挖掘机多路阀详解(1)
LUDV多路阀分析

挖掘机力士乐液压系统分析[主要内容]介绍了力士乐闭中心负载敏感压力补偿挖掘机液压系统组成及其工作原理、特性。
重点分析了多路阀液压系统、液压泵控制系统、各主要液压作用元件液压回路及多路阀先导操纵系统等。
目前液压挖掘机有两种油路: 开中心直通回油六通阀系统和闭中心负载敏感压力补偿系统, 我国国产液压挖掘机大多采用“开中心”系统, 而国外著名的挖掘机厂家基本上都采用“闭中心”系统。
闭中心具有明显的优点, 但价格较贵。
国内厂家对开中心系统比较熟悉, 而对闭中心系统不太了解,因此有必要来介绍一下闭中心系统, 本文重点分析力士乐闭中心负载敏感压力补偿(LUDV) 挖掘机油路。
LUDV 意为与负载无关的分配阀。
LUDV系统力士乐挖掘机液压系统可以看作由以下4 部分组成:①多路阀液压系统(主油路) ;②液压泵控制液压系统(包括与发动机综合控制) ;③各液压作用元件液压子系统, 包括动臂、斗杆、铲斗、回转和行走液压系统, 还包括附属装置液压系统;④多路阀操纵和控制液压系统。
1 多路阀液压系统多路阀液压系统是液压挖掘机的主油路, 它确定了液压泵如何向各液压作用元件的供油方式, 决定了液压挖掘机的工作特性。
力士乐采用的闭中位负载敏感压力补偿多路阀液压系统的工作原理见图1 (因换向阀不影响原理分析, 故未画出) 。
图1 挖掘机力士乐主油路简图挖掘机力士乐主油路由工装油路和回转油路二个负载敏感压力补偿系统组成。
1.1 工装油路工作装置和行走油路(除回转外) 简称工装油路,用阀后补偿分流比负载敏感压力补偿(LUDV)系统, 具有抗饱和功能。
在每个操纵阀阀杆节流口后, 设压力补偿阀, 然后通过方向阀向各液压作用元件供油。
LUDV 多路阀原理符号见图2 。
图2 力士乐多路阀原理符号图LUDV 每个阀块主要由操纵阀和压力补偿阀组成, 其原理符号如图2a 所示。
为了便于理解阀的原理, 把操纵阀进行分解后可知, 它实际上由阀的节流部分和阀的换向部分两部分组成。
多路阀的原理

多路阀的原理
多路阀是一种用于控制液压系统中液压流动方向、流量和压力的重要元件。
它可以实现多路流体的控制,广泛应用于工程机械、农业机械、船舶等领域。
多路阀的原理是基于液压力学和控制原理,通过内部结构和工作方式来实现对液压系统的精准控制。
多路阀的原理主要包括阀芯、阀体、阀套、弹簧和阀口等组成部分。
阀芯是多路阀的核心部件,它通过不同的运动方式来改变阀口的通断状态,从而控制液压油的流向和流量。
阀体是阀芯的外壳,内部有多个通道和阀孔,用于连接液压系统的各个部分。
阀套是阀芯的外壳,起到密封和支撑阀芯的作用。
弹簧则用于提供阀芯的复位力,保证阀芯在不受外力作用时能够回到初始位置。
多路阀的工作原理是利用液压力学的基本原理,通过控制液压油的流动来实现对液压系统的控制。
当液压油进入多路阀时,根据阀芯的位置和阀口的开闭状态,液压油可以流向不同的通道,从而实现对液压缸、液压马达等执行元件的控制。
通过改变阀芯的位置和阀口的开闭状态,可以实现液压系统的多种工作方式,如单向流动、双向流动、顺序流动等。
多路阀的原理还涉及到液压系统的压力控制和流量控制。
通过改变阀口的开闭状态和调节阀芯的位置,可以实现对液压系统中液压油的压力和流量的精确控制。
这对于不同工况下的液压系统来说非常重要,可以确保系统的安全稳定运行。
总的来说,多路阀的原理是基于液压力学和控制原理,通过内部结构和工作方式来实现对液压系统的精准控制。
它可以实现液压流体的多路控制,包括流向、流量和压力的控制。
在工程机械、农业机械、船舶等领域有着广泛的应用,对于液压系统的安全稳定运行起着至关重要的作用。
挖掘机多路阀详解(1)

第一节多路阀主油路液压系统多路阀是工程机械液压系统的重要部件,它是组成液压系统的主要部分,确定了液压泵向各液压作用元件的供油路线和供油方式,多液压作用元件同时动作时的流量分配,如何实现复合动作,决定了工程机械作业时运动学和动力学的特性,动作优先和配合,合流供油和直线行走等。
它的设计依据是能否更好地满足工程机械作业要求和工况要求。
工程机械多路阀有采用通用的多路阀,但为了更好的满足工程机械的性能要求,不少工程机械采用专用多路阀,专用多路阀液压系统应该是由了解和熟悉工程机械的主机厂来设计。
液压系统原理图设计好后,多路阀的结构设计、工艺制造设计可由主机厂委托液压件厂来生产制造。
一,多路阀基本類型工程机械多路阀液压系统大致可分为两大类:开中心直通六通阀系统和闭中心四通阀(负载敏感阀)系统,两者差异较大,需要分别讨论。
1,多路阀各阀之间油路连接基本方式多路阀各阀之间油路连接方式主要是液压泵压力油向各阀供油连接方式,供油方式不同则多路阀阀杆同时动作,实现多液压动作元件复合动作时,其运动特性和力学特性不同。
多路阀内阀杆油路连通基本方式有串联式、并联式、优先式(串并联)三种。
2 21122112211(a)串联式(b)并联式(c)串并联式图14 多路阀阀杆油路连接基本方式1.串联式(图13(a)所示)前联换向阀的回油口和后联换向阀的进油口相连,串联油路的特点可以实现两个和两个以上液压动作元件同时动作。
液压泵的工作压力是同时工作液压元件压力的总和。
在初期挖掘机上曾采用过这种油路。
但是挖掘机一般都在重负荷下工作,为了使结构紧凑,减轻重量,每个液压作用元件都按液压泵压力设计,不允许两个液压元件串联工作,因此串联油路目前在挖掘机上不采用。
2.并联式(图13(b)所示)液压泵出口压力油并联供给各阀杆,各阀回油并联回油箱,并联油路特点是多路阀杆同时动作时,泵供油首先进入负荷压力最低的液压元件,负荷高的液压元件由于压力低不能动。
多路阀工作原理

多路阀工作原理多路阀是一种常见的液压元件,它在工程机械、农业机械、船舶、起重机械等领域广泛应用。
它可以根据需要将液压油流导向不同的液压执行元件,实现液压系统的多功能控制。
那么,多路阀是如何工作的呢?接下来,我们将详细介绍多路阀的工作原理。
首先,多路阀的工作原理基于液压力学原理。
液压系统通过液压泵将液压油压力传递给多路阀,多路阀根据控制手柄或电磁阀的信号,将液压油导向不同的液压执行元件,如液压缸、液压马达等,从而实现机械的运动控制。
其次,多路阀的工作原理涉及内部结构和工作原理。
多路阀内部包含多个阀芯,每个阀芯都有不同的通道和控制装置。
当控制手柄或电磁阀发出信号时,阀芯会根据信号的指令,打开或关闭相应的通道,从而实现液压油的导向控制。
再次,多路阀的工作原理还涉及液压系统的工作环境和要求。
液压系统在工作时,要求液压油的压力、流量、温度等参数保持稳定,以确保多路阀的正常工作。
因此,液压系统通常配备有液压油箱、油泵、油箱过滤器、油液冷却器等辅助装置,以保证液压系统的可靠性和稳定性。
最后,多路阀的工作原理还需要考虑安全和可靠性。
液压系统在工作时,要求多路阀的操作平稳、灵活,不得出现卡阀、漏油、冲击等现象,以确保机械设备的安全运行。
因此,多路阀的设计和制造需要严格按照相关标准和规范进行,以确保多路阀的安全可靠性。
综上所述,多路阀的工作原理涉及液压力学原理、内部结构和工作原理、液压系统的工作环境和要求、安全和可靠性等方面。
了解多路阀的工作原理,有助于我们更好地使用和维护液压系统,确保机械设备的正常运行。
希望本文能够对您有所帮助,谢谢阅读!。
多路阀的工作原理及作用

多路阀的工作原理及作用
多路阀是一种用来控制液体或气体流动方向的阀门。
其工作原理是通过改变阀门内部流道的连接方式,使得液体或气体可以在不同的流道中流动,从而实现多个流道之间的切换。
多路阀通常由阀体、阀芯和控制装置组成。
当控制装置向多路阀传递信号时,阀芯会移动到相应的位置,改变阀体内部的流道连接状态。
当阀芯和阀体的通道对齐时,流体可以通过阀门正常流动;当阀芯和阀体的通道不对齐时,阀门将阻止液体或气体的流动。
多路阀可以实现多种功能,常见的包括切换流向、分流和合流、混合物分离、流量调节等。
在工业生产中,多路阀可以用于控制不同流体的流向,调节流体的比例和流速;在液压系统中,多路阀可以用于控制不同执行元件的动作顺序和速度;在液压机械中,多路阀可以实现机械的复杂动作和自动控制等。
总之,多路阀通过改变内部的流道连接方式,控制液体或气体在不同流道之间的切换,实现多种功能的控制作用。
挖掘机主控阀

液压挖掘机主控阀液压挖掘机, 主控液压挖掘机主控制阀主控制阀也称为主控阀或主阀,它的作用是按操作者的指令将泵排出的压力油提供到各执行元件,使挖掘机完成各种动作。
主控阀是个复杂的液压元件,现就几种典型的主控阀加以说明。
1.U28阀U28阀是日本东芝公司生产的专用于20—3t的挖掘机上。
其外形见图3—32图3—32 U28阀外形图该阀是一组多路阀,阀体分左,中,右三片,用螺栓紧密相联。
左片是一组三联阀(上图中1,2,3号阀),中间片是油道,右片是一组四联阀(上图中4,5,6,7号阀)。
该阀具有如下功能:(1)单独动臂提升时双泵合流供油,提高动臂提升速度。
(只在动臂提升时) (2)斗杆单独动作时双泵台流供油,加快斗杆动作速度。
(3)动臂优先,动臂与其他动作同时进行时,动臂的动作将优先保证。
(4)回转优先,回转与斗杆同时动作时,回转将优先保证。
(5)负流量控制,给主泵提供一个负流量信号,使阀杆在中位时,主泵排量变为最小。
(6)直线行走,当挖掘机前进或后退时可同时作其他动作,以保证特殊工况的需要。
(7)可配置电传感器,以满足电控的需要。
(A)液压系统符号图中下面油口中,两个P1分别与两个主泵的出油口相接,是主进油口P2~口P3用油管连接,作为斗杆合流时的辅助进油。
b口与上面b口(左罗辑阀出口)用油管连接。
C口与动臂阀伺服油a1口相连,作为动臂合流的信号。
R口是主回油,接液压油散热器,然后回油箱。
a口与上面a口(右罗辑阀出口)用油管连接。
Py1和Py2与左,右行走操纵阀(脚踏阀)的出油连接,使行走增压。
上面油口fL和fR分别与两个主泵的负流量控制接口相接。
G口作为信号输出可作他用,如接压力传感器等。
当各阀杆在中立位置时(无操作时),左路P1通过三组阀后,推开罗辑阀2,经过负流量阀3进入回油道,从主回油口R回油箱。
右路P1通过四组阀后,推开罗辑阀,经过负流量阀进入回油道,从主回油口R回油箱。
此时,两个负流量阀接口fL和fR 分别有压力信号输出到主泵的调节器,使主泵排量减小。
多路阀原理图

多路阀原理图
多路阀是一种常见的液压控制元件,它可以实现液压系统中多个执行元件的控制,从而实现复杂的动作组合。
多路阀的原理图是设计和制造多路阀时的重要参考依据,它能清晰地展现多路阀的结构和工作原理,为工程师和操作人员提供了重要的参考信息。
多路阀原理图通常包括多个部分,其中最重要的是多路阀的结构示意图和工作原理示意图。
结构示意图展示了多路阀的内部结构,包括阀芯、阀体、阀座、控制孔等重要部件的布局和连接关系。
通过结构示意图,人们可以清晰地了解多路阀的组成和各个部件之间的关系,为维护和维修提供了重要的参考依据。
而工作原理示意图则展示了多路阀在不同工况下的工作原理,包括液压油液的流动路径、阀芯的运动轨迹、控制孔的开启和关闭状态等。
通过工作原理示意图,人们可以清晰地了解多路阀在不同工况下的工作原理,为设计和调试提供了重要的参考依据。
除了结构示意图和工作原理示意图,多路阀原理图还可能包括多路阀的性能参数、安装尺寸、接口布局等重要信息。
这些信息对于工程师在设计和选型时非常重要,能够帮助他们选择合适的多路阀,并进行合理的布局和安装。
总的来说,多路阀原理图是设计和制造多路阀时的重要参考依据,它能为工程师和操作人员提供重要的参考信息,帮助他们了解多路阀的结构和工作原理,选择合适的多路阀,并进行合理的布局和安装。
因此,制作和使用多路阀原理图具有非常重要的意义,能够为液压系统的设计和维护提供重要的支持。
液压挖掘机讲座二——挖掘机多路阀液压系统

挖掘机多路阀液压系统一、多路阀液压系统(中位开式)简图表达方式多路阀是挖掘机液压系统的重要部件,它组成挖掘机液压系统的主要部分,确定了液压泵向各液压作用元件的供油路线和供油方式,多液压作用元件同时动作时的流量分配,如何实现复合动作,决定了挖掘机作业时运动学和动力学的特性,动作优先和配合,合流供油和直线行走等。
它的设计依据是能否更好地满足挖掘机作业要求和工况要求。
挖掘机多路阀有采用通用的多路阀,但为了更好的满足挖掘机的性能要求,不少挖掘机采用专用多路阀,专用多路阀液压系统应该是由了解和熟悉挖掘机的主机厂来设计。
液压系统原理图设计好后,多路阀的结构设计、工艺制造设计可由主机厂委托液压件厂来生产制造。
挖掘机多路阀液压系统大致可分为两大类:开中心直通六通阀系统和闭中心负载敏感阀系统,两者差异较大,需要分别讨论。
本文讨论的是目前我国使用有代表性的开中心直通六通阀系统。
下面以东芝UX22多路阀液压系统为例,讨论多路阀液压系统简图表达方式。
图1为东芝UX22多路阀液压系统图,在该图上取掉了1.液压泵及其控制油路,2.各液压作用元件及其油路(动臂、斗杆、铲斗、回转和行走),3.多路阀先导液压操纵系统。
仅表达该公司挖掘机液压系统的核心部分,在图中画出了与上述三部分的连接口:泵的入口P R和P L,接泵负流量控制的连接口F R和F L、回油箱的连接口R;与各液压作用元件连接口AL1、BL1;……和AR1、BR1;……;和各阀杆先导操纵油连接口al1、bl1;……和ar1、br1;……,和回油口dr1、dr2;……以及通向各阀杆先导控制油。
为了减少管路,减少流体阻力,使整个油路连接方便,在该阀上还集成了一些属于各液压作用元件油路的元件。
例如:限压阀、动臂和斗杆的支持阀和再生阀等。
1图1 东芝UX22多路阀液压系统图为了清晰了解和搞懂多路阀液压系统,深入理解其设计意图,便于讨论问题,可以把上述这些线条取掉,实际上,一般大家都已经知道,多路阀和这些部分的连接关系,把属于各液压作用元件的油路也取掉,把它们放入液压作用元件油路中去讨论,一般各阀杆都有一条回油道,它们之间是并联连接,没有什么特殊的地方,可以不画也能理解,主压力阀也省略不画了,对多路阀重要的是供油道的设计,应该着重把它表达清楚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节多路阀主油路液压系统多路阀是工程机械液压系统的重要部件,它是组成液压系统的主要部分,确定了液压泵向各液压作用元件的供油路线和供油方式,多液压作用元件同时动作时的流量分配,如何实现复合动作,决定了工程机械作业时运动学和动力学的特性,动作优先和配合,合流供油和直线行走等。
它的设计依据是能否更好地满足工程机械作业要求和工况要求。
工程机械多路阀有采用通用的多路阀,但为了更好的满足工程机械的性能要求,不少工程机械采用专用多路阀,专用多路阀液压系统应该是由了解和熟悉工程机械的主机厂来设计。
液压系统原理图设计好后,多路阀的结构设计、工艺制造设计可由主机厂委托液压件厂来生产制造。
一,多路阀基本類型工程机械多路阀液压系统大致可分为两大类:开中心直通六通阀系统和闭中心四通阀(负载敏感阀)系统,两者差异较大,需要分别讨论。
1,多路阀各阀之间油路连接基本方式多路阀各阀之间油路连接方式主要是液压泵压力油向各阀供油连接方式,供油方式不同则多路阀阀杆同时动作,实现多液压动作元件复合动作时,其运动特性和力学特性不同。
多路阀内阀杆油路连通基本方式有串联式、并联式、优先式(串并联)三种。
2 21122112211(a)串联式(b)并联式(c)串并联式图14 多路阀阀杆油路连接基本方式1.串联式(图13(a)所示)前联换向阀的回油口和后联换向阀的进油口相连,串联油路的特点可以实现两个和两个以上液压动作元件同时动作。
液压泵的工作压力是同时工作液压元件压力的总和。
在初期挖掘机上曾采用过这种油路。
但是挖掘机一般都在重负荷下工作,为了使结构紧凑,减轻重量,每个液压作用元件都按液压泵压力设计,不允许两个液压元件串联工作,因此串联油路目前在挖掘机上不采用。
2.并联式(图13(b)所示)液压泵出口压力油并联供给各阀杆,各阀回油并联回油箱,并联油路特点是多路阀杆同时动作时,泵供油首先进入负荷压力最低的液压元件,负荷高的液压元件由于压力低不能动。
要实现多液压元件同时动作,必须通过低负荷阀杆节流,提高系统油压,通过各阀杆开口量控制去各液压元件的流量来实现同时动作时的调速。
因此并联方式要实现复合动作,须有高超的技术。
但是不稳定,随各液压元件负荷变化情况和发动机转速等因素变化。
可以说该油路实现同时复合动作较困难。
3.优先式(串并联式)(图13(c)所示)液压泵出口压力油按上下油优先顺序供油,上游的阀杆打开进行工作时,就把下游阀杆的进油路切断了,因此下游阀就得不到液压泵压力油,就无法动作。
优先阀回油路并联回油,虽然如果上游阀杆不在最大开度位置,部分油会通过节流口流向下流阀,存在下流阀控制的液压元件动作的可能性。
但是严格来说优先油路只能一个液压作用元件动作。
2,多路阀中位卸载方式(1),开中心卸載:多路阀处于中位不工作时,液压泵所供压力油能通过各阀杆直接回油箱,各阀杆都处于进油口和回油口相通,也就是中位是开式的,我们称它为开中心.(2,)闭中心通过卸载阀来卸载:多路阀在中位时,各阀杆进油口都处在关闭状态,液压泵所供压力油不能通过多路阀,被封闭的压力油,必須通过設立缷载阀来卸荷,多路阀中位是关闭的,所以称为闭中心.第二节开中心多路阀主油路系统一,开中心多路阀油路布置及表达方式挖掘机作业装置复杂动作多,开中心多路阀应采用多种供油方式,除串联式不能采用外,一般采用并联式和优先式相组合的复合油路。
目前开式油路采用六通阀,有两条供油通路:直通供油道:在阀杆中位时,该油道通,可通过各阀杆回油箱,实现中位卸载功能,该供油道是优先式油道,在各阀杆之间可组成优先油路,上游阀杆动作,切断此油道,下游阀杆得不到供油。
并联供油道:并联地向各阀杆供油,在各阀杆之间组成并联油路。
目前挖掘机多路阀上采用的开式油路都是两者组合油路,利用不同的组合方式,可以形成各种形式并联和优先复杂组合的油路系统。
进一步还可以在直通供油道和并联供油道中加上液控阀和电控阀,可实现更为复杂供油关系的阀组,来满足挖掘机复杂多样的作业工况要求。
为了清晰了解和搞懂多路阀液压系统,深入理解其设计意图,必须把较复杂的多路阀液压系统图尽量简化,去粗取精,突出核心内容,能说明问题,便于理解分析和讨论。
对多路阀来说主要的是供油路线,液压泵是怎样向各阀供油的,它们的供油方式和供油关系。
另外,各阀是怎样回油的,即回油路线和方式。
多路阀主油路是各阀的供油和回游路线,一般回油路较简单,各阀杆都有一条回油道,彼此并联连接,不用表示都能理解。
在挖掘机多路阀中,集成了液压作用元件油路所需的阀,应该把这些属于各液压作用元件的油路部分取掉,把它们放入液压作用元件油路中去讨论。
我们将多路阀主油路以简图来表示,在简图中主要表达液压泵压力油如何通向各液压作用元件,因为供油方式决定液压传动特性,尽量减少液压线路,取除掉一些次要液压綫,把液压主要油路尽量以简洁明暸的方式,把它夲质问题表达出来,容易看懂,便于分析研究讨论在各种操纵情况下,可能的供油路线和供油方式,其液压传动路俴特点,其流量分配和功率分配是否符合挖掘机要求。
多路阀液压系统(主油路)简图如图14所示,各阀以长方块表达上面注明该阀控制的液压作用元件,图中只表示供油路线和供油有关的阀(以液压符号表示),将主压力阀也省略不画了。
川崎系列多路阀液压系统现代R200LC-7 多路阀液压系统供油路线:P1泵并联供油道通过D阀向回转阀供油,通过C阀向动臂合流阀和斗杆阀供油。
C阀为回转优先阀。
当回转和斗杆收缩同时动作,回转和动臂举升同时动作时,该阀由回转先导联动操纵或电磁阀操纵,使供向斗杆阀和动臂合流阀节流。
D阀为动臂优先阀,当回转和动臂(或斗杆)联合操纵,为降低回转速度采用动臂优先。
采用开关型电磁阀可实现有级调节,比例型电磁阀可实现无级调节。
合流功能:动臂提升时单向合流采用直通供油道,经动臂合流阀阀外合流,由动臂提升先导操纵油压P B联动操纵。
斗杆合流采用双阀杆在阀外合流。
铲斗合流:由用户任选,阀回油合流由铲斗先导操纵油压P k联动操纵A 阀。
行走直线性:采用直行阀分泵供油方式。
图16 现代R200LC-7多路阀液压系统(二)开中心多路阀液压系统归纳总结从以上分析可知,开中心六通阀液压系统,要解决双泵合流,作业和行走同时动作直线性等问题,要满足液压挖掘机各种作业工况要求,实现理想的复合动作都较困难的。
为此设计师动了不少脑筋,想了不少措施,增加了各种控制阀,也采用各种控制方法,例如:液压系统连动操纵;设定作业工况用电磁阀来控制;当然,也可以采用微机来控制。
但是由于开中心六通阀液压系统本身特性所决定,要实现复合动作满足各作业工况要求是困难和不理想的,要更好的满足各种作业工况复合动作要求,最好采用中位闭式负载感应压力补偿系统,并充分利用电子控制技术。
现将开中心多路阀液压系统特点归纳总结如下:(一)多路阀的阀组分块和分泵供油,每一阀组有二条供油道、直通供油道和并联供油道。
直通供油道可实现优先供油,并联供油道可实现并联供油。
在设计多路阀时可灵活应用使阀和阀之间组成优先关系或并联关系。
(二)为了满足多种作业工况复合动作要求,还需采用简单的通断型二位二通阀和插装阀,把油从某一油路直接引到另一油路,并往往采用单向阀防止油反流,沟成单向通道。
采用了这个措施,使设计自由度大大增加,可实现更复杂的供油关系,以满足工况需要。
通断阀操纵有以下三种方式:1.采用操纵阀的先导操纵油连动操纵,先导操纵油在控制操纵阀杆移动的同时,连动操纵通断阀。
2.采用操纵阀中增加一条油道,作为控制通断阀的油道,这样在操纵操纵阀的同时,也操纵了通断阀的开和闭。
3.采用电磁阀操纵。
为了实现复杂的供油关系,有时需将以上几种通断阀操纵方式同时应用。
(三)开中心多路阀系统在并联供油给多个液压作用元件时,需解决向谁优先供油问题,例如:动臂优先、回转优先等,在该系统中解决的方法是对非优先供油的油路加上节流装置,采用固定的节流孔或可变节流孔。
固定节流孔结构简单,但调节性能差,不能适应工况变化的要求,可变节流孔调节性能好,能适应工况变化的要求,但结构复杂,一般需要采用电液比例控制,通过人手动电操纵或微机自动操纵。
(四)开中心多路阀一般采用双泵或三泵,有些液压作用元件(动臂、斗杆和铲斗)所需功率大,要合流供油,该系统采用二种合流方式:1.阀内合流:例如双泵合流供给一个阀杆,由该阀杆控制供油给所需合流的液压作用元件,双泵合流的油通过一个阀杆供油,该阀杆的孔径设计需考虑多泵供油所需的流通面积。
2.阀外合流:例如双泵分别通过一个阀杆,在阀杆外合流供油给所需合流的液压作用元件,这样,操纵阀就要增加一个阀杆。
并且这两阀杆要连动操纵。
显然操纵阀结构要复杂些,体积要大些,但由于流经阀杆的是单泵流量,阀杆孔径可小,而且有可能与其他阀杆通用。
(五)作业装置同时动作时行走直线性问题,在开中心多路阀系统有以下三种方式:1.三泵系统:左右行走马达由单独一个泵供油,剩下一个泵供作业装置。
2.采用二位二通阀,使左右行走马达组成并联油路,此方法结构很简单,不足之处是行走和作业同时动作,行走和作业是并联供油关系,因此作业装置动作将引起行走速度波动。
3.采用直行阀,由一泵单独供行走(并联供油),另一泵单独供作业,两者相互独立,因此作业装置动作不会引起行走速度波动。
有些直行阀在直行位置作业和行走同时动作时,作业油路可通过单向阀和节流孔供油给行走,这样作业装置油路多余的油可供给行走马达,以增加行走速度。
(三),开中心六通多路阀存在的问题工程机械初期曾广泛采用六通多路阀,有二条供油路,直通供油路可组成优先油路,中位时直通回油箱进行卸载。
并联供油路,组成并联油路。
把二种油路采用各种方式组合起来,就构成了复杂多变的工程机械油路。
(二)操纵阀的开口特性和调速特性操纵阀在中位时泵压力油P通过直通油道,通过各阀,最后回油箱T,执行器动作时P其调速是采用旁路节流和进油节流的组合,其调速作用是通过阀杆节流,控制去油缸和回油箱的开口量来实现的,如图2(b)所示。
由于是靠回油节流建立的压力来克服负载压力,因此调速特性受负载压力和油泵流量的影响,如图2(c)所示,图中①表示低负载,②表示高负载。
当滑阀行程一定,负荷压力增大,去油缸的流量减小,如图2(d)所示。
从图2(c)开中心阀的調速特性可知:开中心油路油缸起动的阀杆行程与负荷压力和泵的流量有关.随着负载压力增加和液压泵流量的减少,阀杆调速的死区(空行程)增大,而阀杆有效调速范围的行程减小,轻负载时調速区域行程大,操纵性能较好;重负载时,調速区域行程小,调速特性曲线(流量随行程变化)变陡,阀杆行程稍有变化,流量变化大,操纵性能差,当操纵阀杆行程一定保持不变,但由于负载变化和泵流量改变也会引起油缸速度变化,使调速操作性能差。