电池组热力耦合分析

合集下载

锂离子电池电-热-机耦合特性实验研究及关键参数辨识

锂离子电池电-热-机耦合特性实验研究及关键参数辨识

锂离子电池电-热-机耦合特性实验研究及关键参数辨识张立军;程洪正;孟德建【摘要】针对锂离子电池的电-热-机耦合特性,设计了一套耦合特性综合测试系统,进行了电池不同倍率充放电工况下电-热-机耦合特性的测试与分析,以探究电池电特性、形变、温度的时间演变规律与空间分布特性,可以得到电池荷电状态(state of charge,SOC)-形变曲线具有明显的分段特性,可以辅助磷酸铁锂电池SOC估计的修正.基于该系统测试结果研究了电池充放电过程形变产生的机理,并进行了电池热膨胀系数的参数辨识.实验结果表明:高倍率放电时,在放电初期和中期电池边缘部分膨胀,放电后期收缩,而中心位置在放电初期和中期收缩,后期膨胀;低倍率放电时,电池表现为放电初期和后期整体收缩,中期整体膨胀.研究结果可为电池内部电-热-机耦合特性的理论分析与测试管理提供依据.%The coupling mechanism of ETSS fields (electro-chemical field,temperature field and strain-stress field) is a hot spot in the lithium-ion battery design and management researches.A novel instrument is designed to simultaneously obtain the thermal,electric and mechanical behaviors of the battery under charge and discharge operations and to further ascertain the characteristics in both spatial and temporal domains.Conclusion is drawn that the battery deformation curve has an obvious piecewise characteristic related to SOC (state of charge),and can be used to aid in the modification of the SOC estimation method for LiFePO4 battery.Based on the test results,the mechanism of battery deformation under charge and discharge is further investigated and the key parameter of thermal expansion coefficient is identified.The result shows that when discharge is at a high rate,the battery expandsduring the initial and middle stages,then shrinks during the final stage in the edge area,while battery shrinks during the initial and middle stages and expands during the final stage in the center area,and that when discharge is at a low rate,the battery shrinks during the initial and middle stages but expands in the final stage in both the edge and the center areas.These results may provide a basis for theoretical analysis,testing and management of battery ETSS fields.【期刊名称】《西安交通大学学报》【年(卷),期】2017(051)008【总页数】7页(P142-148)【关键词】锂离子电池;电-热-机耦合特性;电池热膨胀;参数辨识【作者】张立军;程洪正;孟德建【作者单位】同济大学汽车学院,201804,上海;同济大学智能型新能源汽车协同创新中心,201804,上海;同济大学汽车学院,201804,上海;同济大学智能型新能源汽车协同创新中心,201804,上海;同济大学汽车学院,201804,上海;同济大学智能型新能源汽车协同创新中心,201804,上海【正文语种】中文【中图分类】U463.51动力电池是电动汽车的最核心部件之一,近年来,锂离子电池因其优异的综合性能倍受关注[1]。

电池电热耦合模型

电池电热耦合模型

电池电热耦合模型介绍电池是现代社会中广泛使用的能源存储设备,而电池的性能则直接影响了许多应用的可靠性和效率。

电池的工作原理涉及到多个物理过程,其中一项重要的过程是电池内部的电热耦合效应。

电热耦合模型是用来描述电池在充放电过程中的温度变化和电性能之间的关系的模型。

通过建立电池电热耦合模型,我们可以更好地理解电池的工作原理,优化电池设计,并提高电池的性能和寿命。

电池的基本原理在了解电池的电热耦合模型之前,我们需要先了解电池的基本原理。

一个电池通常由正极、负极和电解质组成。

正极是电池中的正极性材料,负极是电池中的负极性材料,电解质则起到将正负极子系统分离并传递离子的作用。

当电池处于工作状态时,正极和负极之间存在着一个电位差,这种差异可以通过外部连接电路来驱动电流的流动。

在充电过程中,电流从外部电源流入电池,正极发生氧化反应形成阳离子,负极则发生还原反应形成阴离子。

在放电过程中,电流则从电池流向外部电路,电化学反应再次发生,正极形成阴离子,负极形成阳离子。

由于电池内部的电化学反应会伴随着能量转换和电压变化,因此也会引起电池的温度波动。

这种电-热的耦合效应对于电池的性能和寿命具有重要的影响。

电池电热耦合模型的意义电池内部的电化学反应会产生热量,而电流通过电池时也会引起电阻产生热量。

这些热量的积累和分布将对电池的性能产生直接的影响。

因此,建立一个准确的电池电热耦合模型可以帮助我们更好地理解电池的温度变化规律,优化电池的设计和运行策略,从而提高电池的效率和寿命。

电池电化学反应中的温度变化可以通过考虑内部热源、热传导和热边界条件来建立数学模型。

真实的电池系统是复杂的,包括多个层次和多个界面,因此需要考虑多个参数和多个物理过程。

电池电热耦合模型可以帮助确定这些参数,并提供电池性能的全面和深入的理解。

电池电热耦合模型的建立方法建立电池电热耦合模型是一个复杂而繁琐的过程,需要综合考虑多个物理过程的相互作用。

以下是建立电池电热耦合模型的几个关键步骤:1. 建立电化学模型在建立电化学模型时,需要考虑电池的正极和负极的化学反应过程,以及电解质中离子的传递过程。

综合能源系统分析的统一能路理论:电热气耦合系统优化调度

综合能源系统分析的统一能路理论:电热气耦合系统优化调度

5、系统调度:根据优化结果,对电热气耦合系统进行实时调度,确保系统 运行在最优状态。同时,需要考虑系统的动态特性和不确定性,进行实时控制和 调整。
相关技术综述
统一能路理论在电热气耦合系统优化调度中的应用,需要与相关领域的技术 相结合。以下是一些与统一能路理论相关的技术领域及其在电热气耦合系统优化 调度中的应用:
3、智能电网:智能电网技术的发展为电热气耦合系统优化调度提供了新的 机遇。智能电网具有信息化、自动化和互动化的特点,能够实现电力系统的实时 监测、控制和优化运行。通过结合智能电网技术,可实现电热气耦合系统的智能 调度和优化运行。
未来发展方向
随着科技的不断进步和能源结构的转型,电热气耦合系统优化调度将面临新 的挑战和机遇。未来发展方向包括以下几个方面:
2、目标函数设定:根据系统需求和目标,设定优化目标函数。目标函数可 包括能耗、排放、经济性等多个方面,以指导优化过程。
3、约束条件处理:在优化过程中,需要考虑系统的各种约束条件。例如, 电力系统的稳定性约束、热力系统的传热约束等。处理约束条件的方法包括线性 规划、非线性规划等。
4、优化算法选择:根据目标函数和约束条件,选择合适的优化算法进行求 解。常见的优化算法包括梯度下降法、遗传算法、粒子群算法等。
1、控制理论:控制理论为电热气耦合系统的稳定运行和优化控制提供了重 要支持。通过采用先进的控制策略,如自适应控制、鲁棒控制等,可有效应对系 统中的不确定性和扰动,实现系统的最优控制。
2、能源系统建模:能源系统建模是统一能路理论应用于电热气耦合系统优 化调度的关键环节。通过对电热气耦合系统进行详细建模,能够准确描述系统中 各子系统的运行特性和能量转换过程,为优化调度提供可靠的基础。
3、考虑环境因素与社会效益:在满足经济性要求的同时,未来电热气耦合 系统优化调度将更加环境因素和社会效益。通过降低碳排放、提高能源利用效率, 推动绿色低碳发展,同时实现经济效益、社会效益和环境效益的平衡。

汽车电池组热特性解析

汽车电池组热特性解析

汽车电池组热特性解析汽车电池组热特性解析汽车电池组是电动车辆的核心组件之一,它的热特性对整个电池组的性能和寿命至关重要。

下面将从步骤思维的角度来解析汽车电池组的热特性。

第一步:了解热特性的定义汽车电池组的热特性是指电池在充电和放电过程中的温度变化情况以及对温度的响应速度。

这些因素直接影响了电池的性能和寿命。

第二步:分析充电过程中的热特性在充电过程中,电能会转化为热能,导致电池温度升高。

电池内部的化学反应速率也会随温度的升高而增加。

因此,充电时要注意控制电池温度,避免过热对电池性能的影响。

第三步:分析放电过程中的热特性在放电过程中,电池会释放储存的能量,同时也会产生热量。

放电速率越高,电池温度上升得越快。

如果电池无法有效散热,温度过高可能导致电池的寿命缩短。

因此,放电时要适度控制放电速率,避免电池过热。

第四步:分析温度对电池性能的影响温度对电池性能有很大影响。

通常来说,电池在高温下的性能要优于低温下的性能。

然而,过高的温度可能导致电池发生热失控,甚至引发火灾。

因此,要根据不同电池的温度特性,选择合适的工作温度范围,同时采取散热措施来保持电池的温度在可控范围内。

第五步:分析温度对电池寿命的影响温度对电池寿命有重要影响。

一般来说,高温会加速电池的老化过程,降低电池寿命。

此外,温度变化也会引起电池内部的热膨胀和收缩,可能导致电池失效。

因此,在设计电池组时,要考虑温度对电池寿命的影响,并采取措施来降低温度对电池的不利影响。

综上所述,汽车电池组的热特性对整个电池组的性能和寿命至关重要。

了解和控制充电和放电过程中的温度变化,选择合适的工作温度范围,并采取散热措施,都是确保电池组正常运行的关键因素。

只有在合适的温度范围内工作,电池组才能发挥最佳性能,并具有更长的寿命。

电热力耦合变形行为和机理

电热力耦合变形行为和机理

电热力耦合变形行为和机理引言:电热力耦合变形行为和机理是一个重要的研究领域,涉及到材料科学、力学、物理学和工程学等多个学科。

在现代工业生产和科学研究中,了解和控制材料在电热力耦合作用下的变形行为是非常关键的。

本文将介绍电热力耦合变形的概念和机理,并探讨其在材料科学和工程领域的应用。

一、电热力耦合变形的概念电热力耦合变形指的是材料在电场、热场和力场的共同作用下发生的变形行为。

在这种情况下,电场、热场和力场相互影响,相互耦合,共同作用于材料中的原子、晶体和晶界等微观结构,导致材料整体发生形变。

电热力耦合变形的机理非常复杂,涉及到电荷迁移、热传导和应力传递等多个物理过程。

二、电热力耦合变形的机理1. 电场对材料的影响当材料处于电场中时,电场会通过电荷迁移作用引起材料内部的电荷分布不均匀,从而导致电极化效应和电介质效应。

电极化效应指的是电场作用下材料内部产生的电偶极矩,导致材料产生形变。

电介质效应则是指材料在电场作用下发生电荷重排,从而改变材料的性质和形态。

2. 热场对材料的影响热场可以通过导热和热膨胀作用对材料产生变形影响。

当材料受到热场的作用时,热量会通过导热作用传递到材料内部,导致材料温度升高。

这种温度升高会引起材料的热膨胀,从而导致材料发生变形。

3. 力场对材料的影响力场是指外界施加在材料上的力,如压力、拉力等。

当材料受到力场的作用时,外界施加的力会通过应力传递作用于材料内部的晶体和晶界等微观结构,导致材料发生变形。

三、电热力耦合变形的应用电热力耦合变形的机理和行为对材料科学和工程领域有着重要的应用价值。

1. 材料性能调控通过调控材料的电场、热场和力场,可以实现对材料性能的调控。

例如,通过电场作用可以调控材料的电导率、电磁特性和光学性质等;通过热场作用可以调控材料的热导率、热膨胀系数和热稳定性等;通过力场作用可以调控材料的力学性能和形变行为等。

2. 功能材料设计电热力耦合变形行为的研究可以为功能材料的设计和制备提供理论指导。

热-结构耦合分析

热-结构耦合分析

热-结构耦合分析结构耦合分析知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题由于结构温度场的分结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分结构耦合问题是结构分析中通常遇到的一类耦合分析问题布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发或者结构部件在高温环境中工作布不均会引起结构的热应力或者结构部件在高温环境中工作材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素为此需要先进行相应的热分析, 这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析生性能的改变这些都是进行结构分析时需要考虑的因素为此需要先进行相应的热分析然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理热分析用于计算一个系统或部件的温度分布及其它热物理,如然后在进行结构分析热分析用于计算一个系统或部件的温度分布及其它热物理如热量的获取或损失,热梯度热流密度(热通量热梯度,热流密度热通量)等本章主要介绍在热量的获取或损失热梯度热流密度热通量等.本章主要介绍在ANSYS 中进行稳瞬态热分析的基本过程,并讲解如何完整的进行热结构耦合分析. 态,瞬态热分析的基本过程并讲解如何完整的进行热结构耦合分析瞬态热分析的基本过程并讲解如何完整的进行热-结构耦合分析21.1 热-结构耦合分析简介结构耦合分析简介结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的热-结构耦合分析是指求解温度场对结构中应力应变和位移等物理量影响的结构耦合分析是指求解温度场对结构中应力分析类型.对于热结构耦合分析,在对于热-结构耦合分析中通常采用顺序耦合分析方法分析方法,即分析类型对于热结构耦合分析在ANSYS 中通常采用顺序耦合分析方法即先进行热分析求得结构的温度场,然后再进行结构分析然后再进行结构分析.且将前面得到的温度场作先进行热分析求得结构的温度场然后再进行结构分析且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布为此,首先需要了解热分析的基本知为体载荷加到结构中求解结构的应力分布.为此首先需要了解热分析的基本知求解结构的应力分布为此然后再学习耦合分析方法. 识,然后再学习耦合分析方法然后再学习耦合分析方法21.1.1 热分析基本知识ANSYS 热分析基于能量守恒原理的热平衡方程用有限元法计算各节点的温热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温并导出其它热物理.ANSYS 热分析包括热传导热对流及热辐射三种热传热分析包括热传导,热对流及热辐射三种热传度,并导出其它热物理并导出其它热物理递方式.此外还可以分析相变,有内热源接触热阻等问题. 此外,还可以分析相变有内热源,接触热阻等问题递方式此外还可以分析相变有内热源接触热阻等问题热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间热对流是指固体的表面和与它周围接触的流体之间,由于温差的存而引起的内能的交换热对流是指固体的表面和与它周围接触的流体之间由于温差的存在引起的热量的交换.热辐射指物体发射电磁能热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换在引起的热量的交换热辐射指物体发射电磁能并被其它物体吸收转变为热的热量交换过程. 过程如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q 流入+q 生成-q 流出=0,则系统处于热稳态则系统处于热稳态.在稳态热分析中任一节点的温度不随时的热量流入生成流出则系统处于热稳态在稳态热分析中任一节点的温度不随时间变化. 瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度热流率, 在这个过程中系统的温度,热流率瞬态传热过程是指一个系统的加热或冷却过程在这个过程中系统的温度热流率热边界条件以及系统内能随时间都有明显变化. 热边界条件以及系统内能随时间都有明显变化ANSYS 热分析的边界条件或初始条件可分为七种温度热流率热流密度热分析的边界条件或初始条件可分为七种温度,热流率热流密度, 七种:温度热流率,热流密度对流,辐射绝热,生热辐射,绝热生热. 对流辐射绝热生热热分析涉及到的单元有大约40 种,其中纯粹用于热分析的有14 种,它们如表其中纯粹用于热分析的有它们如表21.1 示示. 表21.1 热分析单元列表单元类型名称说明线性LINK32 LINK33 LINK34 LINK31 两维二节点热传导单元三维二节点热传导单元二节点热对流单元二节点热辐射单元二维实体PLANE55 PLANE77 PLANE35 PLANE75 PLANE78 四节点四边形单元八节点四边形单元三节点三角形单元三节点三角形单元四节点轴对称单元八节点轴对称单元三维实体SOLID87 SOLID70 SOLID90 六节点四面体单元八节点六面体单元二十节点六面体单元壳SHELL57 四节点四边形壳单元点MASS71 节点质量单元21.1.2 耦合分析中能够进行的热耦合分析有:热结构耦合结构耦合,热流体耦合流体耦合,热电耦在ANSYS 中能够进行的热耦合分析有热-结构耦合热-流体耦合热-电耦磁耦合,热电磁结构耦合等因为本书主要讲解结构实例分析,结构耦合等,因为本书主要讲解结构实例分析合,热-磁耦合热-电-磁-结构耦合等因为本书主要讲解结构实例分析热磁耦合以着重讲解热-结构耦合分析结构耦合分析. 以着重讲解热结构耦合分析中通常可以用两种方法来进行耦合分析,一种是顺序耦合方法一种是顺序耦合方法,另在ANSYS 中通常可以用两种方法来进行耦合分析一种是顺序耦合方法另一种是直接耦合方法. 一种是直接耦合方法顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于某一物理分顺序耦合方法包括两个或多个按一定顺序排列的分析每一种属于某一物理分通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合.典型析.通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合典型通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合的例子就是热-应力顺利耦合分析热分析中得到节点温度作为"体载荷应力顺利耦合分析,热分析中得到节点温度作为体载荷"施加到的例子就是热应力顺利耦合分析热分析中得到节点温度作为体载荷施加到随后的结构分析中去. 随后的结构分析中去直接耦合方法,只包含一个分析它使用包含多场自由度的耦合单元.通过计只包含一个分析,它使用包含多场自由度的耦合单元直接耦合方法只包含一个分析它使用包含多场自由度的耦合单元通过计算包含需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合.典型的算包含需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合典型的单元的压电分析. 例子是使用了SOLID45,PLANE13 或SOLID98 单元的压电分析进行顺序耦合场分析可以使用间接法和物理环境法.对于间接法对于间接法,使用不同的进行顺序耦合场分析可以使用间接法和物理环境法对于间接法使用不同的数据库和结果文件,每个数据库包含合适的实体模型单元,载荷等每个数据库包含合适的实体模型,单元载荷等.可以把一个数据库和结果文件每个数据库包含合适的实体模型单元载荷等可以把一个结果文件读入到另一个数据库中,但单元和节点数量编号在数据库和结果文件中必结果文件读入到另一个数据库中但单元和节点数量编号在数据库和结果文件中必须是相同的.物理环境方法整个模型使用一个数据库物理环境方法整个模型使用一个数据库.数据库中必须包含有的物须是相同的物理环境方法整个模型使用一个数据库数据库中必须包含有的物理分析需的节点和单元.对于每个单元或实体模型图元必须定义一套属性编号, 对于每个单元或实体模型图元,必须定义一套属性编号理分析需的节点和单元对于每个单元或实体模型图元必须定义一套属性编号包括单元类型号,材料编号实常数编号及单元坐标编号.有这些编号在有物材料编号,实常数编号及单元坐标编号包括单元类型号材料编号实常数编号及单元坐标编号有这些编号在有物理分析中是不变的.但在每个物理环境中每个编号对应的实际的属性是不同的但在每个物理环境中,每个编号对应的实际的属性是不同理分析中是不变的但在每个物理环境中每个编号对应的实际的属性是不同的. 对于本书要讲解的热-结构耦合分析通常采用间接法顺序耦合分析,其数据结构耦合分析,通常采用间接法顺序耦合分析对于本书要讲解的热结构耦合分析通常采用间接法顺序耦合分析其数据示. 流程如图21.1 示图21.1 间接法顺序耦合分析数据流程图21.2 稳态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响.通常在进行瞬态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响通常在进行瞬态热分析以前,需要进行稳态热分析来确定初始温度分布需要进行稳态热分析来确定初始温度分布.稳态热分析可以通过有限元计算以前需要进行稳态热分析来确定初始温度分布稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度,热梯度热流率,热流密度等热梯度,热流率热流密度等.ANSYS 确定由于稳定的热载荷引起的温度热梯度热流率热流密度等稳态热分析可分为三个步骤: 稳态热分析可分为三个步骤前处理:建模前处理建模求解:施加载荷计算施加载荷计算后处理:查看结果后处理查看结果21.2.1 建模稳态热分析的模型和前面的结构分析模型建立过程基本相同的模型和前面的结构分析模型建立过程基本相同.不同的就是需要在菜单稳态热分析的模型和前面的结构分析模型建立过程基本相同不同的就是需要在菜单过虑对话框中将分析类型指定为热分析,这样才能使菜单选项为热分析选项这样才能使菜单选项为热分析选项,单元类型也过虑对话框中将分析类型指定为热分析这样才能使菜单选项为热分析选项单元类型也为热分析的单元类型,另外在材料定义时需要定义相应的热性能另外在材料定义时需要定义相应的热性能,下面为大概操作步为热分析的单元类型另外在材料定义时需要定义相应的热性能下面为大概操作步骤. 1.确定jobname,title,unit; 确定 2.进入PREP7 前处理定义单元类型设定单元选项前处理,定义单元类型设定单元选项; 定义单元类型,设定单元选项进入3.定义单元实常数定义单元实常数; 定义单元实常数 4.定义材料热性能对于稳态传热一般只需定义导热系数它可以是恒定的定义材料热性能,对于稳态传热一般只需定义导热系数,它可以是恒定的定义材料热性能对于稳态传热,一般只需定义导热系数它可以是恒定的, 也可以随温度变化; 也可以随温度变化 5.创建几何模型并划分网格请参阅结构分析的建模步骤创建几何模型并划分网格,请参阅结构分析的建模步骤. 创建几何模型并划分网格请参阅结构分析的建模步骤21.2.2 施加载荷计算热分析跟前面讲解的结构分析相比,区别在于指定的载荷为温度边条区别在于指定的载荷为温度边条.通常可施加的热分析跟前面讲解的结构分析相比区别在于指定的载荷为温度边条通常可施加的温度载荷有恒定的温度,热流率对流,热流密度和生热率五种热流率,对流热流密度和生热率五种.另外在分析选项中也包温度载荷有恒定的温度热流率对流热流密度和生热率五种另外在分析选项中也包含非线性选项,结果输出选项等需要根据情况进行设置结果输出选项等需要根据情况进行设置. 含非线性选项结果输出选项等需要根据情况进行设置 1.定义分析类型定义分析类型(1) 如果进行新的热分析则使用下面命令或菜单路径如果进行新的热分析,则使用下面命令或菜单路径则使用下面命令或菜单路径: COMMAND:ANTYPE, STA TIC, NEW GUI: Main menu | Solution | -Analysis Type- | New Analysis | Steady-state (2) 如果继续上一次分析比如增加边界条件等则需要进行重启动功能如果继续上一次分析,比如增加边界条件等则需要进行重启动功能: 比如增加边界条件等,则需要进行重启动功能COMMAND: ANTYPE, STATIC, REST GUI: Main menu | Solution | Analysis Type- | Restart 2.施加载荷施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件边界条件) 可以直接在实体模型或单元模型上施加五种载荷边界条件. (1) 恒定的温度通常作为自由度约束施加于温度已知的边界上恒定的温度: 通常作为自由度约束施加于温度已知的边界上. COMMAND: D GUI:Main Menu | Solution | -Loads-Apply | -Thermal-Temperature (2)热流率热流率作为节点集中载荷主于线单元模型中通常线单元模热流率: 主于线单元模型中(通常线单元模热流率热流率作为节点集中载荷,主于线单元模型中型不能施加对流或热流密度载荷),如果输入的值为正代表热流流入节点,即单如果输入的值为正,代表热流流入节点型不能施加对流或热流密度载荷如果输入的值为正代表热流流入节点即单元获取热量.如果温度与热流率同时施加在一节点上如果温度与热流率同时施加在一节点上,则元获取热量如果温度与热流率同时施加在一节点上则ANSYS 读取温度值进行计算. 计算注意:如果在实体单元的某一节点上施加热流率则此节点周围的单元要密一些, 如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些注意如果在实体单元的某一节点上施加热流率则此节点周围的单元要密一些在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意尤其要注意.此在两种导热系数差别很大的两个单元的公共节点上施加热流率时尤其要注意此尽可能使用热生成或热流密度边界条件,这样结果会更精确些外,尽可能使用热生成或热流密度边界条件这样结果会更精确些尽可能使用热生成或热流密度边界条件这样结果会更精确些. COMMAND: F GUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flow (3) 对流对流边界条件作为面载施加于实体的外表面计算与流体的热交换对流:对流边界条件作为面载施加于实体的外表面计算与流体的热交换. 对流边界条件作为面载施加于实体的外表面,计算与流体的热交换它仅可施加于实体和壳模型上,对于线模型对于线模型,可以通过对流线单元它仅可施加于实体和壳模型上对于线模型可以通过对流线单元LINK34 考虑对流. COMMAND: SF GUI:Main Menu | Solution | -Loads-Apply | -Thermal-Convection (4) 热流密度热流密度也是一种面载荷当通过单位面积的热流率已知或通热流密度:热流密度也是一种面载荷当通过单位面积的热流率已知或通热流密度也是一种面载荷.当通过单位面积的热计算得到时,可以在模型相应的外表面施加热流密度可以在模型相应的外表面施加热流密度.如果输入过FLOTRAN CFD 计算得到时可以在模型相应的外表面施加热流密度如果输入的值为正,代表热流流入单元热流密度也仅适用于实体和壳单元.热流密度与对代表热流流入单元.热流密度也仅适用于实体和壳单元的值为正代表热流流入单元热流密度也仅适用于实体和壳单元热流密度与对流可以施加在同一外表面,但仅读取最后施加的面载荷进行计算. 流可以施加在同一外表面但ANSYS 仅读取最后施加的面载荷进行计算COMMAND: F GUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Flux (5) 生热率生热率作为体载施加于单元上可以模拟化学反应生热或电流生生热率:生热率作为体载施加于单元上生热率作为体载施加于单元上,可以模拟化学反应生热或电流生它的单位是单位体积的热流率. 热.它的单位是单位体积的热流率它的单位是单位体积的热流率COMMAND: BF GUI:Main Menu | Solution | -Loads-Apply | -Thermal-Heat Generat 3.确定载荷步选项确定载荷步选项对于一个热分析,可以确定普通选项非线性选项以及输出控制.热分析的载可以确定普通选项,非线性选项以及输出控制对于一个热分析可以确定普通选项非线性选项以及输出控制热分析的载荷不选项和结构静力分析中的载荷步相同,读者可以参阅本书结构静力分析部分的荷不选项和结构静力分析中的载荷步相同读者可以参阅本书结构静力分析部分的相关内容或基本分析过程中关于载荷步选项的内容.这里就不再详细讲解了这里就不再详细讲解了. 相关内容或基本分析过程中关于载荷步选项的内容这里就不再详细讲解了 4.确定分析选项确定分析选项在这一步需要选择求解器,并确定绝对零度在进行热辐射分析时,要将目前并确定绝对零度.在进行热辐射分析时在这一步需要选择求解器并确定绝对零度在进行热辐射分析时要将目前的温度值换算为绝对温度.如果使温度单位是摄氏度,此值应设定为如果使温度单位是摄氏度的温度值换算为绝对温度如果使温度单位是摄氏度此值应设定为273;如如果使是华氏度,则为果使是华氏度则为460. Command: TOFFST GUI: Main Menu | Solution | Analysis Options 5.求解求解在完成了相应的热分析选项设定之后,便可以对问题进行求解了便可以对问题进行求解了. 在完成了相应的热分析选项设定之后便可以对问题进行求解了Command: SOLVE GUI: Main Menu | Solution | Current LS 21.2.3 后处理ANSYS 将热分析的结果写入将热分析的结果写入*.rth 文件中它包含如下数据信息文件中,它包含如下数据信息它包含如下数据信息: (1) 基本数据基本数据: 节点温度(2) 导出数据导出数据: 节点及单元的热流密度节点及单元的热梯度单元热流率节点的反作用热流率其它对于稳态热分析,可以使用进行后处理.关于后处理的完整描述关于后处理的完整描述,可对于稳态热分析可以使用POST1 进行后处理关于后处理的完整描述可参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解.下面是几个关参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解下面是几个关键操作的命令和菜单路径. 键操作的命令和菜单路径 1.进入POST1 后,读入载荷步和子步读入载荷步和子步: 进入读入载荷步和子步COMMAND: SET GUI: Main Menu | General Postproc | -Read Results-By Load Step 2.在热分析中可以通过如下三种方式查看结果在热分析中可以通过如下三种方式查看结果在热分析中可以通过如下三种方式查看结果: 彩色云图显示COMMAND: PLNSOL, PLESOL, PLETAB 等GUI: Main Menu | General Postproc | Plot Results | Nodal Solu, Element Solu, Elem Table 矢量图显示COMMAND: PLVECT GUI: Main Menu | General Postproc | Plot Results | Pre-defined or Userdefined 列表显示COMMNAD: PRNSOL, PRESOL, PRRSOL 等GUI: Main Menu | General Postproc | List Results | Nodal Solu, Element Solu, Reaction Solu 21.3 瞬态传热分析瞬态热分析用于计算一个系统随时间变化的温度场及其它热.在工程上一瞬态热分析用于计算一个系统随时间变化的温度场及其它热在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析并将之作为热载荷进行应力分析. 般用瞬态热分析计算温度场并将之作为热载荷进行应力分析瞬态热分析的基本步骤与稳态热分析类似.主要的区别是瞬态热分析中的载荷瞬态热分析的基本步骤与稳态热分析类似主要的区别是瞬态热分析中的载荷是随时间变化的.为了表达随时间变化的载荷首先必须将载荷为了表达随时间变化的载荷,首先必须将载荷~是随时间变化的为了表达随时间变化的载荷首先必须将载荷~时间曲线分为载荷步.载荷时间曲线中的每一个拐点为一个载荷步,如下图示载荷~如下图示. 荷步载荷~时间曲线中的每一个拐点为一个载荷步如下图示瞬态热分析载荷-时间曲线图21.2 瞬态热分析载荷时间曲线对于每一个载荷步,必须定义载荷值荷对应的时间值必须定义载荷值荷对应的时间值,同时必须指定载荷步的对于每一个载荷步必须定义载荷值荷对应的时间值同时必须指定载荷步的施加方式为渐变或阶越. 施加方式为渐变或阶越21.3.1 建模一般瞬态热分析中,定义材料性能时要定义导热系数密度及比热,其余建模过程与定义材料性能时要定义导热系数,密度及比热一般瞬态热分析中定义材料性能时要定义导热系数密度及比热其余建模过程与稳态热分析类似,这里就不再赘述这里就不再赘述. 稳态热分析类似这里就不再赘述21.3.2 加载求解中进行的分析一样,瞬态热分析进行加载求解时同样需要完成如下的和其它ANSYS 中进行的分析一样瞬态热分析进行加载求解时同样需要完成如下的工作.包括定义分析类型定义初始条件,施加载荷指定载荷步选项包括定义分析类型,定义初始条件施加载荷,指定载荷步选项,指定结果输出选工作包括定义分析类型定义初始条件施加载荷指定载荷步选项指定结果输出选项以及最后进行求解. 项以及最后进行求解1. 定义分析类型指定分析类型为瞬态分析,通用可以进行新的分析或进行重启动分析通用可以进行新的分析或进行重启动分析. 指定分析类型为瞬态分析通用可以进行新的分析或进行重启动分析 2.获得瞬态热分析的初始条件获得瞬态热分析的初始条件(1) 定义均匀温度场如果已知模型的起始温度是均匀的,可设定有节点初始温度如果已知模型的起始温度是均匀的可设定有节点初始温度Command: TUNIF GUI: Main Menu | Solution | -Loads- | Settings | Uniform Temp 如果不在对话框中输入数据,则默认为参考温度。

单体锂离子电池的热仿真分析方法

单体锂离子电池的热仿真分析方法

单体锂离子电池的热仿真分析方法发布时间:15/04/28 12:58:54 浏览: 527次今天正好有些时间,想起前段时间以来有网友问我关于锂离子电池单体如何分析,下列就ansys软件,简单的说下过程及注意事项。

过热的危害首先应会从单体电池的角度阐述过热的危害,我简单的说一下:电池的组成部分包含电解液、正负极材料、隔膜,铜铝箔等各种材料,温度过高会加速电池的老化速率,当电池的温度如果超过120℃,首先隔膜会收缩,而且正负极材料也会发生分解,电池内部会发生一系列的热反应,种种问题会造成不安全的因素,因而在电池设计时需要考虑电芯单体的温度性能,来确定电池的倍率放电能力。

一般来说除了电池内部发生严重的短路,温度在正常情况下不会超过120摄氏度。

建议没有电化学基础的,先了解一下电池的原理及组成,这样有助于电池几何体的建模和产热的行为分析。

我们经常从网上看到一些图片关于单体的温度性能,如下图:这样的分析结果到底对不对呢,如何精确的得到此图,这需要自己的掌握了。

下列以本人在几年前做的一个单体的分析来说明过程:1.电池参数获取导热系数和比热容是关键的两个因素首先电池参数的获取,下列给大家列出一个实例,里面参数需要大家和电池供应商去沟通。

此图中的参数是某款磷酸铁锂电池的物性参数。

具体体积数据需要计算测量。

由此数据可以计算电池的比热容,导热系数,密度等数据。

首先需要确定电池卷心的结构方式,是层叠式还是卷绕式。

比如层叠式,可以数一下极片的层数,可以完成体积的测量。

有上式可以确定电池的导热系数。

关于比热容,可以用加权法来计算,这里不再赘述。

关于电池的内阻,一般用直流内阻来计算发热量。

2.关于电池的建模针对单体模型的建模程序:包含电芯部分(包括正极片、负极片、隔膜等)作为一个单元进行模型的建立,作为发热源。

其他部分根据根据单体实际模型与尺寸进行建模和设置相关个更变参数,包含极耳、极柱、壳体等主要传热部件。

(A)几何模型1)对于电芯而言,不再分成一片一片的正负极单片,而是将整个电芯拟合为一个整体来考虑,其具有新的物性和形状;2) 对将极耳和正负电极连接起来的金属片而言,根据单体实际模型进行建模,其物性参数取当量值;3) 极耳连接出电极后,各片之间紧密相靠,形成一个整体,厚度为各片厚度之和;4)电池内部空腔部分空气不考虑其流动性,极堆单体之间的液体不考虑流动。

质子交换膜燃料电池热力耦合仿真分析(1)

质子交换膜燃料电池热力耦合仿真分析(1)

2.3 热力耦合效应对 MEA 应力分布影响
取如图 4 所示的 MEA1 代表点 A 为例,MEA 在热力耦合 效应下的应力变化率计算如下。不同温度下的应力值 S :353.15 = 1.82 MPa,S243.15 = 1.68 MPa,S293.15 = 1.75 MPa, 最 高 温 度 (353.15 K)相对于常温下(293.15 K)的应力变化率为:
维有限元分析模型,通过定义螺栓预紧力及设置不同温度场模拟热力耦合效应,分析了热力耦合效应对由三个单电池
组成的燃料电池电堆中单电池层内及电池之间应力分布影响规律,为保证燃料电池电堆层内与层间应力分布均匀,提
高电堆装配质量提供了理论指导。
关键词:质子交换膜燃料电池;热力耦合;装配压力;应力分布
中图分类号:TM 911 文献标识码:A
最高温度(353.15 K)相对于最低温度时(243.15 K)的应力 变化率为:
取 MEA2 与 MEA1 的代表节点 A 相同位置点分析。 不同温度下的应力值:S353.15 = 2.04 MPa,S243.15 = 1.92 MPa, S = 293.15 1.97 MPa。最高温度(353.15 K)相对于常温下(293.15 K)的应力变化率为:
在电堆装了一个 单电池有限元模型,研究在一定装配压力下,燃料电池各个组
收稿日期:2009-11-20 基金项目:国家自然科学基金项目编号(50820125506) 作者简介:严蓉蓉(1986—),女,江苏省人,硕士,主要研究方向 为质子交换膜燃料电池。
1.4 载荷施加和边界条件设置
通过施加螺栓预紧力来模拟电堆装配压力,对螺母和螺 栓设置绑定约束,这样保证在整个分析过程中不再分开,提供 足够的紧固力,如图 3 所示。假设燃料电池在室温 20 ℃下完 成装配,在零下 30 ℃启动,运行后温度逐渐升高直到最后稳 定在 80 ℃。为模拟这一温度变化过程,定义一个温度场并做 如下简化:(1)不考虑其他热源产生的温度和湿度; (2)只加载机 械载荷和热载荷;(3)不考虑温度梯度及温度分布不均匀。表 3 为温度场定义及载荷施加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电池组热力耦合分析
本例展示基于热-结构耦合的热力耦合分析。

1 问题设定
一块电池组,尺寸为70mm x 175mm x 400mm。

对模型进行适当简化,保留主体电芯和PC部分,约束电池组底部Z方向,电芯部分给定生热源,电池组外表面给定自然对流散热边界条件,模拟电池组温度变化和应力变化。

由于需要进行实时热力耦合分析,因此电池,PC材料等采用实体建模,设定相关的coupling耦合单元和tie约束,建立电芯和PC材料之间的接触关系(包括热接触)。

本案例用到的附件包括:
Battery1003_heat.cae 稳态热力耦合分析
2 分析过程
一般来说,针对热力学问题,通常有顺序耦合和完全耦合两种方法。

顺序耦合是先进行热传导分析,得到温度分布结果,然后把温度分布结果映射到结构分析模型上。

完全耦合则是直接在abaqus中直接给建立的coupled temp-displacement分析步,完全实时同步计算温度变化和应力变化,并可考虑温度和结构变形之间的互相影响。

2.1 有限元计算
2.1.1 几何处理
在CAD软件中进行简单处理后,导入Abaqus中,需要对零件进行几何清理和修复,删除不必要的细节特征。

2.1.2 赋予材料属性
根据不同材料电池,PC等赋予相应的材料参数,注意因为这里需要进行完全热力耦合分析,因此材料参数必须同时具有力学参数和热学参数,包括:密度,弹性模量,泊松比,塑性曲线,热膨胀系数,热导率,比热等,如下图所示:
2.1.3 模型装配
在Abaqus中装配的模型,通在CAD软件中装配位置关系完全一致。

如果在CAD软件中已经装配即可。

这里由于单个电池芯模型一致,因此为减小前处理工作量,在Abaqus 中对单个电芯进行阵列处理,后期只需要分析修改单个电芯模型,整个装配体所有电芯模型自动更新。

2.1.4 定义相互作用
根据模型需要,定义相关接触关系和耦合约束等等。

如下所示:
定义接触属性:在Interaction模块,点击Create Interaction property,选择contact,进入Edit contact property窗口,分别定义Tangential behavior 中设定0.1的摩擦系数,以及Thermal conductance 中的接触热传导参数,如下图所示:
自动搜索接触对: 由于需要考虑电芯和PC材料之间的接触和接触热传导,而电芯数量较多,如果单独制定面面接触,需要较大工作量,因此可以采用Abaqus/CAE中较为方便的自动搜索接触对功能。

在Interaction模块,点击Find contact paris,Search domain 可以选择whole model,Instance 和Displayed entities,这里选择Displayed entitied,Include paris within separation tolerance 输入1,取消勾选Extend each surface found by angle:20,点击Find contact paris,即可自动搜索相应的接触对。

可以顺序查看接触对是否正常,为了快速诊断,可以按照separation进行排序,删除不必要的接触对即可。

定义tie约束:
2.1.5 网格划分
根据模型尺寸,选取合适的单元尺寸和网格类型,进行相关网格划分。

2.2 热力耦合计算
2.2.1 定义热力耦合分析步
在Abaqus/CAE step模块,点击create step,在Procedure type中选择General,选择Coupled temp-displacement,点击Continue….
进入Edit Step之后,在Response中选择Steady-state,Time period中输入1,打开Nlgeom,Automatic stabilization 选择Specify dissipated energy fraction:0.0002,其他采用缺省设置。

基于此分析步的field output 和history output 采用缺省输出即可。

2.2.2 定义相互作用
除了前面章节模型准备中的电芯和PC材料的接触对定义,这里还需要定义结构外表面的对流散热系数以及为了更加易于收敛的弹簧单元。

紧接上述步骤,在Abaqus/CAE Interaction模块,继续点击create Interaction,在Step 中选择step-1,选择surface film condition,点击Continue….
按照操作提示,选择结构外表面,点击done。

进入Edit Interaction之后,在film coefficient 中,输入自然对流散热系0.005,Sink temperature输入23,其他采用缺省设置。

紧接上述步骤,在Abaqus/CAE Interaction模块,点击主菜单Special->Springs/Dashpots->Create…,进入Create Springs/Dashports窗口,在Connectivity Type中选择Connect points to ground(Standard),点击Continue….,按照提示选择相应需要施加弹簧的硬点,点击done,进入Edit Springs/Dashports窗口,在Degree of freedom 中选择需要施加弹簧的方向,勾选Spring stiffness,并输入1即可。

2.2.3 定义热源和边界条件
定义生热源:
紧接上述步骤,在Abaqus/CAE Load模块,点击create Load,在Step中选择Step:Step-1,,在Category中选择Thermal,在Types for Selected Step中选择Body heat flux,点击Continue….
按照提示操作,选择所有电芯实体模型,点击done,进入Edit Load之后,magnitude 输入0.1,点击OK,其他采用缺省设置。

这里是定义生热源,这里的生热源可以是各种形式,以及各种表达式,均可在Abaqus中方便输入。

定义约束:
紧接上述步骤,在Abaqus/CAE Load模块,点击create Boundary Condition,在Step 中选择Step:Step-1,,在Category中选择Mechanical,在Types for Selected Step中选择Displacement/Rotation,点击Continue….
按照提示操作,选择电池组底部表面,点击done,进入Edit Boundary Condition之后,勾选U3,点击OK,其他采用缺省设置。

这里约束U3方向,其他方向无约束,用以模拟生热以及由于热膨胀和接触所产生的热应力。

定义初始预定义温度场:
紧接上述步骤,在Abaqus/CAE Load模块,点击create Predefined Field,在Step中选择Step:Initial,,在Category中选择Other,在Types for Selected Step中选择Temperature,点击Continue….
按照提示操作,选择所有电池组模型,点击done,进入Edit Predefined Field之后,Magnitude输入23,点击OK,其他采用缺省设置。

这里定义模型初始温度为23摄氏度。

2.2.4 定义热力耦合单元类型
在Abaqus/CAE Mesh模块,点击Assign Element Type,按照提示,选择对应需要修改单元类型的区域,点击Done。

进入Element type 窗口,在Element Library中选择Standard,在Geometric Order中选择Linear,在Family中选择Coupled Temperature-Displacement,点击OK即可。

因为在step模块定义的是热力耦合分析步,这里的单元类型需要同分析步类型一致,都需要做相应修改,全部改为热力耦合单元类型。

2.2.5 提交计算
在Abaqus/CAE Job模块,点击create Job,点击Continue….. ,在edit Job中选择Parallelization,勾选Use multiple processors,选择可以支持的多核并行数目即可,其他缺省。

点击OK,然后点击Job manager,submit即可提交计算任务。

2.2.6 查看结果
进入Job manager,点击result ,或者用Abaqus打开工作目录下对应.odb文件,以云图形式显示NT11,U,S 等变量,得到下图所示的云图。

相关文档
最新文档