激光倍频与参量放大

合集下载

激光专题讲座5

激光专题讲座5

第五专题 激光倍频理论与技术§5.1激光倍频基本理论从目前的激光材料其输出波长是很局限的,比如大量应用的优质材料YAG 摻Nd ,只能输出1.064m μ(或0.94m μ)。

为获得可见光波长,只有采用其它方法,这就是倍频技术发展的原因。

由Nd :Y AG 的1.064m μ激光倍频后输出0.532m μ绿光,也可通过3倍频获得0.355m μ或四倍频获得0.266m μ激光。

这是非常有用的紫外激光器。

倍频理论是很复杂的,理论上需要解具有极化的三波相互作用波动方程,即处理下面的波动方程,该方程是高斯单位制中的表达形式,即2222222E 4pE c t c tε∂π∂∇=+∂∂ 5.1—1这里的E 为光波场,ε为介电常数,c 为光速,p 为极化矢量。

因极化是光波场引起的,可以与E 成线性关系或成平方关系。

如果是线性关系,不能产生新的频率,如果成平方关系则可实现激光频率的转变产生新的频率。

有些晶体对光波的作用产生平方关系,称此种晶体为非线性晶体。

用非线性晶体可得到倍频光。

在解三波耦合方程时,即认为E 由三个波组合而成:123E E E E =++。

当考虑标量时,认为振动方向相同只计及量的关系,312E(z,t)E (z,t)E (z,t)E (z,t)ωωω=++。

在高级光学的非线性光学中已有介绍,经过复杂的推导运算可得到下面三个方程:3212i(k k k )z *112321dE i2d E (z)E (z)e dz c k --πω=⋅ (1) 3212i(k k k )z *221322dE i2d E (z)E (z)e dz c k --πω=⋅ (2) 5.1—2 1232i(k k k )z 331223dE i2d E (z)E (z)e dz c k +-πω=⋅ (3) 上面的三个方程式是处理光倍频、光混频、光参量振荡的理论基础。

如果我们设定1E 和2E 是入射的基频光,即设定12ω=ω,则3ω即等于1232ω+ω=ω=ω,实现了倍频。

激光倍频实验报告

激光倍频实验报告

篇一:激光谐振腔与倍频实验激光谐振腔与倍频实验a13组 03光信息陆林轩 033012017 实验时间:2006-4-25[实验目的和内容]1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。

2、掌握腔外倍频技术,并了解倍频技术的意义。

3、观察倍频晶体0.53?m绿色光的输出情况。

[实验基本原理]1、激光谐振腔光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。

图1 激光谐振腔示意图(1)组成:光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。

两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。

两块反射镜之间的距离为腔长。

其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。

(2)工作原理:谐振腔中包含了能实现粒子数反转的激光工作物质。

它们受到激励后,许多原子将跃迁到激发态。

但经过激发态寿命时间后又自发跃迁到低能态,放出光子。

其中,偏离轴向的光子会很快逸出腔外。

只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。

这些光子成为引起受激发射的外界光场。

促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。

这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。

所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。

(3)种类:图2 谐振腔的种类按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。

平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。

对称凹面腔中两块反射球面镜的曲率半径相同。

实验十八__激光倍频技术及其特性分析

实验十八__激光倍频技术及其特性分析

实验十八 激光倍频技术及其特性分析【实验目的】1、掌握倍频的基本原理和调试技能;2、了解影响倍频效率的主要因素;3、测量二倍频激光转换效率。

【实验原理】利用某些晶体在强光作用下的非线性效应,使频率为ω的激光通过晶体后,变成频率为2ω或3ω的倍频光,即为倍频技术。

它可用以扩展激光波段。

例如,可将1.06m μ的红外激光二倍频为0.53m μ的可见绿光,这对水下通讯,彩色电视等都很有实用价值的。

1、 物质极化的非线性效应物质由原子组成,原子由带正电的原子核及带负电的电子组成,一般呈中性。

但当光与物质相互作用时,原子的内能并不发生变化,只引起外层电子的位移,产生了电偶极矩,m er m =是偶极矩。

e 是负电中心的电荷量,r 是负电中心相对于正电中心的距离。

单位体积内偶极矩的总和为极化强度p Nm =,N 是单位体积内的原子数。

极化强度的大小和方向随外电场的变化而变化,形成了极化波,这种极化场的变化会产生电磁辐射。

一般情况下(就是入射光的场强与原子内的场强相比十分微弱时),极化强度P 与入射光的电场E 成线性关系P xE =。

因此极化场产生的辐射与入射光场有相同的频率。

在强光照射下,物质的极化则表现为非线性的特性,极化强度与入射光场的关系的标量形式为23123P ......x E x E x E =+++ (18-1)式中的1x 、2x 、3x ……分别是线性、二次非线性,三次非线性等的极化系数,并且1x >>2x >>3x ,故在弱电场作用下,只能呈现出线性效应,只有对强电场才能显示出非线性效应。

在激光出现前,这种非线性现象不可能观察到,只有高强度的激光出现后,才观察到了非线性现象。

我们忽略三次以上的非线性效应,现在分两种情况来分析光波场通过非线性晶体时的二次非线性效应。

第一种情况:一列行波通过非线性晶体时的二次非线性效应距波源o 为z 处的任一点s 在t 时刻光波场的振辐可表示为0(,)cos()E z t E t kz ω=- (18-2)式中0E 为光源光波场的振辐,2/,k n πλλ=为波长,n 为晶体折射率。

第30讲 激光倍频技术

第30讲 激光倍频技术

2E r , t
0
2P r , t
同样在外界光波电场E的作用下将引起介质内部的极化,产生 极化强度P,考虑到非线性相互作用,极化强度P可以写成:
P PL PNL PL 为线性极化项,PNL为非线性极化项。
上述两个过程互为因果,将两式联立可以解出介质中光场分布
当光电场强度很低时,可以忽略PNL,只保留线性极化PL, 即通常的线性光学
L 0 L 1 L 1 E1 E1 L 0 L 2 L 2 E2 E2
可以看出,由于非线性响应,在非线性介质中感应的极化强度, 不仅有频率1 和 2的分量,还有频率为21 、 2 2、1 2、1 2 的分量以及直流分量。 这些极化强度分量将辐射出相应频率的电磁
k 1 k 1
代入上式,可以得到联立方程组: 设光电场由频率为1 和 2 e 2 r1 r1 0 r1 E t 单色光组成: m i1 t i 2 t r r 2 r Ar 2 E t E e E e c .c . 1 2 2 0 2 1 2
波,这就是非线性光学中的倍频、和频、差频和光整流等光学效应。
10
30.1 非线性极化
三、极化率张量的性质
由极化强度的定义P Ner和P 0 E,可以得到各阶的极化 率为:
2

1
Ne 2 L 0m
线性极化率

Ne 3 A 2 L 2 L 2 倍频极化率 2 0m
对上述方程组求解,可以得到:
9
30.1 非线性极化
r1 t e E1 L 1 e i1 t E2 L 2 e i2 t c .c . m

激光原理与技术_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

激光原理与技术_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

激光原理与技术_电子科技大学中国大学mooc课后章节答案期末考试题库2023年1.在锁模激光器中,被锁定的模式数量越多,脉冲周期越短。

参考答案:错误2.对于对称共焦腔,其傍轴光线在腔内往返传输次即可自行闭合,其自再现模式为高斯光束。

参考答案:2##%_YZPRLFH_%##二##%_YZPRLFH_%##两3.谐振腔损耗越大,品质因子越高。

参考答案:错误4.有激光输出时,激活介质不是处于热平衡条件。

参考答案:正确5.在主动锁模激光器中,调制器应该放到谐振腔的一端。

参考答案:正确6.为得到高转化效率的光学倍频,要实现匹配,使得基频波和倍频波的折射率要相等,在他们相互作用过程中,两个基频光子湮灭,产生一个倍频光子。

参考答案:相位7.尽量增加泵浦功率有利于获得单模激光输出。

参考答案:错误8.在调Q激光器中,随着Dni/Dnt的增大,峰值光子数增加,脉冲宽度。

参考答案:变窄##%_YZPRLFH_%##变小##%_YZPRLFH_%##减小9.关于基模高斯光束的特点,下面描述不正确的是。

参考答案:基模高斯光束在激光腔内往返传播时没有衍射损耗10.KDP晶体沿z轴加电场时,折射率椭球的主轴绕z轴旋转了度角。

参考答案:45##%_YZPRLFH_%##四十五11.稳定谐振腔是指。

参考答案:谐振腔对旁轴光线的几何偏折损耗为零12.形成激光振荡的充分条件是。

参考答案:光学正反馈条件和增益阈值条件13.关于谐振腔的自再现模式,下面那个说法是正确的?参考答案:自再现模式与谐振腔的稳定性有关14.三能级激光器的激光下能级是基态,需至少将原子总数的通过泵浦过程转移到激光上能级,才能实现受激辐射光放大。

参考答案:一半##%_YZPRLFH_%##1/2##%_YZPRLFH_%##50%##%_YZPRLFH_%##二分之一##%_YZPRLFH_%##百分之五十15.谱线加宽是指的光谱展宽。

参考答案:自发辐射16.关于自发辐射和受激辐射说法正确的是。

激光倍频实验讲解

激光倍频实验讲解
,(4)
,(5)
介质产生的极化强度应为二列光波的叠加,有
。(6)
经推导得出,二级非线性极化波应包含下面几种不同频率成分:
,(7)
,(8)
,(9)
,(10)
P直流 ,(11)
从以上看出,二级效应中含有基频波的倍频分量(2ω1)、(2ω2)、和频分量(ω1+ω2)、差频分量(ω1–ω2)和直流分量。故二级效应可用于实现倍频、和频、差频及参量振荡等过程。当只有一种频率为ω的光入射介质时(相当于上式中ω1=ω2=ω),那么二级非线性效应就只有除基频外的一种频率(2ω)的光波产生,称为二倍频或二次谐波。在二级非线性效应中,二倍频又是最基本、应用最广泛的一种技术。第一个非线性效应实验,就是在第一台红宝石激光器问世后不久,利用红宝石0.6943μm激光在石英晶体中观察到紫外倍频激光。后来又有人利用此技术将晶体的1.06μm红外激光转换成0.53μm的绿光,从而满足了水下通信和探测等工作对波段的要求。当ω1≠ω2时,产生ω3=ω1+ω2的光波叫和频。如入射的光波分别为ω和2ω,和频后得到3ω,3ω=ω+2ω(注意,它数值上等于三倍频,但不是三倍频非线性效应过程)。本实验将对和频进行观测。
3.放回全反射镜,将釹玻璃和半反射镜R1用黑纸挡住,让6328A准直光通过全反射镜R2,调节R2,使反射的6328A准直光光斑均匀分布在小孔的周围。
上述调节完后,可点亮釹玻璃激光器,观察它是否有激光输出,因釹玻璃激光功率较高,能量较大,因而可放一张黑纸于透镜前面,一个激光脉冲可把黑纸烧一焦斑,这时便证实有1.06μm激光输出,从焦斑大小判别它功率大小。(注意打黑纸时,不能用眼睛注视黑纸,防止强的反射光进入眼睛)。
实验装置图
原理图
四.实验操作步骤
1.启动He―Ne激光器,使He―Ne管输出红色的6328A激光;

激光倍频实验报告

激光倍频实验报告

激光谐振腔与倍频实验a13组 03光信息陆林轩 033012017 实验时间:2006-4-25 [实验目的和内容]1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。

2、掌握腔外倍频技术,并了解倍频技术的意义。

3、观察倍频晶体0.53?m绿色光的输出情况。

[实验基本原理] 1、激光谐振腔光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。

图1 激光谐振腔示意图(1)组成:光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。

两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。

两块反射镜之间的距离为腔长。

其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。

(2)工作原理:谐振腔中包含了能实现粒子数反转的激光工作物质。

它们受到激励后,许多原子将跃迁到激发态。

但经过激发态寿命时间后又自发跃迁到低能态,放出光子。

其中,偏离轴向的光子会很快逸出腔外。

只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。

这些光子成为引起受激发射的外界光场。

促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。

这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。

所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。

(3)种类:图2 谐振腔的种类按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。

平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。

对称凹面腔中两块反射球面镜的曲率半径相同。

如果反射镜焦点都位于腔的中点,便称为对称共焦腔。

几种参量过程1

几种参量过程1
几种参量过程
内容提要
光学倍频 参量放大与振荡 四波混频
内容提要
光学倍频
倍频效应的物理本质 倍频效应的基本特性 相位匹配
参量放大与振荡 四波混频
光学倍频
二阶非线性光学效应的一个成功的应 用是二十世纪九十年代二极管激光泵浦NYAB 晶体,通过自倍频直接产生绿光。在室温下 实现了TEM00模高功率、高重复频率的运转, 在光通信、光存储、大屏幕显示等方面展示 了广泛的应用。
n0 () ne ( , 2) 或: n0 (2) ne ( ,)
便可实现倍频过程中的相位匹配。
PPM:晶体双折射
n2o n1o
Z
2k10 k2e
m
X
n2e n1e
负单轴晶体
I型相位匹配 eeo
ooe
该匹配方式中,基波只取一种偏振态:
正单轴晶体
e偏振态
负单轴晶体
o偏振态
所产生的谐波,其偏振态:
以倍频为例: n1 n2
k



2
2
2kin1
10
ki22n022 k12
2 10
n1

n2


0
k2
2 n1 10
1 2
2 2 n2 10
三波混频在一般情况下,k=k3-k1-k2=0
3n3 k3 1n1 k1 2n2 k2
一般的情况是:ne2 折射率曲面扩张的快,no
900
角相位匹配
变化较小
结果:两个折射率曲面在xoy平面上,可能相切。光波沿xoy平 面入射可实现位相匹配。
PPM:晶体双折射
角度匹配与温度匹配的简单比较
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档