,那么植物需要氧气吗?答案:不是,植物在光合作用过程中释放氧气,而不是需要氧气来生存。
12. 题目:如果所有的汽车都有轮子,那么自行车有轮子吗?答案:是的,自行车有轮子,尽管它们不是汽车。
13. 题目:如果所有的三角形都有三个角,那么一个有四个角的图形是三角形吗?答案:不是,一个有四个角的图形不是三角形。
逻辑练习题及答案

逻辑练习题及答案1. 如果所有的猫都怕水,而小明养的宠物是一只猫,那么小明的宠物怕水吗?- 答案:是的,如果小明的宠物是猫,根据题目条件,它应该怕水。
2. 假设在一个岛上,所有的居民要么喜欢足球,要么喜欢篮球。
如果张三不喜欢足球,那么他喜欢篮球吗?- 答案:是的,根据题目条件,张三必须喜欢篮球,因为他不喜欢足球。
3. 一个逻辑问题:如果今天是星期三,那么明天是星期四吗?- 答案:是的,如果今天是星期三,那么按照一周七天的顺序,明天确实是星期四。
4. 一个推理问题:如果所有的苹果都是水果,而你手中有一个苹果,那么你手中的东西是水果吗?- 答案:是的,根据题目条件,你手中的苹果是一种水果。
5. 一个条件问题:如果下雨,那么地面会湿。
如果地面湿了,那么一定是因为下雨吗?- 答案:不一定,地面湿可能是因为其他原因,比如洒水或者有人倒水。
练习题答案解析1. 这个问题是一个典型的三段论,通过两个前提得出结论。
第一个前提是“所有的猫都怕水”,第二个前提是“小明的宠物是一只猫”,根据这两个前提,我们可以得出结论:小明的宠物怕水。
2. 这个问题也是一个三段论,通过条件“所有的居民要么喜欢足球,要么喜欢篮球”和“张三不喜欢足球”,我们可以推断出张三喜欢篮球。
3. 这个问题是一个简单的逻辑推理,基于一周的天数顺序,可以很容易地得出结论。
4. 这个问题涉及到类别的包含关系,苹果是水果的一个子集,所以如果你手中有一个苹果,那么你手中的东西自然是水果。
5. 这个问题涉及到因果关系的判断,虽然下雨会导致地面湿,但地面湿并不一定是由下雨引起的,可能还有其他原因。
逻辑练习题可以帮助学生提高他们的分析、推理和判断能力。
通过解决这些问题,学生可以更好地理解和应用逻辑规则,提高解决问题的能力。
逻辑测试题目及答案

逻辑测试题目及答案
1. 如果所有的猫都怕水,而有些动物不是猫,那么以下哪项陈述是正
确的?
A. 所有怕水的动物都是猫
B. 所有不怕水的动物都是猫
C. 有些怕水的动物不是猫
D. 有些不怕水的动物是猫
答案:C
2. 假设在一个房间里,如果灯是开着的,那么门就是关着的。
如果门
是开着的,那么灯就是关着的。
现在灯是开着的,那么门是什么状态?
A. 门是开着的
B. 门是关着的
C. 门的状态无法确定
D. 门是半开半关的
答案:B
3. 有三扇门,一扇门后面有一辆车,另外两扇门后面是山羊。
如果你
选择了一扇门,主持人会打开另外两扇门中的一扇,露出一只山羊,
然后问你要不要换门。
以下哪项策略会增加你赢得汽车的概率?
A. 坚持最初的选择
B. 换门
C. 随机换门
D. 换门与否无关紧要
答案:B
4. 如果所有的苹果都是水果,所有的水果都含有维生素C,那么以下哪项陈述是正确的?
A. 所有的苹果都含有维生素C
B. 所有的维生素C都在水果中
C. 有些水果不是苹果
D. 所有的维生素C都在苹果中
答案:A
5. 假设在一个逻辑游戏中,如果玩家A赢了,那么玩家B就会输。
如果玩家B赢了,那么玩家A就会输。
现在玩家A赢了,那么玩家B的状态是什么?
A. 玩家B赢了
B. 玩家B输了
C. 玩家B的状态无法确定
D. 玩家B既没有赢也没有输
答案:B
结束语:以上是逻辑测试题目及答案,希望这些题目能够帮助你提高逻辑思维能力。
简易逻辑精选练习题和答案

简易逻辑练习题一、选择题1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2. 设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“φ≠⋂B A ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .35.“a >b >0”是“ab <222b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥37. 下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x + 2 ≥ 0B .∃x ∈R ,3x-5 = 0C .一切分数都是有理数D .对于任意的实数a,b,方程ax=b 都有唯一解8. 0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 ,(3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式(4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是(5) 命题 “不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为: ,否定形式: 。
简单逻辑练习题

简单逻辑练习题逻辑推理是思维能力的重要组成部分,通过练习逻辑推理题可以提升我们的思维敏捷度和解决问题的能力。
本文将为您提供一些简单逻辑练习题,帮助您锻炼逻辑思维。
一、命题题1. 命题:“如果明天下雨,我就不去郊游。
”今天是郊游的日子,请问今天会不会下雨?答案:不一定。
明天下雨与郊游日子是否下雨无关。
2. 命题:“只有运动员吃肉。
”请问以下属于运动员的是?a) 小明b) 李华c) 张三d) 王五答案:d) 王五。
因为只有运动员才吃肉。
二、推理题3. 一个篮子里有三个苹果和四个梨。
如果从篮子里随机拿出一个水果,那么它是苹果的概率是多少?答案:3/7。
因为篮子里总共有7个水果。
4. 假设有两个箱子,一个箱子里装有两个金币,另一个箱子里装有一个金币。
现在你从两个箱子中随机选择一个箱子,并从里面随机取出一个金币。
请问你取到的金币是一个金币的概率是多少?答案:1/2。
因为你从两个箱子中随机选择一个箱子的概率是1/2,而在选定的箱子中取到一个金币的概率也是1/2,所以取到的金币是一个金币的概率为(1/2) * (1/2) = 1/4。
三、关系题5. A、B、C、D四个人恰好分别穿红、黄、蓝、绿四色的衣服。
已知以下条件:i) A不穿红色。
ii) B穿黄色。
iii) C穿蓝色。
请问D穿绿色的衣服吗?答案:是的。
根据i) A不穿红色和ii) B穿黄色可推断出D穿绿色。
6. 有五个人:A、B、C、D、E。
已知以下条件:i) A和C至少有一个人说谎。
ii) B和D至少有一个人说谎。
iii) E说的是真话。
请问谁是说真话的人?答案:A。
根据i) A和C至少有一个人说谎和iii) E说的是真话可推断出A说的是真话。
四、推理题7. 一个城市有三个电视台:A、B、C。
根据观众调查结果,以下是每个电视台播放的节目百分比:i) 在B台看电视的人中,有80%的人在A台也看电视。
ii) 在C台看电视的人中,有60%的人在B台也看电视。
简易逻辑精选练习题和答案

简易逻辑精选练习题和答案1.“m=”是“直线(m+2)x+3my+1=与直线(m-2)x+(m+2)y-3=相互垂直”的充要条件。
2.设集合A={x| |x-1|<}。
B={x| |x-1|<1}。
若a=1,则A∩B≠。
3.命题p:“有些三角形是等腰三角形”,则┐p是“所有三角形不是等腰三角形”。
4.命题“¬p”、“¬q”、“p∧q”、“p∨q”中假命题的个数为2.5.“a>b>0”是“a2+b2<”的必要而不充分条件。
6.实数a的取值范围是a≥1.7.“∀x∈R,x²-22x + 2≥0”的非命题为“∃x∈R,x²-22x + 2<0”。
8.a<是方程ax+2x+1=至少有一个负数根的充分不必要条件。
9.(1)“∀x∈R,x2+x+1≥0” (2)“∃x∈R,x2-x+3≤0” (3)“存在x∈{x|-2<x<4},|x-2|≥3” (4)“∃x,y∈R,x²+y²<” (5)“x≥-3且x≤2时,x+x-6≤0” (6)“∃a,b∈R,ab>且a≤” (7)“△ABC中,若∠A或∠B是钝角,则∠C是锐角”。
10.选项不完整,无法填空。
11.(1)充分条件 (2)必要条件 (3)充分条件 (4)必要条件12.(1)假(2)m≤3 (3)x≤-2或x≥4 (4)真13.a≤-1或a≥214.解得A={1,2},B={1-m,2/m},则A是B的必要不充分条件,即1-m∈A但2/m∉A,解得m∈(-∞,1)U(2,∞)15.解得p的判别式D<0且m<0,q的判别式D<0且m∈(0,2),则m∈(0,2)16.解得p的解集为[-1,1],q无实根且判别式D<0,解得a∈(-∞,-1)U(1/2,∞)17.(1)不存在 (2)存在,m>0。
逻辑测试题及答案

逻辑测试题及答案1. 线索推理题:某个小偷在一间房子里犯罪。
警方到达现场后,发现了以下线索:在门口发现了一个烟蒂,屋内的电视机处发现了指纹,窗户玻璃上发现了工具的划痕。
根据以上线索,请问小偷是如何入侵该房子的?答案:小偷是从窗户进入的。
因为只有窗户上发现了工具的划痕,表示小偷使用工具撬开了窗户进入。
而门口的烟蒂以及屋内的电视机上的指纹,并不能证明小偷从门口进入。
2. 逻辑推理题:A、B、C、D、E五人排成一排参加比赛。
他们中的任意三人满足以下条件之一:A在B的左边,B在D的左边,C在E的左边。
请根据以上条件,判断下列陈述中哪些是正确的?i) A在D的右边。
ii) A在C的左边。
iii) E在A的左边。
答案:i) 正确;ii) 错误;iii) 正确。
推理过程如下:根据条件可知,B和D之间必然存在一人且距离相对较近,而A在B的左边和B在D的左边,可推出A在D的右边,即i)为正确答案。
因为具体位置未知,所以无法判断A在C的左边,即ii)为错误答案。
C在E的左边,且A在B的左边,可推出E在A的左边,即iii)为正确答案。
3. 逻辑判断题:根据以下信息,请判断每个人的职业。
1) 甲说:乙是医生。
2) 乙说:丙是警察。
3) 丙说:甲是农民。
4) 丁说:乙是农民。
根据以上信息,请回答以下问题:每个人的职业是什么?答案:甲是警察,乙是医生,丙是农民,丁是农民。
推理过程如下:假设甲是医生,则乙应该说丙是警察,与2)中的说法矛盾,所以甲不是医生。
假设乙是医生,则丙应该说甲是农民,与3)中的说法矛盾,所以乙不是医生。
假设丙是医生,则甲应该说乙是医生,与1)中的说法相符,所以丙是医生。
根据4)中的说法,丁是农民。
由此可得答案:甲是警察,乙是医生,丙是农民,丁是农民。
通过以上逻辑测试题,我们锻炼了逻辑思维的能力,并通过分析线索和推理判断找出答案。
这些逻辑推理题可以帮助我们提高思维灵活性和推理能力,对于解决问题和理解复杂情况都有一定帮助。
简易逻辑精选练习题和答案

简易逻辑精选练习题一、选择题1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2. 设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .35.“a >b >0”是“ab <222b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥37. 下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x + 2 ≥ 0B .∃x ∈R ,3x-5 = 0C .一切分数都是有理数D .对于任意的实数a,b,方程ax=b 都有唯一解8. 0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 ,(3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式(4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是(5) 命题 “不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为: ,否定形式: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.“|a|>0”是“a>0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件答案 B
解析因为|a|>0⇔a>0或a<0,所以a>0⇒|a|>0,但|a|>0a>0.
2.(2012·陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数a+b
i为纯
虚数”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件答案 B
解析由a+b
i为纯虚数可知a=0,b≠0,所以ab=0.而ab=0a=0,且
b≠0.故选B项.
3.“a>1”是“1
a<1”的()
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既非充分也非必要条件
答案 B
4.(2013·湖北)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()
A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
答案 A
解析綈p:甲没有降落在指定范围;綈q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p或綈q发生.故选A.
5.命题“若x2<1,则-1<x<1”的逆否命题是()
A.若x2≥1,则x≥1或x≤-1
B.若-1<x<1,则x2<1
C.若x>1或x<-1,则x2>1
D.若x≥1或x≤-1,则x2≥1
答案 D
解析原命题的逆否命题是把条件和结论都否定后,再交换位置,注意“-1<x<1”的否定是“x≥1或x≤-1”.
6.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
答案 A
解析因为x≥2且y≥2⇒x2+y2≥4易证,所以充分性满足,反之,不成立,
如x=y=7
4,满足x
2+y2≥4,但不满足x≥2且y≥2,所以x≥2且y≥2是x2+
y2≥4的充分而不必要条件,故选择A.
7.已知p:a≠0,q:ab≠0,则p是q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
答案 B
解析ab=0a=0,但a=0⇒ab=0,因此,p是q的必要不充分条件,故选B.
8.设M、N是两个集合,则“M∪N≠∅”是“M∩N≠∅”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件
答案 B
解析M∪N≠∅,不能保证M,N有公共元素,但M∩N≠∅,说明M,N中至少有一元素,∴M∪N≠∅.故选B.
9.若x,y∈R,则下列命题中,甲是乙的充分不必要条件的是()
A.甲:xy=0乙:x2+y2=0
B.甲:xy=0乙:|x|+|y|=|x+y|
C .甲:xy =0 乙:x 、y 至少有一个为零
D .甲:x <y 乙:x y <1
答案 B
解析 选项A :甲:xy =0即x ,y 至少有一个为0,
乙:x 2+y 2=0即x 与y 都为0.甲乙,乙⇒甲.
选项B :甲:xy =0即x ,y 至少有一个为0,
乙:|x |+|y |=|x +y |即x 、y 至少有一个为0或同号.
故甲⇒乙且乙甲.
选项C :甲⇔乙,选项D ,由甲x <y 知当y =0,x <0时,乙不成立,故甲乙.
10.在△ABC 中,设p :a sin B =b sin C =c sin A ;q :△ABC 是正三角形,那么p
是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
答案 C
解析 若p 成立,即a sin B =b sin C =c sin A ,由正弦定理,可得a b =b c =c a =k . ∴⎩⎨⎧ a =kb ,
b =k
c ,
c =ka ,∴a =b =c .则q :△ABC 是正三角形成立.
反之,若a =b =c ,∠A =∠B =∠C =60°,则a sin B =b sin C =c sin A .
因此p ⇒q 且q ⇒p ,即p 是q 的充要条件.故选C.
11.“a =1”是“函数f (x )=lg(ax )在(0,+∞)上单调递增”的( )
A .充分不必要条件
B .充分必要条件
C .必要不充分条件
D .既不充分也不必要条件
答案 A
解析 ∵当a =1时,f (x )=lg x 在(0,+∞)上单调递增,∴a =1⇒f (x )=lg(ax )在(0,+∞)上单调递增,而f (x )=lg(ax )在(0,+∞)上单调递增可得a >0,∴“a =1”是“函数f (x )=lg(ax )在(0,+∞)上单调递增”的充分不必要条件,故选
A.
12.“x >y >0”是“1x <1y ”的________条件.
答案 充分不必要
解析 1x <1y ⇒xy ·(y -x )<0,
即x >y >0或y <x <0或x <0<y .
13.“tan θ≠1”是“θ≠π4”的________条件.
答案 充分不必要
解析 题目即判断θ=π4是tan θ=1的什么条件,显然是充分不必要条件.
14.如果对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的________条件.
答案 必要不充分
解析 可举例子,比如x =-0.5,y =-1.4,可得〈x 〉=0,〈y 〉=-1;比如x =1.1,y =1.5,〈x 〉=〈y 〉=2,|x -y |<1成立.因此“|x -y |<1”是〈x 〉=〈y 〉的必要不充分条件.
15.已知A 为xOy 平面内的一个区域.
命题甲:点(a ,b )∈{(x ,y )|⎩⎨⎧ x -y +2≤0,
x ≥0,
3x +y -6≤0
};
命题乙:点(a ,b )∈A . 如果甲是乙的充分条件,那么区域A 的面积的最小值是________.
答案 2
解析 设⎩⎨⎧ x -y +2≤0,x ≥0,
3x +y -6≤0所对应的区域如右图所示的阴影部分PMN 为集
合B .由题意,甲是乙的充分条件,则B ⊆A ,所以区域A 面积的最小值为S △PMN = 12×4×1=2.
16.“a =14”是“对任意的正数x ,均有x +a x ≥1”的________条件.
答案 充分不必要
解析 当a =14时,对任意的正数x ,x +a x =x +14x ≥2x ·14x =1,而对任意
的正数x ,要使x +a x ≥1,只需f (x )=x +a x 的最小值大于或等于1即可,而在a 为
正数的情况下,f (x )=x +a x 的最小值为f (a )=2a ≥1,得a ≥14
,故充分不必要. 17.已知命题p :|x -2|<a (a >0),命题q :|x 2-4|<1,若p 是q 的充分不必要条件,求实数a 的取值范围. 答案 0<a ≤5-2
解析 由题意p :|x -2|<a ⇔2-a <x <2+a ,q :|x 2-4|<1⇔-1<x 2-4<1⇔3<x 2<5⇔-5<x <-3或3<x < 5.
又由题意知p 是q 的充分不必要条件,
所以有⎩⎨⎧ -5≤2-a ,2+a ≤-3,
a >0, ①或⎩⎨⎧ 3≤2-a ,2+a ≤5,a >0, ②.
由①得a 无解;由②解得0<a ≤5-2.
18.已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0}.
(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;
(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件;
(3)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的一个必要但不充分条件.
答案 (1){a |-3≤a ≤5} (2)在{a |-3≤a ≤5}中可任取一个值a =0
(3){a |a <-3}
解析由题意知,a≤8.
(1)M∩P={x|5<x≤8}的充要条件-3≤a≤5.
(2)M∩P={x|5<x≤8}的充分但不必要条件,显然,a在[-3,5]中任取一个值都可.
(3)若a=-5,显然M∩P=[-5,-3)∪(5,8]是M∩P={x|5<x≤8}的必要但不充分条件.
结合①②知a<-3时为必要不充分.。