纵联保护原理
浅谈输电线路的纵联保护

浅谈输电线路的纵联保护摘要:本文首先就输电线路纵联保护原理、概念、分类进行了介绍,而后进一步深入,对纵联差动保护应解决的主要问题及解决措施展开了剖析。
关键字:纵联保护;故障;光纤纵联差动保护一、纵联保护(一)基本原理纵联保护是将线路两侧测量信息进行判断实现全线速动保护,其基本原理有如下三种:(二)概念和分类将线路两侧测量信息传到对侧进行比较构成的全线速动保护,称作线路纵联保护。
线路纵联保护不需与其他保护配合,不受负荷电流的影响,不反应系统震荡,有良好的选择性。
通常用高频通道组成的纵联保护称高频保护,用光纤通道组成的纵联保护称光纤纵联差动保护。
二、纵联差动保护应解决的主要问题及措施(一)纵联差动保护应解决的主要问题1、输电线路电容电流的影响电容电流是从线路内部流出的电流,因此它构成动作电流。
由于负荷电流是穿越性的电流,它只产生制动电流。
所以在空载或轻载下电容电流最容易造成保护误动。
2、外部短路或外部短路切除时产生的不平衡电流外部短路或外部短路切除时,由于两端电流互感器的变比误差不一致、暂态过程中由于两端电流互感器的暂态特性不一致、二次回路的时间常数的不一致产生不平衡电流。
3、重负荷线路区内经高阻接地时灵敏度不足的问题4、正常运行时电流感器(TA)断线造成纵联电流差动保护误动作正常运行时当输电线路一端的TA断线时差动继电器的动作电流和制动电流都等于未断线一端的负荷电流。
由于差动继电器的制动系数小于1,起动电流值又较小,因此工作点将落在比率制动特性的动作区内造成差动继电器动作。
5、弱电端拒动的问题当线路有一端背后无电源或为小电源时该端称为弱电端。
6、输电线路两端保护采样时间不一致所产生的不平衡电流的问题引起两侧采样不同步的原因:(1)两侧装置上电时刻的不一致;(2)一侧数据传送到另一侧有通道时延和数据接收时延;(3)两侧装置晶振存在固有偏差;(二)解决措施1、防止电容电流造成保护误动的措施(1)提高差动继电器比率制动曲线中的起动电流Iqd的定值来躲电容电流的影响。
输电线路纵联保护概述

4.两端的测量阻抗的特征
M IM UM
IN N
k1
UN
正常负荷时测量阻抗 位于II段保护范围外;
区内故障时两侧的测 量阻抗都落在本段的II 段保护范围内,两侧II 段同时启动;
外部故障时有一侧保 护为反方向,不启动。
4.1.3 纵联保护的基本原理
1.纵联电流差动保护 利用线路两端的电流和的特征可以构成纵联差动保护。 正常运行或区外故障时,
4.1.1 输电线路纵联保护概述
输电线路的纵联保护结构如下图所示:
~
~
继电保护装置 通信设备
通信通道
继电保护装置 通信设备
一套完整的纵联保护包括:两端保护装置、通信设 备和通信通道。
3.通信通道的分类
导引线通信:通过敷设电缆传送电气量信息。 电力线载波通道:以电力线作为通信通道。 微波通道 光纤通信:经济、容量大、不受干扰,是目前主流。
4.1.3 纵联保护的基本原理
3.电流相位比较式纵联保护 由于测量误差和输电线路
分布电容的影响,两端电流的 不动作区 实际电流的相位差不可能恰好
等于0°或180°。所以保护的
动作区和不动作区如图所示。
动作区
4.1.3 纵联保护的基本原理
4.距离纵联保护 构成原理和方向比较式纵联保护相似,只是用方向阻抗
传传送送的的是是判电别气的量逻,辑信量息,量信较息大量,较并少且,要但求对两可侧靠信性息要同求步较采高集。,对 通道要求较高。
4.1.2 输电线路短路时两侧电气量的故障特征分析
纵联保护是利用线路两端的电气量在内部故障与非故障 时的特征差异构成的。
线路发生内部故障与其它运行状态(外部故障和正常运 行)相比,电力线两端电流波形、功率方向、电流相位以及 两端的测量阻抗都有明显的差异,利用这些差异可以构成不 同原理的纵联保护。
纵联保护的原理及通道

Im In Icd
比例制动差动保护判据 Im In k Im In
|Im+In|
Icd:应躲过正常运行不平衡 电流
Icd
采样误差、同步误差、
输电线路对地电容电流等
|Im-In|
原理介绍----差动保护
M Im
F IF
N In
M Im
N In F
IF
线路内部流出电流只成为动作电流
穿越性的电流只成为制动电流
电流差动保护的原理
(1)差动元件直接比较两侧电气量判断故障 (2)通过通道交换两侧电流量的波形(采样点)和相量, 通道将两侧交流回路联系起来
纵联差动保护基本原理
M Im Im In 0 In
N
*
M Im
*
F
In N
*
*
F
Im In IF
原理介绍----差动保护
差动保护判据
差动保护基本判据
采用光纤通道按相传送两侧电流量,本身具有选相 能力,不受系统振荡影响,在非全相运行中有选择地 快速动作,不受TV断线影响。
由于带有制动特性,可防止区外故障误动,不受失 压影响,不反应负荷电流,抗过渡电阻能力强。在短 线路上使用,不需要电容电流补偿功能。在同杆并架 线路上应用广泛。
纵联保护
• 纵联距离保护
检查通道是否良好
• 三、测试光功率及自环试验 • 第五步:将远端保护装置的尾纤通过珐琅盘自环,
若复用则在远端接口设备的电接口处自环,将 “专用光纤”控制字置0、“通道自环试验”控制 字置1,经一段时间观察,保护不能报通道异常告 警信号,同时通道状态中的各个状态计数器可能 偶尔会增加。 • 第六步:恢复正常运行时的定值,同时将通道恢 复正常运行时的连接,投入差动压板,保护装置 应该通道异常灯不亮,无通道异常信号。通道状 态中的各个状态计数器可能偶尔会增加
纵联保护的基本原理介绍

纵联保护的基本原理有三种:
- 以基尔霍夫电流定律为基础的电流差动测量:该原理用于线路纵联差动保护、线路光纤分相差动保护以及变压器、发电机、母线等元件保护上。
- 比较线路两侧电流相位关系的相位差动测量:相位差动保护以线路两侧电流相位差小于整定值作为内部故障的判据,主要用于相差高频保护,由于该保护对通道、收发信机等设备要求较高,技术相对复杂,微机型线路保护已不采用相差高频保护原理。
- 比较两侧线路保护故障方向判别结果,确定故障点的位置:主要用于距离保护。
继电保护第四章-纵联保护

4. 输电线路纵联保护(Unit Protection)结构
继电保 护装置
通信设备
• 导引线 • 载波 • 光通信纤信道 • 微波
继电保 护装置
通信设备
继电保护装置
实现电气量采集并形成电气量特征,完成保护任务。
通信设备
将上述信息发送至对端的保护设备,同时接收对端保护发送的
信息并送至本端保护单元
通信信道
故障分量方向元件的特点
不受负荷状态的影响 不受故障点过渡电阻的影响 正、反方向短路时,方向性明确 无电压死区 不受系统振荡影响
(二) 闭锁式方向纵联保护
1. 工作原理
以高频通道经常无电流而在外部故障时发出闭
锁信号的方式构成。
闭锁信号
A1
B
2
3
闭锁信号
C
4
5
6D
F
对AB线路为外部故障,2处功率方向均为 负,发闭锁信号,1、2保护被闭锁。
导引线通信应用:
高压电网超短线路(几公里)。 用于变压器、发电机等电力设备和母线。
(二) 电力线载波通信
采用输电线路本身作为信息传输媒介,在传输电能的同时 完成两端信息的交换。 (一)通道的构成
1
2 76
3 45 89
3
2
4 5
67
98
1.传输线 2.阻波器 3.结合电容器 4.连接滤波器 5.高频电 缆 6.保护间隙 7.安全接地开关 8. 高频收发信机 9.保护 继电器
3. 电气元件故障时两端电气量的特征分析
所选电气量
区内故障 特征
区外或正常 运行时特征
保护原理
功率方向
均指向被保 护元件
一端指向被 保护元件反
纵联距离保护的原理及优缺点

纵联距离保护的原理及优缺点引言:纵联距离保护是电力系统中常用的一种保护方式,它通过测量电力线路两端电流和电压的差值,判断线路是否发生故障,从而实现对电力系统的保护。
本文将详细介绍纵联距离保护的原理、优点和缺点。
一、纵联距离保护的原理纵联距离保护是基于传输线特性的电流和电压相位关系建立的,其主要原理可概括为以下几点:1. 电力线路的电流和电压之间存在一定的相位差,而这个相位差与线路的长度和特性有关。
2. 在正常运行状态下,电流和电压的相位差是稳定的,而当线路发生故障时,电流和电压的相位差会发生变化。
3. 根据电流和电压相位差的变化情况,可以判断出线路是否发生故障以及发生故障的位置。
二、纵联距离保护的优点纵联距离保护具有以下几个优点:1. 灵敏性高:纵联距离保护可以快速检测到线路的故障,减少对电力系统的损害。
2. 可靠性强:纵联距离保护采用了先进的电流和电压测量技术,能够准确地判断线路的故障位置,提高电力系统的可靠性。
3. 抗干扰能力强:纵联距离保护采用了差动测量原理,能够有效地抵抗电力系统中的干扰信号,提高保护装置的稳定性。
4. 适用范围广:纵联距离保护适用于各种电力线路,无论是高压输电线路还是低压配电线路都可以使用。
三、纵联距离保护的缺点纵联距离保护也存在一些缺点,主要包括:1. 定位误差:由于电力线路的特性和故障类型的不同,纵联距离保护在故障定位方面可能存在一定的误差。
2. 受电力系统结构的影响:纵联距离保护的工作性能受到电力系统结构的影响,当电力系统结构发生变化时,纵联距离保护需要进行相应的调整和优化。
3. 对电力系统的负荷变化敏感:纵联距离保护对电力系统的负荷变化比较敏感,当负荷变化较大时,保护装置可能会误判线路故障。
结论:纵联距离保护是一种常用的电力系统保护方式,它通过测量电流和电压的差值来判断线路是否发生故障。
纵联距离保护具有灵敏性高、可靠性强、抗干扰能力强和适用范围广的优点,但也存在定位误差、受电力系统结构影响和对负荷变化敏感的缺点。
纵联保护的基本原理

纵联保护的基本原理纵联保护是指在电力系统中,通过合理的保护配置和设置原则,实现对各级电气设备的保护,以保证电力系统的安全稳定运行。
纵联保护的基本原理包括以下几个方面:1. 故障范围确定。
纵联保护首先需要确定故障范围,即在电力系统中发生故障时,需要确定受影响的设备范围,以便及时采取保护措施。
通过对系统进行合理的分区和设备的分类,可以确定故障范围,从而为后续的保护设置提供依据。
2. 保护动作速度。
纵联保护需要具备快速的动作速度,以便在发生故障时能够迅速切除故障点,保护系统的安全稳定运行。
保护装置的动作速度取决于设备的故障特性和系统的运行要求,需要根据实际情况进行合理设置。
3. 保护动作的协调性。
在纵联保护中,各级保护装置之间需要具备良好的协调性,以确保在故障发生时能够按照一定的优先级顺序进行动作,避免保护的重复动作或者保护盲区的出现。
通过合理的保护设置和装置的协调性设计,可以有效提高系统的可靠性和稳定性。
4. 保护动作的选择性。
纵联保护需要具备良好的选择性,即在发生故障时能够准确地切除故障点,而不影响系统中其他正常运行的设备。
通过合理的保护设置和装置的选择性设计,可以避免误动作和保护失效的情况,确保系统的安全可靠运行。
5. 保护动作的灵活性。
纵联保护需要具备一定的灵活性,即能够根据系统的运行状态和故障情况进行动作的调整和变化。
通过合理的保护设置和装置的灵活性设计,可以适应系统运行的不同工况和故障情况,保证系统的安全稳定运行。
综上所述,纵联保护的基本原理包括确定故障范围、保护动作速度、保护动作的协调性、保护动作的选择性和保护动作的灵活性。
通过合理的保护配置和设置原则,可以实现对电力系统的全面保护,确保系统的安全稳定运行。
输电线路纵联保护

•
•
•
I N
I N IμN nTA
4.2 导引线纵联保护
•
式中 I M
、
•
I
N
——两侧电流互感器的二次电流;
•
Iμ
n
M
T
A
、—I• μ —N 两—侧—电两流侧互电感流器互的感变器比的。激磁电流;
•
•
•
IM
IL
IN
•
I k1M
k1
M
•
•
M
IM
IN
•
I k1N k2
M
N
KD
图4.2 纵联保护的基本原理
4.2 导引线纵联保护
流入差动继电器(或称为差动回路)的电流为
•
•
••
•
Ir
IMIμM nTA
INIμN nTA
由于
•
•
IM IN
所以
•
•
•
Ir
IμM IμN nTA
•
Iunb
4.2 导引线纵联保护
•
式中 I u n b ——不平衡电流(下面将详细说明)。 当情况线相路同外,部流发入生差短动路继(如电k器2点的)时电,流电仍流为互不感平器衡一电次流和,二但次因电为流此的时方一向次与侧正电常流工为作短路的 电流,比正常时的负荷电流大得多,所以此时的不平衡电流要大得多。
a 如果只用一个电流启动元件,在被保护线路外部短路而短路电流接近启动元件动作值时,近短路侧的电流启动元件可能拒动,导致该 侧发信机不发信; 没有高频信号则构成不跳闸的充分条件”。 保护范围外部短路时的最大不平衡电流可按下式来确定 为了适应各种高频载波设备的需要,已有多种阻波器投入运行,其中包括单频阻波器、双频阻波器、带频阻波器和宽带阻波器等。 没有高频信号则构成不跳闸的充分条件”。 此时,两侧方向元件2KW均动作,延时 秒后,经禁止门2作用于跳闸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵联保护原理
我们先来看一下反映一侧电气量变化的保护有什么不足?
对于反映单侧电气量变化的M侧保护来说,它无法区分是本侧线路末端故障还是下级线路始端故障。
所以在保护整定上要将它瞬时段的保护范围限制在全线的70%~80%左右,也即反映单侧电气量变化的保护不能瞬时切除本线路全长内的故障。
因此,引入了纵联保护,纵联保护是综合反映线路两侧电气量变化的保护,对本线路全长范围内的故障均能瞬时切除。
为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。
这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。
快速性、选择性都得到了保证。
在构成保护上,是将对侧对故障的判断量传送到本侧,本侧保护经过综合判断,来决定保护是否应该动作。
有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障是否在本线路正方向的判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等)
一、实现纵联保护的方式:
1、闭锁式:也就是说收不到高频信号是保护动作和跳闸的必要条件。
一般应用于超范围式纵联保护(所谓超范围即两侧保护的正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。
2、允许式:也就是说收到高频信号是保护动作和跳闸的必要条件。
一般应用于超范围式纵联保护(所谓欠范围即两侧保护的正方向保护范围均超过本线路全长的50%以上,但没有超出本线路全长);高频信号采用收发不同频率,即双频制。
3、直跳式:也就是说收到高频信号是保护跳闸的充分必要条件。
一般应用于欠范围式纵联保护。
4、差动式:也就是说将对侧电气量转化为数字信号传送到本侧进行直接计算
二、故障时允许式信号、闭锁式信号的特点
闭锁式信号主要在非故障线路上传输
允许式信号主要在故障线路上传输
所以说,对于闭锁信号可以利用电力线路相-地通道构成闭锁式保护;而允许信号由于主要在故障线路上传输,则只能采用相-相通道或者是复用载波、复用微波、专用光纤通道。
三、闭锁式纵联保护原理
下面我们以MN线路为例,分析一下闭锁式纵联保护在区内故障、区外故障时的动作行为:
一、区内故障(系统在K1点发生故障)
两侧保护的启动元件动作,当达到低定值时,经由“与门1”向对侧发送闭锁信号(由于正常时“与门6”输出为0,故“与门1”输出为1);因为是区内故障所以两侧正方向元件动作、反方向元件不动作,当达到高定值,“与门2”输出为1、“与门3”输出为0;当向对侧发送闭锁信号时,通道存在闭锁信号,收信继电器动作,一方面闭锁“与门7”,一方面经过8ms延时电路使“或门4”动作;“或门4”同“与门2”输出均为1,则“与门5”输出为1,使“或门4”自保持,由于“与门5”输出为1、“与门3”输出为0,所以“与门6”动作,“与门6”输出为1后将“与门1”闭锁,使本侧不再向通道发送闭锁信号;这样两侧均不向通道发送闭锁信号,则收信继电器返回输出为0,同时“与门6”输出为1,所以“与门7”动作;使两侧保护均动作跳闸。
二、区外故障(系统在K2点发生故障)
N侧保护启动元件动作,当达到低定值时,经由“与门1”向对侧发送闭锁信号(由于正常时“与门6”输出为0,故“与门1”输出为1);对于N侧保护来说K2点故障是反方向故障所以反方向元件动作、正方向元件不动作,当达到高定值,“与门2”输出为0、“与门3”输出为1;当向对侧发送闭锁信号时,通道存在闭锁信号,收信继电器动作,一方面闭锁“与门7”,一方面经过8ms延时电路使“或门4”动作;由于“与门2”输出为0,则“与门5”输出为0,“与门6”输出为0,“与门7”输出为0,所以N侧保护不会动作跳闸;同时因“与门6”输出为0不能闭锁“与门1”,使本侧继续向通道发送闭锁信号。
M侧保护分析同区内故障:“与门6”动作,“与门6”输出为1后将“与门1”闭锁,使本侧不再向通道发送闭锁信号;但由于N侧保护继续向通道发送闭锁信号,使M侧的收信继电器不能返回,输出始终为1,将“与门
7”闭锁,所以M侧保护同样不会动作跳闸。
三、闭锁式纵联保护跳闸的必要条件:
通过上述分析,我们可以得到闭锁式纵联保护跳闸的必要条件:
1、启动元件高定值动作
2、反方向元件不动作
3、至少收到过8ms闭锁信号
4、正方向元件动作
同时满足上述四个条件,保护停止发信
5、收不到闭锁信号
同时满足上述五个条件,保护动作跳闸
四、设置高、低两个启动元件的原因:
主要是防止区外故障保护误动。
低定值用于启动发信;高定值启动故障计算。
假如只设一个启动元件,两侧保护的整定值相同,若因某种原因(如:保护采样误差)反方向侧保护不能启动发信,那么将造成正方向侧保护误动跳闸。
所以要设置两个启动元件。
五、设置正、反两个方向元件的原因:
主要是防止功率倒向保护误动。
假如只设一个正方向元件,当在保护4出口发生短路,故障电流方向如上图示,当4DL开关先跳开后,I 回线电流将由N侧流向M侧再流向故障点。
那现在我们来分析一下:当故障开始时,保护1正方向元件动作,停止发信;保护2正方向元件不动,向保护1发闭锁信号。
当4DL跳开后,故障电流反向,则保护2正方向元件动作,停止发信。
此时保护1正方向元件可能还没来得及返回,那么就有可能造成非故障线路“I回线”两侧保护误动。
但如果再设一个灵敏度更高的反方向元件,且反方向元件一动作立即闭锁正方向元件,则可有利于防止功率倒向问题。
六、至少收到过8ms闭锁信号的原因:
主要是考虑区外故障时可靠收到对侧的闭锁信号,防止本侧保护误动。
因为高频信号沿通道传输需要时间,最严重的情况是反方向侧保护启动元件损坏(或因某种原因没有启动),依靠远方启信使对侧收发信机启动,此时通道信号将往返一次,并考虑一定的裕度,所以取8ms 。
如有侵权请联系告知删除,感谢你们的配合!。