2011届高三数学模拟试题 (理科)

合集下载

北京市丰台区2011届高三一模数学(理)试卷及答案

北京市丰台区2011届高三一模数学(理)试卷及答案

xy OAC y x=2y x =(1,1)B丰台区2011年高三年级第二学期统一练习(一)数 学(理科)2011.3一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合U =R ,2{560}A x x x =-+≥,那么U A =ð(A) {2x x <或3}x > (B) {23}x x << (C) {2x x ≤或3}x ≥ (D) {23}x x ≤≤2.6的展开式中常数项是 (A) -160(B) -20(C) 20(D) 1603.已知平面向量a ,b 的夹角为60°,=a ,||1=b ,则|2|+=a b(A) 2(C)(D)4.设等差数列{}n a 的公差d ≠0,14a d =.若k a 是1a 与2k a 的等比中项,则k = (A) 3或-1 (B) 3或1(C) 3 (D) 1 5.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题: ① 若m β⊂,αβ⊥,则m α⊥; ② 若α//β,m α⊂,则m //β;③ 若n α⊥,n β⊥,m α⊥,则m β⊥; ④ 若αγ⊥,βγ⊥,m α⊥,则m β⊥. 其中正确命题的序号是 (A) ①③ (B) ①②(C)③④ (D) ②③6.已知函数3,0,()ln(1),>0.x x f x x x ⎧≤=⎨+⎩ 若f (2-x 2)>f (x ),则实数x 的取值范围是(A) (,1)(2,)-∞-⋃+∞(B) (,2)(1,)-∞-⋃+∞(C) (1,2)-(D ) (2,1)-7.从如图所示的正方形OABC 区域内任取一个点(,)M x y ,则点M 取自阴影部分的概率为(A) 12 (B)13 (C) 14(D) 168.对于定义域和值域均为[0,1]的函数f (x ),定义1()()f x f x =,21()(())f x f f x =,…,1()(())n n f x f f x -=,n =1,2,3,….满足()n f x x =的点x ∈[0,1]称为f 的n 阶周期点.设12,0,2()122,1,2x x f x x x ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩ 则f 的n 阶周期点的个数是 (A) 2n(B) 2(2n -1)(C) 2n(D) 2n 2二、填空题:本大题共6小题,每小题5分,共30分.9.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A , 点A 的纵坐标为45,则cos α= . 10.双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方 程为 ,渐近线方程为 .11.已知圆M :x 2+y 2-2x -4y +1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为 .12.如图所示,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = . 13.对某种花卉的开放花期追踪调查,调查情况如下:则这种卉的平均花期为___天. 14.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 ……按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .NBAαxy O三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc . (Ⅰ)求角A 的大小; (Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC 的形状.16.(本小题共14分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABC D ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD(Ⅰ)若点M 是棱PC 的中点,求证:PA // 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ;(Ⅲ)若二面角M -BQ -C 为30°,设PM =tMC ,试确定t 的值 .17.(本小题共13分)某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖. (Ⅰ)求分别获得一、二、三等奖的概率; (Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.PABCD QM18.(本小题共13分) 已知函数3211()(0)32f x x ax x b a =+++≥,'()f x 为函数()f x 的导函数. (Ⅰ)设函数f (x )的图象与x 轴交点为A ,曲线y =f (x )在A 点处的切线方程是33y x =-,求,a b 的值; (Ⅱ)若函数()'()axg x e f x -=⋅,求函数()g x 的单调区间.[来源:]19.(本小题共14分)已知点(1,0)A -,(1,0)B ,动点P 满足||||PA PB +=,记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)直线1y kx =+与曲线W 交于不同的两点C ,D ,若存在点(,0)M m ,使得CM DM =成立,求实数m 的取值范围.[来源:学&科&网]20.(本小题共13分)已知123{(,,,,)n n S A A a a a a == ,0i a =或1,1,2,,}i n = (2)n ≥,对于,n U V S ∈,(,)d U V 表示U 和V 中相对应的元素不同的个数.(Ⅰ)令(0,0,0,0,0)U =,存在m 个5V S ∈,使得(,)2d U V =,写出m 的值; (Ⅱ)令0(0,0,0,,0)n W =个,若,n U V S ∈,求证:(,)(,)(,)d U W d V W d U V +≥;(Ⅲ)令123(,,,,)n U a a a a = ,若n V S ∈,求所有(,)d U V 之和.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2011年高三年级第二学期数学统一练习(一)数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9.35- 10.221432x y -=,y =± 11.212.25413.16天(15.9天给满分) 14.n 2-n +5 注:两个空的填空题第一个空填对得3分,第二个空填对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc . (Ⅰ)求角A 的大小; (Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC 的形状.解:(Ⅰ)在△ABC 中,因为b 2+c 2-a 2=bc ,由余弦定理 a 2= b 2+c 2-2bc cos A 可得cos A =12.(余弦定理或公式必须有一个,否则扣1分) ……3分∵ 0<A <π , (或写成A 是三角形内角) ………………4分∴3A π=. ……………………5分(Ⅱ)2cos 2cos 2sin 3)(2xx x x f +=11cos 22x x =++ ……………7分 1sin()62x π=++, …………………9分∵3A π= ∴2(0,)3B π∈PA BCDQM∴5666B πππ<+<(没讨论,扣1分) …………………10分 ∴当62B ππ+=,即3B π=时,()f B 有最大值是23. ……………………11分又∵3A π=, ∴3C π=∴△ABC 为等边三角形. ……………13分16.(本小题共14分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD(Ⅰ)若点M 是棱PC 的中点,求证:PA // 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ;(Ⅲ)若二面角M -BQ -C 为30°,设PM =tMC ,试确定t 的值 . 证明:(Ⅰ)连接AC ,交BQ 于N ,连接MN . ……………………1分∵BC ∥AD 且BC =12AD ,即BC //AQ . ∴四边形BCQA 为平行四边形,且N 为AC 中点, 又∵点M 在是棱PC 的中点,∴ MN // PA ……………………2分 ∵ MN ⊂平面MQB ,PA ⊄平面MQB ,…………………3分 ∴ PA // 平面MBQ . ……………………4分 (Ⅱ)∵AD // BC ,BC =12AD ,Q 为AD 的中点, ∴四边形BCDQ 为平行四边形,∴CD//BQ . ……………………6分∵∠ADC =90° ∴∠AQB =90° 即QB ⊥AD . 又∵平面PAD ⊥平面ABCD 且平面PAD ∩平面ABCD=AD , ……………………7分∴BQ ⊥平面PAD . ……………………8分∵BQ ⊂平面PQB , ∴平面PQB ⊥平面PAD . ……………………9分 另证:AD // BC ,BC =12AD ,Q 为AD 的中点 ∴ BC // DQ 且BC = DQ ,∴ 四边形BCDQ 为平行四边形,∴CD // BQ . ∵ ∠ADC =90° ∴∠AQB =90°即QB ⊥AD . ……………………6分∵ PA =PD , ∴PQ⊥AD . ……………………7分∵ PQ ∩BQ =Q ,∴AD ⊥平面PBQ . ……………………8分∵ AD ⊂平面PAD , ∴平面PQB ⊥平面PAD . ……………………9分 (Ⅲ)∵PA =PD ,Q 为AD 的中点, ∴PQ ⊥AD .∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD=AD , ∴PQ ⊥平面ABCD .……………10分(不证明PQ ⊥平面ABCD 直接建系扣1分)如图,以Q 为原点建立空间直角坐标系.则平面BQC 的法向量为(0,0,1)n =;(0,0,0)Q ,P ,B,(C -分设(,,)M x y z ,则(,,PM x y z =- ,(1,)MC x y z=---,∵PM tMC = ,∴(1))(x t x yt y z t z =--⎧⎪=⎨⎪=-⎩), ∴1t x t y z ⎧=-⎪+⎪⎪=⎨⎪⎪=⎪⎩……………………12分 在平面MBQ 中,QB = ,(1t QM t =-+ , ∴平面MBQ法向量为)m t =.……………………13分∵二面角M -BQ -C 为30°, c o s 30n m n m ︒⋅===∴3t =. ……………………14分17.(本小题共13分)某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖. (Ⅰ)求分别获得一、二、三等奖的概率; (Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.解:(Ⅰ)设“摸到一等奖、二等奖、三等奖”分别为事件A ,B ,C . ……1分则P (A )=111114444256⨯⨯⨯=,(列式正确,计算错误,扣1分) ………3分 P (B )33341-A =2565= (列式正确,计算错误,扣1分) ………5分三等奖的情况有:“生,生,意,兴”;“生,意,意,兴”;“生,意,兴,兴”三种情况. P (C )222444111*********()()()444444444444A A A =⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯964=.…7分(Ⅱ)设摸球的次数为ξ,则1,2,3ξ=. ……8分1(1)4P ξ==, 313(2)4416P ξ==⨯=,3319(3)44464P ξ==⨯⨯=,27(4)1(1)(2)(3)64P P P P ξξξξ==-=-=-==.(各1分)故取球次数ξ的分布列为…12分139271234 2.754166464E ξ=⨯+⨯+⨯+⨯=.(约为2.7) …13分18.(本小题共13分) 已知函数3211()(0)32f x x ax x b a =+++≥,'()f x 为函数()f x 的导函数. (Ⅰ)设函数f (x )的图象与x 轴交点为A ,曲线y =f (x )在A 点处的切线方程是33y x =-,求,a b 的值; (Ⅱ)若函数()'()axg x e f x -=⋅,求函数()g x 的单调区间.解:(Ⅰ)∵3211()(0)32f x x ax x b a =+++≥, ∴2'()1f x x ax =++. ……………………1分∵()f x 在(1,0)处切线方程为33y x =-,∴'(1)3(1)0f f =⎧⎨=⎩,……………………3分∴1=a ,611-=b . (各1分) ……………………5分(Ⅱ)'()()ax f x g x e=21ax x ax e ++=()x R ∈.'()g x =22(2)(1)()ax axax x a e a x ax e e +-++2[(2)]ax x ax a e -=-+-. ……………………7分①当0a =时,'()2g x x =,()g x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ……………………9分②当a >时,令'()0g x =,得x =或2x a a=- ……………………10分(ⅰ)当20a ->,即0a <<()g x 的单调递增区间为22(0,)a a -,单调递减区间为(,0)-∞,22(,)a a-+∞;……11分(ⅱ)当20a a-=,即a ='()g x =2220x x e -=-≤, 故()g x 在(,)-∞+∞单调递减; ……12分(ⅲ)当20a -<,即a >时,()g x 在22(,0)a a-上单调递增,在(0,)+∞,22(,)a a --∞上单调递 ………13分 综上所述,当0a =时,()g x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;当0a <<()g x 的单调递增区间为22(0,)a a-,单调递减区间为(,0)-∞,当a =()g x 的单调递减区间为(,)-∞+∞;当a >时,()g x 的单调递增区间为22(,0)a a-,单调递减区间为(0,)+∞,22(,)a a--∞.(“综上所述”要求一定要写出来)19.(本小题共14分)已知点(1,0)A -,(1,0)B ,动点P满足||||PA PB +=,记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)直线1y kx =+与曲线W 交于不同的两点C ,D ,若存在点(,0)M m ,使得CM DM =成立,求实数m 的取值范围.解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B为焦点,长轴长为2分∴1c =,a =22b =. ……3分W 的方程是22132x y +=. …………4分(另解:设坐标1分,列方程1分,得结果2分)(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .由221132y kx x y =+⎧⎪⎨+=⎪⎩ 得 22(32)630k x kx ++-=. ……6分所以122632kx x k +=-+ …………7分 ∴12023232x x k x k +==-+, 从而0022132y kx k =+=+. ∴MN 斜率2002232332MN y k k k x m mk +==---+. ………9分 又∵CM DM =, ∴CD MN ⊥,∴222132332k k k m k +=---+ 即 232k m k =-+ …10分 当0k =时,0m =; ……11分当0k ≠时,212323k m k k k=-=-++]126,0()0,126[⋃-∈. ……13分故所求m 的取范围是]126,126[-. ……14分 (可用判别式法)20.(本小题共13分)已知123{(,,,,)n n S A A a a a a == , 0i a =或1,1,2,}i n = (2)n ≥,对于,n U V S ∈,(,)d U V 表示U 和V 中相对应的元素不同的个数.(Ⅰ)令(0,0,0,0,0)U =,存在m 个5V S ∈,使得(,)2d U V =,写出m 的值; (Ⅱ)令0(0,0,0,,0)n W =个,若,n U V S ∈,求证:(,)(,)(,)d U W d V W d U V +≥;(Ⅲ)令123(,,,,)n U a a a a = ,若n V S ∈,求所有(,)d U V 之和. 解:(Ⅰ)2510C =; ………3分 (Ⅱ)证明:令123(,,)n u a a a a =……,123(,,)n v b b b b =……∵0i a =或1,0i b =或1;当0i a =,0i b =时,||i a +||0i b =||i i a b =- 当0i a =,1i b =时,||i a +||1i b =||i i a b =- 当1i a =,0i b =时,||i a +||1i b =||i i a b =- 当1i a =,1i b =时,||i a +||2i b =||0i i a b ≥-= 故||i a +||i b ||i i a b ≥-∴(,)(,)d u w d v w +=123()n a a a a ++ ++123()n b b b b +++ ++123(||||||)n a a a a =++ |++|123(||||||)n b b b b +++ |++|112233(||||||)n n a b a b a b a b ≥-+-+-- |++|(,)d u v = ………8分(Ⅲ)解:易知n S 中共有2n个元素,分别记为(1,2,,2)nk v k = 123(,,)n v b b b b =……∵0i b =的k v 共有12n -个,1i b =的k v 共有12n -个. ∴21(,)nkk d u v =∑=1111111122(2|0|2|1|2|0|2|120|21|)n n n n n n n n a a a a a a -------+-+-+--- |++|+|=12n n - ……13分∴21(,)nkk d u v =∑=12n n - .法二:根据(Ⅰ)知使(,)k d u v r =的k v 共有rn C 个∴21(,)nkk d u v =∑=012012nn n n n CC C n C ++++21(,)nkk d u v =∑=120(1)(2)0nn n nn n n n Cn C n C C --+-+-++两式相加得 21(,)nkk d u v =∑=12n n -(若用其他方法解题,请酌情给分)。

河南省宜阳县实验中学2011届高三教学质量调研理科数学(3月11日)

河南省宜阳县实验中学2011届高三教学质量调研理科数学(3月11日)

宜阳县实验中学2011届高三教学质量调研数学(理)试题一、 选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数21i=+ A. 1i - B. 1i + C. i - D.2. 已知{}n a 为等差数列,若9843=++a a a ,则9S =A. 24B. 27C. 15D. 543. 下列命题中是假命题的是A . ⎪⎭⎫⎝⎛∈∀2,0πx ,x x sin > B .∈∃0x R ,2cos sin 00=+x x C .∈∀x R ,03>xD .∈∃0x R ,0lg 0=x 4. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,下列四个命题中正确的序号是( )①,m n α⊥若//α,则m n ⊥ ②,,//αγβγαβ⊥⊥若则③//,//,//m n m n αα若则 ④,αββγαγ⊥⊥若//,//,m 则m A 、①和②B 、②和③C 、③和④D 、①和④5. △ABC 内接于以O 为圆心,1为半径的圆,且543=++, 则OC AB ⋅的值为( )A .15-B .15C .65-D . 656. 已知某一几何体的正视图与侧视图如图,则下列图形中,可以是该几何体的俯视图的图形有( )A .①②③⑤B .②③④⑤C .①②④⑤D . ①②③④7. 函数|1|()2ln x f x x a -=--恰有两个不同的零点,则a 的取值范围是( ) A 、(,1)-∞- B 、(1,)-+∞ C 、(,1)-∞ D 、(1,)+∞8. 若22cos 4sin -=⎪⎭⎫⎝⎛-απα,则ααcos sin +的值为A .27-B .-12C .12D .27 9. 在区间[]0,1上任取两个实数a 、b ,则函数31()3f x x ax b =+-在区间()1,1-上有且仅有一个零点的概率为 ( )A. 19B. 29C. 79D. 8910. 已知点F 1,F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ ABF 2是锐角三角形,则该双曲线离心率的取值范围是 A .)3,1(B .)22,3(C .),21(+∞+D .)21,1(+11. 设函数na x x f )()(+=,其中⎰=20cos 6πxdx n ,3)0()0(-='f f ,则)(x f 的展开式中4x 的系数为( )A .-360B .360C .-60D .6012. 已知函数()()1||xf x x R x =∈+ 时,则下列结论不.正确的是 A .x R ∀∈,等式()()0f x f x -+=恒成立B .(0,1)m ∃∈,使得方程|()|f x m =有两个不等实数根C .12,x x R ∀∈,若12x x ≠,则一定有12()()f x f x ≠D .(1,)k ∃∈+∞,使得函数()()g x f x kx =-在R 上有三个零点 二、填空题:本大题共4个小题,每小题5分,共20分.13.已知O 为坐标原点,点(3,2)M ,若(,)N x y 满足不等式组104x y x y ≥⎧⎪≥⎨⎪+≤⎩, 则OM ON ⋅的最大值为__________.14. 给出右面的程序框图,则输出的结果为_________.15. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处, 随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东60°处,则货轮的航行速度为16. 某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形. 则()f n 的表达式为 。

安徽省六校教育研究会2011届高三测试 数学(理)

安徽省六校教育研究会2011届高三测试 数学(理)

安徽省六校教育研究会2011届高三测试数学试题(理科)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题只有一个正确答案,每小题5分) 1.已知集合5{|1|2,},{|1,},1S x x x R T x x Z S T x =-≤∈=≥∈⋂+则等于( )A .{|03,}x x x Z <≤∈B .{|03,}x x x Z ≤≤∈C .{|10,}x x x Z -≤≤∈D .{|10,}x x x Z -≤<∈2.已知,,x y R i ∈为虚数单位,且(2)1,(1)x y x i y i i +--=++则的值为 ( )A .4B .—4C .44i +D .2i3.不等式2210ax x -+<的解集非空的一个必要而不充分条件是 ( )A .1a <B .0a <C .01a <<D .1a ≤ 4.在21()nx x-的展开式中系数最大的项是( )A .第5、7项B .第6、7项C .第4、6项D .第6项5.已知数列{}n a 为等差数列,{}n b 为等比数列,且满足:1001012114,2a a b b π+==-,则1201112tan1a a b b +=-( )A .1B .—1C 3D6.已知220cos M N xdx π==⎰⎰,则如右程序图输出的S= ( )A .1B .2πC .4πD .—17.已知函数2()43,{(,)|()()0}f x x x P x y f x f y =-+=+≤集合,集合{(,)|()()0}Q x y f x f y =-≥,则在平面直角坐标系内集合P Q 所表示的区域的面积是( )A .4πB .2πC .πD .2π 8.若点11(,)(,)M a N b bc和都在直线:1l x y +=上,则( )A .点11(,)(,)P c Q b l ac和都在上B .11(,)(,)P c Q b l a c和都不在上C .11(,)(,)P c l Q b l ac在上且点不在上 D .11(,)(,)P c l Q b l ac不在上且点在上9.已知椭圆22221(0)x y a b ab+=>>的左焦点F 1,O 为坐标原点,点P 在椭圆上,点Q 在椭圆的右准线上,若1111112,()(0)||||F P F OPQ F O F Q F P F O λλ==+>则椭圆的离心率为( )A .12B .2C 2D 410.棱长均为1三棱锥S —ABC ,若空间一点P 满足(1)SP x SA y SB z SC x y z =++++=,则||S P的最小值为( )A .1B .3C 6D 2第Ⅱ卷(非选择题,共100分)11.一个几何体的三视图如图所示,则这个几何体的外接球的表面积为 。

浙江省杭州市萧山区2011年高考模拟试卷11(数学理)

浙江省杭州市萧山区2011年高考模拟试卷11(数学理)

浙江省杭州市萧山区2011年高考模拟试卷11数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔讲所有试题的答案涂、写在答题纸上。

选择题部分(共50分)主要事项:考生在答题前请认真阅读本注意事项及各题答题要求1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A 、B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B = 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高 ()(1)(0,1,2,)k k n kn n P k C p p k n -=-=… 球的表面积公式 台体的体积公式 24S R π=()1213V h S S =+ 球的体积公式其中12,S S 分别表示台体的上、下底面积, 343V R π=h 表示台体的高 其中R 表示球的半径选择题部分(共100分)一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在复平面内,复数12z i=+对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.给出如图所示的程序框图,那么输出的数是 ( )A .7203B .7500C .7800D .74063.设数列{}n a ,{}n b 分别为等差数列与等比数列,且11444,1a b a b ====, 则以下结论正确的是( )A. 22a b >B. 33a b <C. 55a b >D. 66a b >4.已知条件:1p x ≤,条件1:1q x<,则q p ⌝是成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件 D件5. 某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:( )A.y =2x -2B.y =(12)xC.y =log 2xD.y =12(x 2-1)6. 右图是2008年在奥运会运动会上,七位评委为某跳水比赛项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,47.已知函数()sin()(0)3f x x πωω=+>的最小正周期为π,则该函数图象( ) A .关于直线6x π=对称 B .关于直线3x π=对称 C .关于点(6π,0)对称 D .关于点(3π,0)对称 8. 若直线ax +by +1=0(a 、b >0)过圆x 2+y 2+8x +2y +1=0的圆心,则1a +4b的最小值为( )A .8B .12C .16D .20 9. 在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数222()2πf x x ax b =+-+有零点的概率为( )8 9 4 4 6 4 7 37 9俯视图侧视图A .1-8π B .1-4π C .1- 2π D .1-34π 10.已知函数()f x 满足:①定义域为R ;②x ∀∈R ,有(2)2()f x f x +=;③当[1,1]x ∈-时,()||1f x x =-+.则方程4()log ||f x x =在区间[10,10]-内的解个数是( )A .20B .12C .11D .10非选择题部分(共100分)注意事项: 1. 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

北京市怀柔区2011届高三一模数学(理)试题及答案

北京市怀柔区2011届高三一模数学(理)试题及答案

怀柔区2010~2011学年度第二学期高三适应性练习数 学(理科)2011.3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选 涂其它答案,不能答在试卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集R U =,}21{<<-=x x A ,}0{≥=x x B ,则=)(B A C UA .}20{<≤x xB .}0{≥x xC .}1{-≤x xD .}1{->x x2.复数=-+i i11A .i -B .1-C .iD .13.已知等比数列}{n a 的公比为2,且531=+a a ,则42a a +的值为A .10B .15C .20D .254.如图是一正方体被过棱的中点M 、N 和顶点A 、D 、C 1的两个截面截去两个角后所得的几何体,则该几何体的主视图为A .B .C .D . 5.若a =(1,2,-3),b =(2,a -1,a 2-31), 则“a =1”是“a ⊥b ”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.右图是计算函数2x ,x 1y 0,1x 2x ,x 2⎧-≤-⎪=-<≤⎨⎪>⎩的值的程序框图,则在①、②、③处应分别填入的是 A .y x =-,y 0=,2y x =B .y x =-,2y x =,y 0=C .y 0=,2y x =,y x =-D .y 0=,y x =-, 2y x =7.在极坐标系中,定点1,2A π⎛⎫⎪⎝⎭,动点B 在直线cos sinρθρθ+上运动,当线段AB 最短时,动点B 的极坐标是A .)4,22(π B .)43,22(πC .)4,23(π D .)43,23(π 8.已知三棱锥A BCO -,OA OB OC 、、两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在BCO ∆内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围 成的几何体的体积为A .6π B .6π或636π+C .366π-D .6π或366π-第Ⅱ卷(非选择题 共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.命题:0,2≥∈∀x R x 的否定是 .10.函数1cos 2)(2-=x x f 的最小正周期为 ;单调递减区间为 . 11.如图是甲、乙两班同学身高(单位:cm )数据的茎叶图,则甲班同学身高的中位数为 ;若从乙班身高不低于170cm 的同学中随机抽取两名,则身高为173cm 的同学被抽中的概率为 .甲班 乙班2 18 19 9 1 0 17 0 3 6 8 9 8 8 3 2 16 2 5 8 8 15 912.已知PA 是圆O 的切线,切点为A ,2=PA .AC 是圆O 的直径,PC 与圆O 交于点B ,1=PB ,则圆O 的半径=R .13.已知抛物线)0(22>=p px y 与双曲线12222=-by a x 有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为 .14注:加满油后已行驶距离加满油后已用油量油耗=,当前油耗汽车剩余油量可继续行驶距离=,指定时间内的行驶距离指定时间内的用油量平均油耗=.从以上信息可以推断在10:00—11:00这一小时内 (填上所有正确判断的序号). ① 行驶了80公里; ② 行驶不足80公里;③ 平均油耗超过9.6升/100公里; ④ 平均油耗恰为9.6升/100公里; ⑤ 平均车速超过80公里/小时.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,c b a 、、分别为角C B A 、、所对的三边,已知222+c b a bc -=. (Ⅰ)求角A 的值;(Ⅱ)若a =cos 3C =,求c 的长. 16.(本小题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧棱PA ⊥底面ABCD ,且2P A A D ==,,,E F H分别是线段,,PA PD AB 的中点. (Ⅰ)求证:PB //平面EFH ; (Ⅱ)求证:PD ⊥平面AHF ; (Ⅲ)求二面角H EF A --的大小.17.(本小题满分13分)为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率;(Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为ξ,求随机变量ξ的分布列,及数学期望ξE .[来源:学科网][来源:学。

山东省济宁市2011届高三3月高考模拟试题数学理

山东省济宁市2011届高三3月高考模拟试题数学理

山东省济宁市2011届高三3月高考模拟考试数学试题(理科)——模拟十一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U R =,集合{|24}x M x =<和{||1|2}N x x =-<的关系的韦恩(venn )图 如图所示,则阴影部分所表示的集合是 ( )A .{|3}x x ≥B .{|23}x x <<C .{|2}x x ≥D .{|12}x x -<<2.已知复数z 的实部为1,虚部为-1,则iz表示的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3.等差数列{}n a 的前n 项和为n S ,若27121330,a a a S ++=则的值是 ( )A .130B .65C .70D .754.过点(2,0)-且倾斜角为4π的直线l 与圆225x y +=相交于M 、N 两点,则线段MN 的长为( )A .B .3C .D .65.如图所示是某一容器的三视图,现向容器中匀速注水,容器中 水面的高度h 随时间t 变化的图象可能是 ( )6.阅读右面程序框图,任意输入一次(01)x x ≤≤与(01)y y ≤≤,则能输出数对(,)x y 的概率为( )A .13B .23C .14D .347.已知a 是函数12()2log xf x x =-的零点,若00x a <<,则0()f x 的值满足 ( )A .0()0f x = B .0()0f x < C .0()0f x > D .0()f x 的符号不确定8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=+>><< 为奇函数,该函数的部分图象如图所示,EFG ∆是边长为2 的等边三角形,则(1)f 的值为 ( )A .B .CD .9.已知函数2010()sin x f x x e x =++,令1213()(),()(),()f x f x f x f x f x ''==,21(),,()()n n f x f x f x +''== 则2011()f x = ( )A .sin xx e +B .cos xx e +C .sin xx e -+D .cos xx e -+10.已知1:0,:420x x x p q m x-≤+-≤,若p q 是的充分条件,则实数m 取值范围是( )A .2m >+B .2m ≤C .2m ≥D .6m ≥11.已知抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是( ) A .125B .19C .15D .1312.给定两个长度为1的平面向量OA OB和,它们的夹角为90︒,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若 OC xOA yOB =+,其中,x y R ∈,则x y +的最大值是 ( )( )A .1BC D .2二、填空题:本大题共4小题,每小题4分,共16分。

北京市东城区2011届高三一模数学(理)试题及答案

北京市东城区2011届高三一模数学(理)试题及答案

东城区2010-2011学年度综合练习(一)高三数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)“2x >”是“24x >”的(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既不充分也不必要条件(2)已知数列{}n a 为等差数列,且12a =,2313a a +=,那么则456a a a ++等于(A )40 (B )42 (C )43 (D )45(3)已知函数()f x 对任意的x ∈R 有()()0f x f x +-=,且当0x >时,()ln(1)f x x =+,则函数()f x 的大致图像为(C ) (D ) (4)已知平面上不重合的四点P ,A ,B ,C 满足0PA PB PC ++= ,且AB AC mAP +=,那么实数m 的值为(A )2 (B )3(C )4 (D )5(5)若右边的程序框图输出的S 是126,则条件①可为 A .5n ≤ B .6n ≤ C .7n ≤ D .8n ≤(6)已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为 (A )51- (B )57(C )57-(D )43 (7)已知函数31)21()(x x f x-=,那么在下列区间中含有函数)(x f 零点的是(A ))31,0( (B ))21,31( (C ))32,21( (D ))1,32((8)空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,γ两两互相垂直,点A ∈α,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是到P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是(A ) 33- (B )323- (C )36- (D )340 50 60 70 80 90 体重(kg) 频率A第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

北京市西城区2011届高三一模(数学理)(2011西城一模)

北京市西城区2011届高三一模(数学理)(2011西城一模)

北京市西城区2011年高三一模试卷 数 学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合{5}A x x =∈<Z ,{20}B x x =-≥,则A B 等于 (A )(2,5)(B )[2,5)(C ){2,3,4}(D ){3,4,5}2.下列给出的函数中,既不是奇函数也不是偶函数的是 (A )2xy =(B )2y x x =-(C )2y x =(D )3y x =3. 设3log 2=a ,3log 4=b ,5.0=c ,则 (A )a b c <<(B )b c a <<(C )c a b <<(D )b a c <<4.设向量(1,sin )θ=a ,(3sin ,1)θ=b ,且//a b ,则cos 2θ等于 (A )31-(B )32-(C )32 (D )31 5. 阅读右侧程序框图,为使输出的数据为31, 则①处应填的数字为 (A )4 (B )5 (C )6 (D )76.已知函数①x x y cos sin +=,②x x y cos sin 22=,则下列结论正确的是(A )两个函数的图象均关于点(,0)4π-成中心对称 (B )两个函数的图象均关于直线4x π=-成中心对称(C )两个函数在区间(,)44ππ-上都是单调递增函数(D )两个函数的最小正周期相同7.已知曲线1:(0)C y x x=>及两点11(,0)A x 和22(,0)A x ,其中210x x >>.过1A ,2A 分别作x 轴的垂线,交曲线C 于1B ,2B 两点,直线12B B 与x 轴交于点33(,0)A x ,那么 (A )312,,2x x x 成等差数列 (B )312,,2x x x 成等比数列 (C )132,,x x x 成等差数列 (D )132,,x x x 成等比数列8.如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是 (A )①②(B )②③(C )③(D )③④第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 在复平面内,复数2i1i-对应的点到原点的距离为_____. 10.如图,从圆O 外一点P 引圆O 的切线PA 和割线PBC ,已知PA =4PC =,圆心O 到BC圆O 的半径为_____. 11.已知椭圆:C cos ,()2sin x y θθθ=⎧∈⎨=⎩R 经过点1(,)2m ,则m =______,离心率e =______.12.一个棱锥的三视图如图所示,则这个棱锥的体积为_____.13.某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3OABDC正(主)视图俯视图侧(左)视图件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种.14.已知数列{}n a 的各项均为正整数,对于⋅⋅⋅=,3,2,1n ,有1135,2n n n nn n kk a a a a a a +++⎧⎪=⎨⎪⎩为奇数为偶数.其中为使为奇数的正整数,, 当111a =时,100a =______;若存在*m ∈N ,当n m >且n a 为奇数时,n a 恒为常数p ,则p 的值为______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)设ABC ∆中的内角A ,B ,C 所对的边长分别为a ,b ,c ,且54cos =B ,2=b . (Ⅰ)当35=a 时,求角A 的度数; (Ⅱ)求ABC ∆面积的最大值.16.(本小题满分13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为11,,23p .且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求p 的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X ,求X 的分布列和数学期望EX .17.(本小题满分13分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为060.(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求二面角D BE F --的余弦值;(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.18. (本小题满分14分)已知函数2(1)()a x f x x -=,其中0a >. A BCD F E(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若直线10x y --=是曲线()y f x =的切线,求实数a 的值; (Ⅲ)设2()ln ()g x x x x f x =-,求()g x 在区间[1,e ]上的最大值.(其中e 为自然对数的底数)19. (本小题满分14分)已知抛物线22(0)y px p =>的焦点为F ,过F 的直线交y 轴正半轴于点P ,交抛物线于,A B 两点,其中点A 在第一象限.(Ⅰ)求证:以线段FA 为直径的圆与y 轴相切;(Ⅱ)若1FA AP λ= ,2BF FA λ= ,1211[,]42λλ∈,求2λ的取值范围.20.(本小题满分13分)定义=),,,(21n a a a τ12231||||||n n a a a a a a --+-++- 为有限项数列{}n a 的波动强度.(Ⅰ)当(1)n n a =-时,求12100(,,,)a a a τ ;(Ⅱ)若数列,,,a b c d 满足()()0a b b c -->,求证:(,,,)(,,,)a b c d a c b d ττ≤; (Ⅲ)设{}n a 各项均不相等,且交换数列{}n a 中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列{}n a 一定是递增数列或递减数列.用心 爱心 专心- 11 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011届高三数学模拟试题(理科) 满分:150分 时间:120分钟一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{0,1,2,3},{|2,}A B x x a a A ===∈集合,则( )A .AB A = B .A B A ÙC .A B B =D .A B A Ø2.命题p :若0,a b a b ⋅<则与的夹角为钝角,命题q :定义域为R 的函数()(,0)(0,)f x -∞+∞在及上都是增函数,则()(,)f x -∞+∞在 上是增函数下列说法正确的是 ( ) A .“p 且q ”是假命题 B .“p 或q ”是真命题C .p ⌝为假命题D .q ⌝为假命题3.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(M ,T )为 ( )A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π4.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,若120,C c ==,则( )A .45B > B .45A >C .b a >D .b a <6.定义在区间(0,)a 上的函数2()2xx f x =有反函数,则a 最大为 ( )A .2ln 2B .ln 22C .12 D .27.已知22(,)(3)1P x y x y +-=是圆上的动点,定点A (2,0),B (—2,0),则PA PB⋅ 的最大值为( )A .4B .0C .—12D .128.如图,在1,3ABC AN NC∆=中,P 是BN 上的一点, 若211AP mAB AC=+,则实数m 的值为( )A .911B .511C .311D .2119.设二次函数2()4()f x ax x c x R =-+∈的值域为19[0,),19c a +∞+++则的最大值为( )A .3125B .3833C .65D .312610.有下列数组排成一排:121321432114321(),(,),(,,),(,,,),(,,,,),112123123452345如果把上述数组中的括号都去掉会形成一个数列:121321132154321,,,,,,,,,,,,,,,112123423412345则此数列中的第2011项是( )A .757B .658C .559D .460二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。

11.已知点2222(0,),1(0)x y A b B a b a b +=>>为椭圆的左准线与x 轴的交点,若线段AB的中点C 在椭圆上,则该椭圆的离心率为 。

12.已知实数50,0,23x y x y x y x yx -+≥⎧⎪+≥=+⎨⎪≤⎩满足则z 的最小值是 。

13.奇函数()f x 满足对任意(2)(2)0,(1)x Rf x f x f ∈++-==都有且,则(2010)(2011)(f ff ++的值为 。

14.已知等比数列{}n a 的各项都为正数,且当24243,10,nn n a a -≥⋅=时则数列2311234l g ,2l g ,2l g,2l g ,,2l g ,n n n a a a a a n S - 的前项和等于 。

15.对于连续函数()(),|()()|f x g x f x g x -和函数在闭区间[,]a b 上的最大值称为()()f x g x 与在闭区间[,]a b 上的“绝对差”,记为((),())a x bf xg x ≤≤∆,则21412(,)19x x x x ≤≤∆-+= 。

三、解答题;本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

16.(12分) 在△ABC 中,角A 、B 、C 所对的边分别为,,a b c ,向量12(1sin ,),(cos 2,2sin ),//7p A q A A p q=-=且。

(I )求sin A 的值;(II )若2,b ABC =∆的面积为3,求a 。

17.(12分)已知4221()log (1)()1mxf x x x R x +=+-∈+是偶函数。

(I )求实常数m 的值,并给出函数()f x 的单调区间(不要求证明); (II )k 为实常数,解关于x 的不等式:()(|31|).f x k f x +>+18.(12分)在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA )的变化情况来决定买入或卖出股票。

股民老张在研究股票的走势图时,发现一只股票的MA 均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy ,则股价y (元)和时间x 的关系在ABC 段可近拟地用解析式sin()(0)y a x b ωϕϕπ=++<<来描述,从C 点走到今天的D 点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D 点和C 点正好关于直线:34l x =对称,老张预计这只股票未来的走势如图中虚线所示,这里DE 段与ABC 段关于直线l 对称,EF 段是股价延续DE 段的趋势(规律)走到这波上升行情的最高点F 。

现在老张决定取点(0,22),A 点B (12,19),点D (44,16)来确定解析式中的常数,,,a b ωϕ,并且已经求得.72πω=(I )请你帮老张算出,,a b ϕ,并回答股价什么时候见顶(即求F 点的横坐标) (II )老张如能在今天以D 点处的价格买入该股票5 000股,到见顶处F 点的价格全部卖出,不计其它费用,这次操作他能赚多少元?19.(12分)已知双曲线221x y -=的左、右顶点分别为A1、A2,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,).P x y P x y(I )求k 的取值范围,并求21x x -的最小值;(II )记直线11122212,,P A k P A k k k ⋅的斜率为直线的斜率为那么是定值吗?证明你的结论。

20.(13分)已知数列1*11{}7,328.()n n n n a a a a n n N -+==+-∈满足 (I )李四同学欲求{}n a 的通项公式,他想,如能找到一个函数1()2n f n A B n C -=⋅+⋅+ (A 、B 、C 是常数),把递推关系变成1(1)3[()]n n a f n a f n +-+=-后,就容易求出 {}n a 的通项了,请问:他设想的()?{}n f n a 存在吗的通项公式是什么?(II )记2*123,23n n n n S a a a a S n p n N =++++->⨯∈ 若不等式对任意都成立,求实数p 的取值范围。

21.(14分)已知函数211()ln().22f x ax x ax =++-(,0)a a >为常数 (I )若12x =是函数()f x 的一个极值点,求a 的值; (II )求证:当102,()2a f x <≤∞时在[,+)上是增函数;(III )若对任意的(1,2),a ∈总存在2001[,1],()(1)2x f x m a ∈>-使不等式成立,求实数m 的取值范围。

参考答案11.12. 3- 13. 9- 14. 1(1)2nn +-15. 13916. (Ⅰ)//p q 12cos 2(1sin )2sin 7A A A∴=-⋅,26(12sin )7sin (1sin )A A A ∴-=-,25sin7sin 60A A +-=,3sin . (sin 2)5A A ∴==-舍6分 (Ⅱ)由1sin 3,22ABC S bc A b ∆===,得5c =, 又4cos 5A ==±,2222cos 425225cos 2920cos a b c bc A A A ∴=+-=+-⨯⨯=-, 当4cos 5A =时,213, a a = 10分 当4cos 5A =-时,245, a a == 12分17.(Ⅰ)()f x 是偶函数, ()()f x f x ∴-=, 44222211log (1)log (1)11mx mx x x x x -+∴+-=+-++,0mx ∴=,0m ∴=. 2分 4221()log (1)1f x x x ∴=+-+,()f x 的递增区间为[0,)+∞,递减区间为(,0]-∞.4分(Ⅱ)()f x 是偶函数 ,()()f x k f x k ∴+=+,不等式即()(31)f x k f x +>+,由于()f x 在[0,)+∞上是增函数,31x k x ∴+>+, 2222961x kx k x x ∴++>++,即228(62)(1)0x k x k +-+-<, ∴11()()024k k x x -+-+<, 7分1131()244k k k -+---=,13k ∴=时,不等式解集为Φ;13k >时,不等式解集为11(,)42k k +--;13k <时,不等式解集为11(,)24k k -+-. 12分18. (Ⅰ),C D 关于直线l 对称C ∴点坐标为(23444, 16)⨯-即(24, 16),把A 、B 、C 的坐标代入解析式,得22s i n 19s i n ()616s i n ()3a b a ba b ϕπϕπϕ⎧⎪=+⎪⎪=++⎨⎪⎪=++⎪⎩①②③②-①,得[s i n ()s i n ]36a πϕϕ+-=-,③-①,得[s i n ()s i n ]63a πϕϕ+-=-,2sin()2sin sin()sin 63ππϕϕϕϕ∴+-=+-,3cos in sin 22ϕϕϕϕ∴=+,3(1(1)sin 2ϕϕϕ∴==-,tan ϕ∴=,0ϕπ<<566ππϕπ∴=-=, 代入②,得 19b =, 再由①,得 6a =, 6,19a b ∴==,56πϕ=. 7分于是,ABC 段的解析式为56sin()19726y x ππ=++,由对称性得,DEF 段的解析式为56sin[(68)]19726y x ππ=-++,5(68),7262F x πππ∴-+= 解得 92F x =,∴当92x =时,股价见顶. 10分(Ⅱ)由(Ⅰ)可知,61925F y =+= ,故这次操作老张能赚5000(2516)45 000⨯-=元. 12分19. (Ⅰ)l 与圆相切,1∴=221m k ∴=+ ………… ①由221y kx mx y =+⎧⎨-=⎩ , 得222(1)2(1)0k x mkx m ---+=,222222221221044(1)(1)4(1)80101k m k k m m k m x x k ⎧⎪-≠⎪⎪∴∆=+-+=+-=>⎨⎪+⎪⋅=<⎪-⎩ ,21,k ∴<11k ∴-<<,故k 的取值范围为(1,1)-.由于12212222111mk x x x x k kk +=∴-===---,201k ≤< ∴当20k =时,21x x -取最小值 6分(Ⅱ)由已知可得12,A A 的坐标分别为(1,0),(1,0)-,121212,11y y k k x x ∴==+-,121212(1)(1)y y k k x x ∴⋅=+-1212()()(1)(1)kx m kx m x x ++=+-2212121221()()1k x x mk x x m x x x x +++=+--2222212m mkk mk m +⋅-⋅+=22222222=22=,由①,得 221m k -=,12(3k k ∴⋅==-+为定值. 12分20. (Ⅰ)1(1)3[()]n n a f n a f n +-+=-13(1)3()n n a a f n f n +∴=++-,所以只需1(1)3()28n f n f n n -+-=-, 1(1)3()22(2)n f n f n A Bn B C -+-=-⋅-+- ,1,28,20A B B C ∴-=-=--=,1,4,2A B C ∴=-==.故李四设想的()f n 存在,1()242n f n n -=-++.1111()3[(1)]3(75)23n n n n a f n a f ---∴-=-=-=⨯,123()n n a f n -∴=⨯+=112322(21).n n n --⨯-++ 5分(Ⅱ)2112(1333)(122)n n n S --=++++-+++ 22[35(21)]3224.n n n n n +++++=-++ 22324n n n S n n ∴-=-+, 7分由223nnS n p ->⨯,得 32424133n n nn n n n p -+-<=-. 设3243n n n n n b -+=,则11124(1)241133n n n n n n n n b b +++-+--=--+1128424(21)33n n n n n n ++-+--==,当6n ≥时,22123222222(11)1n n n n n n n n C C C C --------=+≥+++++(2)(3)2(12)222(3)48212n n n n n n n --≥+-+≥-+-=->-,(用数学归纳法证也行)6n ∴≥时, 1n n b b +>. 容易验证 ,15n ≤≤时,|1n n b b +<,min()n p b ∴<6689729b ==,p ∴的取值范围为689(,)729-∞. 13分21.2212()22()211122a ax x aa f x x a ax ax --'=+-=++.(Ⅰ)由已知,得 1()02f '=且2202a a -≠,220a a ∴--=,0a > ,2a ∴=.2分(Ⅱ)当02a <≤时,22212(2)(1)02222a a a a a a a a ----+-==≤ ,21222a a -∴≥,∴当12x ≥时,2202a x a --≥.又201ax ax >+,()0f x '∴≥,故()f x 在1[, )2+∞上是增函数. 5分(Ⅲ)(1, 2)a ∈时,由(Ⅱ)知,()f x 在1[,1]2上的最大值为11(1)ln()122f a a =++-,于是问题等价于:对任意的(1, 2)a ∈, 不等式211ln()1(1)022a a m a ++-+->恒成立. 记211()ln()1(1)22g a a a m a =++-+-,(12a <<) 则1()12[2(12)]11a g a ma ma m a a '=-+=--++,当0m =时,()01a g a a -'=<+,()g a ∴在区间(1, 2)上递减,此时,()(1)0g a g <=, 由于210a ->,0m ∴≤时不可能使()0g a >恒成立,故必有0m >,21()[(1)]12ma g a a a m '∴=--+. 若1112m ->,可知()g a 在区间1(1, min{2, 1})2m -上递减,在此区间上,有()(1)0g a g <=,与()0g a >恒成立矛盾, 故1112m -≤,这时,()0g a '>,()g a 在(1, 2)上递增,恒有()(1)0g a g>=,满足题设要求,1112mm>⎧⎪∴⎨-≤⎪⎩,即14m≥,所以,实数m的取值范围为1[,)4+∞. 14分。

相关文档
最新文档