热力学课后习题02答案
(完整版)哈工大工程热力学习题答案——杨玉顺版

(完整版)哈⼯⼤⼯程热⼒学习题答案——杨⽟顺版第⼆章热⼒学第⼀定律思考题1. 热量和热⼒学能有什么区别?有什么联系?答:热量和热⼒学能是有明显区别的两个概念:热量指的是热⼒系通过界⾯与外界进⾏的热能交换量,是与热⼒过程有关的过程量。
热⼒系经历不同的过程与外界交换的热量是不同的;⽽热⼒学能指的是热⼒系内部⼤量微观粒⼦本⾝所具有的能量的总合,是与热⼒过程⽆关⽽与热⼒系所处的热⼒状态有关的状态量。
简⾔之,热量是热能的传输量,热⼒学能是能量?的储存量。
⼆者的联系可由热⼒学第⼀定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热⼒学能的变化。
2. 如果将能量⽅程写为d d q u p v δ=+或d d q h v p δ=-那么它们的适⽤范围如何?答:⼆式均适⽤于任意⼯质组成的闭⼝系所进⾏的⽆摩擦的内部平衡过程。
因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭⼝系将 du 代⼊第⼀式得q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。
3. 能量⽅程δq u p v =+d d (变⼤)与焓的微分式 ()d d d h u pv =+(变⼤)很相像,为什么热量 q 不是状态参数,⽽焓 h 是状态参数?答:尽管能量⽅程 q du pdv δ=+与焓的微分式 ()d d d h u pv =+(变⼤)似乎相象,但两者的数学本质不同,前者不是全微分的形式,⽽后者是全微分的形式。
是否状态参数的数学检验就是,看该参数的循环积分是否为零。
对焓的微分式来说,其循环积分:()dh du d pv =+蜒? 因为0du =??,()0d pv =??所以0dh =??,因此焓是状态参数。
⽽对于能量⽅程来说,其循环积分:q du pdv δ=+蜒?虽然: 0du =?? 但是: 0pdv ≠?? 所以: 0q δ≠?? 因此热量q 不是状态参数。
工程热力学第三版曾丹苓第二章习题及答案

⼯程热⼒学第三版曾丹苓第⼆章习题及答案热⼒学第⼆章习题及答案⼀、是⾮题1、任意过程只要知道其始末状态即可确定过程与外界的热交换(x)、功交换(x)及系统热⼒学能的变化(√)。
2、简单可压缩系统任意过程中对外所作膨胀功均可⽤计算(√)。
pdV计算(x),⽤?dWpsurr3、流动功Δ(pdV)只有在开⼝系统中研究⽓体流动时才需要考虑(√)。
4、q和w是状态参数(x)⼆、选择题1、表达式δQ=dU+δW c 。
(a)适⽤于任意热⼒过程;(b)仅适⽤于准静态过程;(c)仅适⽤于闭⼝系统中的热⼒过程。
2、表达式δQ=dU+pdV适⽤ a1中的 a2。
(a1)闭⼝系;(b1)开⼝系;(c1)闭⼝及开⼝系;(a2)准静过程;(b2)任意热⼒过程;(c2)⾮准静过程。
3、任意准静或⾮准静过程中⽓体的膨胀功均可⽤ b 计算。
(a)pdV;(b)p surr dV;(c)d(pv)。
4、在正循环中?Qδa零,同时?Wδa零。
在逆循环中?Qδ c 零,且?Wδ c 零(a)⼤于;(b)等于;(c)⼩于。
三、习题2-1 0.5kg 的⽓体,在汽缸活塞机构中由初态p 1=0.7MPa 、V 1=0.02m 3,准静膨胀到V 2=0.04m 3。
试确定在下列各过程中⽓体完成的功量及⽐功量;(1)定压过程;(2) pV 2=常数。
解:(1)由准平衡过程体积变化功的表达式,当为定压过程时:W=p △V=0.7×106×0.02=14000 J=14 kJ ⽐功量 w= p △v=W/m=14000/0.5=28000 J=28 kJ(2)pV 2=0.7×106×0.022=280 J 〃m 3由准平衡过程体积变化功的表达式W=dV V pdv v v ??=04.002.0228021=7000 J=7 kJ⽐功量 w= p △v=W/m=7000/0.5=14000 J=14 kJ 2-2为了确定⾼压下稠密⽓体的性质,取2kg ⽓体在25MPa 下从350K 定压加热到370K ,⽓体初终状态下的容器分别为0.03 m3及0.035 m 3,加⼊⽓体的热量为700kJ ,试确定初终状态下的热⼒学能之差。
西工大(冯青) 工程热力学作业答案 第二章

0 = ( mu ′ − m0 u0 ) + 0( h + − ( m − m0 )( h +
1 2 cf + gz ) out 2
1 2 cf + gz ) in + 0 2
习题 2-13 储气罐充气
忽略宏观动能和位能后,整理得
( mu ′ − m0 u0 ) = h( m − m0 ) ,即开口系能量的增加等于
则由闭口系热力学第一定律表达式得
Q12 = ΔU 12 + W12 = 1.5( p2V2 − p1V1 ) +
1 ( p2 − p1 )(V2 + V1 ) + ( p1V2 − p2V1 ) 2
= 60 + 0.5 × ( 200 − 1000)(1.2 + 0.2) + (1000 × 1.2 − 200 × 0.2) = 660 kJ
PA2V A2 PA1V A1
× T A1 =
V2
2 × 0.00645 TA1 = 3T A1 = 900 K 1 × 0.043
(2)取 B 内气体为热力系, WB =
∫
V2
V1
pdV = ∫
RgTB1
V
V1
dV = RgTB1 ln
V2 V1
kJ
= 0.287 × 300 × ln
则 QB = ΔU B + WB = 0 − 59.68 = −59.68
cf 3′ = 2( h3 − h3′ ) =
2γRg
γ −1
(T3 − T3′ ) =
2 × 1.40 × 0.287 (600 − 370) = 21.50 m/s 1.40 − 1
大学物理化学1-热力学第一定律课后习题及答案

热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。
1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。
( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。
( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。
( )5. 稳定态单质的∆f H(800 K) = 0。
( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。
(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。
2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。
( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。
3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。
4. 在隔离系统内:( )。
( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。
5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。
( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。
6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。
( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。
7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。
大学物理化学 第二章 热力学第二定律学习指导及习题解答

3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
物理化学 课后答案-热力学第二定律

第三章热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】(1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否;G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
工程热力学第三版_热力学第二定律课后题答案

B T1 1 lim lim 1 T T T T T T2 A 1 2 1
lim
1 1 1
T1
[3-7]用可逆热机驱动可逆制冷机,热机从热源 TH,向热源 T0 放热,而制冷 机从冷藏库 TL 取热向热源 T0 放热, 如图 3-20 所示, 试证明当 TH 大大高于 T0 时,制冷机从冷藏库吸取 的热量 QL 与热源 TH 供给的热量 QH 之比趋近于 TL TO TL 。 解:可逆热机热效率 T C 1 O TH 吸热 QH,作功量为 TO W C QH 1 T QH H 可逆制冷机制冷系数 TL c TO TL 输入功量
5 333 5 4.1868 t 0 25 4.1868 50 t 解得 t 28.41C 301.41K
混合后系统的熵增 S 系=S 冰+S 水
S系=
m1rl dT dT m1rl T T m1c m2 c m1c ln m2 c ln T1 T1 T T2 T T1 T1 T2
第二章-热力学第二定律习题解答

第二章 热力学第二定律 一、基本公式和基本概念 (一)基本公式1. 热力学第二定律的数学表达式——克劳修斯不等式 (0A B A B QS Tδ→→∆−≥∑2. 熵函数的定义 (R QdS Tδ=,ln S k =Ω3. 熵变的计算理想气体单纯,,p V T 变化22,1122,1122,,11ln ln ln ln lnln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ∆=+∆=−∆=+理想气体定温定压混合过程ln i i iS R n x ∆=−∑封闭系统的定压过程21, T p m T C S n dT T∆=∫封闭系统定容过程 21, T V m T C S n dT T∆=∫可逆相变 m n H S T∆∆=标准状态下的化学反应 ,()r m Bm B BS S T θθν∆=∑定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 21,21 ()()T p m r m r m T C S T S T dT T∆∆=∆+∫4. 亥姆霍兹函数 A U TS ≡−5. 吉布斯函数 G H TS ≡−6. G ∆和A ∆的计算(A ∆的计算原则与G ∆相同,做相应的变换即可)定温过程G H T S ∆=∆−∆组成不变的均相封闭系统的定温过程 21p p G Vdp ∆=∫理想气体定温过程 21ln p G nRT p ∆= 7. 热力学判据熵判据:,()0U V dS ≥亥姆霍兹函数判据:,,'0()0T V W dA =≤ 吉布斯函数判据:,,'0()0T p W dG =≤8. 热力学函数之间的关系组成不变,不做非体积功的封闭系统的基本方程dU TdS pdV dH TdS Vdp dA SdT pdV dG SdT Vdp=−=+=−−=−+麦克斯韦关系S VpS T Vp TT p V S T V p S S p V T S V p T ∂∂⎛⎞⎛⎞=−⎜⎟⎜⎟∂∂⎝⎠⎝⎠⎛⎞∂∂⎛⎞=⎜⎟⎜⎟∂∂⎝⎠⎝⎠∂∂⎛⎞⎛⎞=⎜⎟⎜⎟∂∂⎝⎠⎝⎠⎛⎞∂∂⎛⎞=−⎜⎟⎜⎟∂∂⎝⎠⎝⎠ 9. 吉布斯-亥姆霍兹方程2()pG H T T T ∆⎡⎤∂∆⎢⎥=−∂⎢⎥⎣⎦ 基本概念1. 热力学第二定律在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 热力学第一定律
2-1 定量工质,经历了下表所列的4个过程组成的循环,根据热力学第一定律和状态参数的特性填充表中空缺的数据。
过程 Q/ kJ W/ kJ
△U/ kJ
1-2 0 100 -100
2-3
-110
80 -190
3-4 300 90 210 4-1 20 -60
80
2-2 一闭口系统从状态1沿过程123到状态3,对外放出47.5 kJ 的热量,对外作功为
30 kJ ,如图2-11所示。
(1) 若沿途径143变化时,系统对外作功为6 kJ ,求过程中系统与外界交换的热量; (2) 若系统由状态3沿351途径到达状态1,外界对系统作功为15 kJ ,求该过程与外界
交换的热量;
(3) 若U 2=175 kJ ,U 3=87.5 kJ ,求过程2-3传递的热量,及状态1的热力学能U 1。
图2-11 习题2-2
解:(1)根据闭口系能量方程,从状态1沿途径123变化到状态3时,12313123Q U W −=∆+,
得1347.5kJ 30kJ 77.5kJ U −∆=−−=−
从状态1沿途径143变化到状态3时,热力学能变化量13U −∆保持不变,由闭口系能量方程14313143Q U W −=∆+,得14377.5kJ 6kJ 71.5kJ Q =−+=−,即过程中系统向外界放热71.5kJ
(2)从状态3变化到状态1时,()31133113U U U U U U −−∆=−=−−=−∆,由闭口系能量方程35131351Q U W −=∆+,得35177.5kJ 15kJ 62.5kJ Q =−=,即过程中系统从外界吸热92.5kJ
(3)从状态2变化到状态3体积不变,3
23232323232
Q U W U pdV U −−−=∆+=∆+=∆∫
,
因此23233287.5kJ 175kJ 87.5kJ Q U U U −=∆=−=−=−
由1331187.577.5kJ U U U U −∆=−=−=−,得1165kJ U =
2-3 某电站锅炉省煤器每小时把670t 水从230℃加热到330℃,每小时流过省煤器的烟气的量为710t ,烟气流经省煤器后的温度为310℃,已知水的质量定压热容为 4.1868 kJ/(kg ·K),烟气的质量定压热容为1.034 kJ/(kg ·K),求烟气流经省煤器前的温度。
解:设烟气流经省煤器前的温度为t ℃,对省煤器列能量平衡方程:
c m t c m t ∆=∆水水水烟烟烟,4.1868670(330230) 1.034710(310)t ××−=××−
m
2-7 某实验室用如图2-12的电加热装置来测量空气的质量流量。
已知加热前后空气的温度分别为t 1=20℃,t 2=25.5℃,电加热器的功率为800W 。
假设空气的平均定压质量比热容为c pm =1.005kJ/(kg ·K ),试求每分钟空气的质量流量。
图2-12 习题2-7
解:列能量平衡方程,()3
1.0051025.52080060
m
q ××
×−=
2-9 某发电厂一台发电机的功率为25 000kW ,燃用发热量为27 800kJ/kg 的煤,该发电
机组的效率32%。
求:(1)该机组每昼夜消耗多少吨煤?(2)每发一度电要消耗多少千克煤(1度电=1kW •h=3 600kJ )? 解:(1)煤消耗量为
25000kW
2.81kg/s 242.8t/d 27800kJ/kg 32%
==×,即每昼夜消耗煤242.8吨
(2)每发一度电消耗煤为
3600kJ
0.4047kg
27800kJ/kg32%
=
×
,即发一度电要消耗发热量
为27800kJ/kg的煤404.7克
2-10 某机组汽轮机高压缸进口蒸汽的焓值为3461kJ/kg,出口焓为3073kJ/kg,蒸汽流量为380t/h,求该汽轮机高压缸产生的功率。
解:汽轮机高压缸产生的功率为:
67
空气的质量定压热容分别为5.204 kJ/(kg·K)、4.1868 kJ/(kg·K)和1.004 kJ/(kg·K)。