三角形常见辅助线练习题

合集下载

全等三角形证明题辅助线专题--截长补短和倍长中线

全等三角形证明题辅助线专题--截长补短和倍长中线

全等三角形证明题辅助线专题--截长补短和倍长中线一、截长补短1.如图所示,AC∥BD,EA、EB分别平分∠CAB和∠DBA,点E在线段CD上,求证:AB=AC+BD.2.如图,在四边形ABCD中,AD=CD,BD平分∠ABC,DE⊥AB于点E,求证:AE+BC=BE.3.如图,△ABC中,∠CAB=∠CBA=45∘,点E为BC的中点,CN⊥AE交AB于点N,连接EN.求证AE=CN+EN.4.如图,△ABC的∠B和∠C的平分线BD,CE相交于点F,∠A=60°,(1)求∠BFC的度数.(2)求证:BC=BE+CD.5.如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:第2页,共28页BC=AB+CE.6.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?2(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明;2若不成立,请写出它们之间的数量关系,并证明.7.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF = 60°.探究图中线段BE,EF,FD之间的数量关系.8.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:OE=OD;(3)猜测AE,CD,AC三者的数量关系,并证明.第4页,共28页9.如图在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于点D,延长DB点F,使BF=BD,连接AF.(1)求证:AF=CD;(2)若CE平分∠ACB交AB于点E,试猜想AC、AF、AE三条线段之间的数量关系,并证明你猜想的结论.二、倍长中线10.如图,在△ABC和△DEF中,AB=DE,AC=DF,AM和DN分别是中线,且AM=DN.求证:△ABC≌△DEF.11.(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是______.A.SSS B.SAS C.AAS D.HLⅡ.由“三角形的三边关系”可求得AD的取值范围是______.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【初步运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.12.已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BC交AC于F,求证:AF=EF.第6页,共28页13.如图,在△ABC中,AD是中线,∠BAC=∠BCA,点E在BC的延长线上,CE=AB,连接AE.求证:AE=2AD.14.如图,Rt△ABC中,∠ABC=90°(1)如图1,若BD为高线,AB=4,BC=3,AC=5,求BD的长(2)如图2,若BD为中线,求证:BD=1AC215.如图,在五边形ABCDE中,∠E=90O,BC=DE,,连接AC,AD,且AB=AD,AC⊥BC.(1)求证:AC=AE(2)如图,若∠ABC=∠CAD,AF为BE边上的中线,求证:AF⊥CD;(3)如图,在(2)的条件下,AE=8,DE=5,则五边形ABCDE的面积为_______。

全等三角形常见五种辅助线添法专训(学生版)

全等三角形常见五种辅助线添法专训(学生版)

全等三角形常见五种辅助线添法专训【目录】辅助线添法一 倍长中线法辅助线添法二 截长补短法辅助线添法三 旋转法辅助线添法四 作平行线法辅助线添法五 作垂线法【经典例题一倍长中线法】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】1(2023春·吉林·八年级校考阶段练习)【阅读理解】数学兴趣小组活动时,老师提出如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明提出了如下解决方法,延长线段AD至点E,使DE=AD,连接BE.请根据小明的方法回答下列问题.(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.HL(2)探究得出AD的取值范围.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【问题解决】(3)如图2,在△ABC中,CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【变式训练】1(2022秋·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≅△CAD用到的判定定理是:(用字母表示);(2)AD的取值范围是;(3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB= AC.2(2023·江苏·八年级假期作业)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.3(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明的解法如下:延长AD 到点E ,使DE =AD ,连接CE .在△ABD 与△ECD 中BD =DC∠ADB =∠EDCAD =DE∴△ABD ≅△ECD (SAS )∴AB =.又∵在△AEC 中EC -AC <AE <EC +AC ,而AB =EC =7,AC =5,∴<AE <.又∵AE =2AD .∴<AD <.【探索应用】如图②,AB ∥CD ,AB =25,CD =8,点E 为BC 的中点,∠DFE =∠BAE ,求DF 的长为.(直接写答案)【应用拓展】如图③,∠BAC =60°,∠CDE =120°,AB =AC ,DC =DE ,连接BE ,P 为BE 的中点,求证:AP ⊥DP .【经典例题二截长补短法】【模型分析】截长补短的方法适用于求证线段的和差倍分关系.截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等).【模型图示】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段.例:如图,求证BE+DC=AD方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE (2)补短:将短线段延长,证与长线段相等例:如图,求证BE+DC=AD方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE1(2023·江苏·八年级假期作业)把两个全等的直角三角形的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,∠MDN两边分别交AC、BC于点M、N,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【变式训练】1(2023·江苏·八年级假期作业)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=6,CE=4,求AC的长.2(2023·江苏·八年级假期作业)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB,AC,CD之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.(2)如图③,当∠ACB≠90°,AD为△ABC的外角平分线时,线段AB,AC,CD之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.3(2023·江苏·八年级假期作业)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=12∠BAD.(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.【经典例题三旋转法】【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等.注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用.【模型图示】例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN方法:旋转△ABM至△ACF处,证NE=MN1(2022秋·湖北孝感·八年级统考期中)已知:△ABC≌△DEC,∠ACB=90°,∠B=32°.(1)如图1当点D在AB上,∠ACD.(2)如图2猜想△BDC与△ACE的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)【变式训练】1(2023春·全国·八年级专题练习)(1)如图①,在正方形ABCD中,E、F分别是BC、DC上的点,且∠EAF=45°,连接EF,探究BE、DF、EF之间的数量关系,并说明理由;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、DC上的点,且∠EAF= 1∠BAD,此时(1)中的结论是否仍然成立?请说明理由.22(2021秋·天津和平·八年级校考期中)在△BAC中,∠BAC=90°,AB=AC,AE是过A的一条直线,BD⊥AE于点D,CE⊥AE于E,(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明;(3)若直AE绕点A旋转到图(3)的位置,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.3(2021秋·河南周口·八年级统考期末)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【经典例题四作平行线法】2(2022秋·江苏·八年级专题练习)如图所示:△ABC是等边三角形,D、E分别是AB及AC延长线上的一点,且BD=CE,连接DE交BC于点M.求让:MD=ME【变式训练】4(2022秋·江苏·八年级专题练习)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA =CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.5(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且∠BAE=∠CDE,求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.图(1):延长DE到F使得EF=DE图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F图(3):过C点作CF∥AB交DE的延长线于F.6(2023春·全国·七年级专题练习)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.【经典例题五作垂直法】1(2022秋·湖北武汉·八年级统考期中)我们定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①直接写出∠E与∠A的数量关系;②连接AE,猜想∠BAE与∠CAE的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若已知DE=DC =AD,求证:∠BEC是△ABC中∠BAC的遥望角.【变式训练】1(2022秋·八年级课时练习)如图1,已知四边形ABCD,连接AC,其中AD⊥AC,BC⊥AC,AC =BC,延长CA到点E,使得AE=AD,点F为AB上一点,连接FE、FD,FD交AC于点G.(1)求证:△EAF≌△DAF;(2)如图2,连接CF,若EF=FC,求∠DCF的度数.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.【重难点训练】4(2023·江苏·八年级假期作业)如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB-AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5(2023·江苏·八年级假期作业)如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.①请证明△CED≌△ABD;②中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.6(2023春·全国·七年级专题练习)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.7(2023·江苏·八年级假期作业)(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.8(2023·江苏·八年级假期作业)课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC,求证:∠ABC=2∠ACB,小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=,连接DF请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD=AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题(书写证明过程);(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.9(2023春·江苏·八年级专题练习)如图,在锐角ΔABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.10(2023·江苏·八年级假期作业)问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.11(2023·全国·九年级专题练习)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.12(2023春·全国·七年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)13(2022秋·八年级课时练习)如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,(1)求证:DP=DQ;(2)过P作PE⊥AC于E,若BC=4,求DE的长.14(2022秋·全国·八年级专题练习)如图,在△ABC中,AC=BC,AD平分∠CAB.(1)如图1,若ACB=90°,求证:AB=AC+CD;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图3,若∠ACB=100°,求证:AB=AD+CD.15(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF ,则EF =BE +DF ,试说明理由.证明:延长CD 到G ,使DG =BE ,在△ABE 与△ADG 中,AB =AD∠B =∠ADG =90°BE =DG∴△ABE ≌△ADG 理由:(SAS )进而证出:△AFE ≌___________,理由:(__________)进而得EF =BE +DF .【变式探究】如图,四边形ABCD 中,AB =AD ,∠BAD =90°点E 、F 分别在边BC 、CD 上,∠EAF =45°.若∠B 、∠D 都不是直角,则当∠B 与∠D 满足等量关系________________时,仍有EF =BE +DF .请证明你的猜想.【拓展延伸】如图,若AB =AD ,∠BAD ≠90°,∠EAF ≠45°,但∠EAF =12∠BAD ,∠B =∠D =90°,连接EF ,请直接写出EF 、BE 、DF 之间的数量关系.。

全等三角形经典题型辅助线

全等三角形经典题型辅助线

全等三角形常见辅助线作法【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.【例2】、如图,已知BC > AB ,AD=DC 。

BD 平分∠ABC 。

求证:∠A+∠C=180°.一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D 。

求证:2BD CD =证明:延长DC 到E ,使得CE=CD ,联结AE ∵∠ADE=60°∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°DCBADCB EA【例 4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDA BE =DE ∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.【小结】熟悉法一、法三“倍长中线"的辅助线包含的基本图形“八字型"和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

等腰三角形常用辅助线专题练习(含答案)

等腰三角形常用辅助线专题练习(含答案)

等腰三角形常用辅助线 专题练习 (含答案)AB=AC,AF 平行BC 于F , D 是AC 边上任意一点,延长 BA AF 与DE 的位置关系,并说 明理由•/ AB=AC , AE=AD B= / C , / E= / ADE•••/ B+ / E= / C+ / CDG •// B+ / E= /DGC , •••/ BGE= / CGD=90 •• EG 丄 BC . •/AF // BC解法2:过A 点作△ ABC 底边上的高,再用/ BAC= / D+AED= / 2/ ADE,即/ CAG= / AED,证明 AG // DE 利用 AF // BC 证明AF 丄 DE3.如图,△ ABC 中,BA=BC ,点D 是AB 延长线上一点, DF 丄AC 交BC 于E,求证:△ DBE是等腰三角形。

证明:在 △ ABC 中,•/ BA=BC ,•••/A= / C , •/ DF 丄 AC ,/ A+ / D=90 , •••/ FEC= / D v/ FEC= / BED ,BED= / D ,是等腰三角形.4.如图,△ ABC 中,AB=AC,E 在AC 上,且 AD=AE,DE 的延长线与 DF 丄 BC.证明:v AB=AC ,•••/ B= / C , 又 v AD=AE , ••/ D= / AED ,•••/ B+ / D= / C+ / AED , •••/ B+ / D= / C+/ CEF , •••/ EFC= / BFE=180 X 1/2 = 90 , • DF 丄 BC; 若把“AD =Ae 与结论“DFL BC ”互换,结论也成立。

若把条件“AB=AC 与结论“ DFL BC ”互换,结论依然成立。

5. 如图,AB=AE,BC=ED, / B= / E,AM 丄 CD, A 求证:CM=MD.证明:连接AC,AD•/ AB=AE, / B= / E,BC=ED ••△ ABC ◎△ AED(SAS)1.如图:已知,点 D 、E 在三角形 ABC 的边BC 上, 证明:作AF 丄BC ,垂足为 又••• AF 丄 BC , AF 丄 DE , 互相重合)。

三角形常见辅助线练习题

三角形常见辅助线练习题

三角形常见辅助线作法练习题1如图:D 、E 为△ABC 内两点,求证:AB+AC>BD +DE+CE 、2如图:已知D 为△ABC 内得任一点,求证:∠BDC>∠BA C。

3如图:已知AD 为△ABC 得中线,且∠1=∠2,∠3=∠4,求证:B E+CF>EF4如图:AD 为 △ABC 得中线,求证:AB+AC>2AD5已知△ABC,A D就是B C边上得中线,分别以AB 边、AC边为直角边各向形外作等腰直角三角形, 求证EF=2AD 。

6如图:在△AB C中,AB>AC,∠1=∠2,P 为A D上任一点、求证:AB -AC >PB-PC 。

7如图:在Rt△A BC 中,A B=AC,∠B AC=90°,∠1=∠2,CE ⊥B D得延长于E 。

求证:BD=2CEA BCDE F21 B A C DF2 1 E8已知:AB=4,AC =2,D 就是BC 中点,A D就是整数,求AD9已知:B C=DE,∠B=∠E,∠C =∠D,F 就是CD 中点,求证:∠1=∠210已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC11已知:AD 平分∠BAC,AC=AB+B D,求证:∠B=2∠C12已知:AC 平分∠BA D,CE ⊥AB,∠B +∠D=180°,求证:AE=A D+BE13、 如图,四边形A BCD 中,AB ∥D C,BE、CE 分别平分∠ABC 、∠BCD,且点E 在AD 上。

求证:B C=AB+DC 、14。

如图,已知∠A=∠D,AB =D E,AF =CD,BC=EF 、求证:BC ∥EF15:如图,ΔABC 中,AB=AC,E 就是AB 上一点,F 就是AC 延长线上一点,连EF 交BC 于D,若EB=C F。

求证:D E=D F。

16:△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠AB C交AC 于Q,求证:AB+BP =BQ+AQ 。

初中几何全等三角形常见辅助线作法

初中几何全等三角形常见辅助线作法

全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。

求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。

平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。

是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。

求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

中考专题之与三角形有关的辅助线

中考专题之与三角形有关的辅助线

第一节等腰三角形常用的辅助线例1、文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”“求证”如图,她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”;数学老师看了两位同学的辅助线作法后,说:“彬彬的做法是正确的,而文文的做法需要订正;”1请你简要说明文文的辅助线作法错在哪里;2根据彬彬的辅助线作法,完成证明过程;例2、如图,已知AD∥BC,AB=AD+BC,E为DC的中点;求证:∠ABE=∠CBE;例3、已知:如图,在正方形ABCD中,E为AB的中点,在CD延长线上取一点F,使FE=FC,EF交AD于P;求证:AE=2DF;连接CE,取CE中点HFHE全等于FHC,FH垂直于CE角BEC=角ECFCE/EB=CF/CH=根号5CF=根号5CH=根号5CE/2=根号5根号5BE/2=BE5/2=AB5/4DF=CF-CD=AB/4=AB/21/2=AE1/2例4、已知:如图,在△ABC中,AB=AC,D点在AB上,E在AC延长线上,且BD=CE,连结DE交BC于点F;求证:DF=EF;DF=EF证明如下:过点D作平行于BC的直线交AC于点G因为AB=AC;DG//BC所以BD=CG又BD=CE,故CG=CE又因为CF//DG所以CF是三角形DEG的中位线所以F是DE的中点所以DF=EF综合演练:1、如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD、CD上的两个动点,且满足AE+CF=2;1求证:△BDE≌△BCF;2判断△BEF的形状,并说明理由;3设△BEF的面积为S,求S的取值范围;1AE+CF=2=CD=DF+CF∴AE=DFAB=BD∠A=∠BDF=60°∴△BDE全等于△BCF2由1得BE=BF且∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°∴△BEF是等边三角形33√3/4<=S<=√3第二节直角三角形常用的辅助线例1、如图,在△ABC中,∠ACB=90°,AC=BC,AD是∠BAC的平分线,求证:AC+CD=AB;综合演练:Rt 斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处;则∠A等于1、如图,CD是ABCA、25°B、30°C、45°D、60°2、如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP;1在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2将△EFP沿直线l向左平移到图2所示的位置时,EP交AC于点Q,连结AP、BQ;猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;3将△EFP沿直线l向左平移到图3所示的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ;你认为图2中所猜想的BQ与AP的数量关系和位置关系还成立吗若成立,给出证明;若不成立,请说明理由;3、如图,在锐角△ABC中,BE、CF是高,在BE、CF或其延长线上分别截取CP=AB,BQ=AC,分别过P、Q作PM第三节全等三角形的辅助线例1、已知:如图,在△ABC中,AD为BC边上的中线,E为AC边上一点,BE与AD交于F,若AE=EF;求证:AC=BF;例2、1已知:如图1在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC;求证:∠BAD+∠C=180°;2已知:如图2在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D;求证:∠BAD=∠DAC+∠C;例3、已知:如图,在△ABC中,AB=AC,∠BAC=80°,P为△ABC内一点,若∠PBC=10°,∠PCB=30°,求∠PAB 的度数;例4、已知:如图,BD是四边形ABCD的∠ABC的平分线,∠A+∠BCD=180°;求证:AD=DC;例5、已知:如图,在△ABC中,DE∥GF∥BC,且AD=GB;求证:AE=CF;例6、已知:如图,P为∠AOB平分线OP上一点,PC⊥OA于C,∠OAP+∠OBP=180°;求证:AO+BO=2OC; 例7、如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,且交于点O;求证:AC=AE+CD;综合演练:1、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB、AC边于M、N两点,连结MN;探究:线段BM、MN、NC之间的关系,并加以证明;说明:1如果你经历反复探究,没有找到解决问题上的方法,请你把探究过程中的某种思路写出来要求至少写3步;2在你经历说明1的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明;①AN=NC如图②;②DM∥AC如图③;附加题:若点M、N分别是射线AB、AC上的点,其他条件不变,再探索线段BM、MN、NC之间的关系,在图④中画出图形,丙说明理由;① ② ③ ④2、如图,两个全等的含30°,60°的三角形ADE 和ABC,E 、A 、C 在一条直线上,连结BD,取BD 的中点M,连结ME 、MC,试判断△EMC 的形状,并说明理由;3、如图①,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片如图②,量得他们的斜边长为10cm ,较小锐角为30°,再将这两张三角形纸片摆成如图③所示的形状,但点B 、C 、F 、D 在同一直线上,且点C 与点F 重合;在图③至图⑥中统一用F 表示;小明在对这两张三角形纸进行如下操作时遇到了三个问题,请你帮助解决;1将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;2将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,F A 1交DE 于点G,请你求出线段FG 的长度; 3将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 交DE 于点H,请证明:AH=DH;① ② ③ ④ ⑤ ⑥4、已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB=OC;1如图1,若点O 在边BC 上,求证:AB=AC ;2如图2,若点O 在△ABC 的内部,求证:AB=AC ;3若点O 在△ABC 的外部,AB=AC 成立吗 请画图表示;1 25、请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A,B,E 在同一条直线上,P 是线段DF 的中点,连结PG ,PC;若∠ABC=∠BEF=60°,探究PG 与PC 的位置关系及PC PG 的值; 小聪同学的思路是:延长GP 交DC 于点H,构造全等三角形,经过推理使问题得到解决;请你参考小聪同学的思路,探究并解决下列问题:1写出上面问题中线段PG 与PC 的位置关系及PCPG 的值; 2将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变如图2;你在1中得到的两个结论是否发生变化 写出你的猜想并加以证明;3若图1中∠ABC=∠BEF=)900(2 <<αα,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题的其他条件不变,请你直接写出PCPG 的值;用含α的式子表示1 2第四节相似三角形中常用的辅助线例1、如图,△ABC中,点D、E在BC上,且BD=DE=EC,又AB上的中线CF分别交AD、AE于G、H, 求FG:GH:HC;例2、如图,□ABCD中,点E在AB上,AE=2BE;点F是BC的中点,连结EF交对角线BD于点G;求:BG:BD的值;例3、已知:如图,过△ABC的顶点C任作一条直线,与边AB及中线AD分别交于点F和E;求证:AE:ED=2AF:FB;例4、如图,△ABC中,AB=8,AC=6,点D在AB上,且AD=2;试在边AC上找一点E,使△ADE与原三角形△ABC 相似,求AE的长;例5、如图,△ABC 中,∠C=90°,AB=5,AC=4,点D 在AB 的延长线上,且BD=AB,动点P 在线段BC 上移动,作直线DP 交AC 于点E;设BP=x ,AE=y ;1求y 关于x 的函数解析式及定义域;2当PB 为何值时,直线DP 恰将△ABC 的面积平分例6、如图,在△ABC 中,AB=AC=5,BC=6,矩形DEFG 的顶点D 在AB 上,E 、F 在BC 上,G 在AC 上;1设BE=x ,y S DEFG 四边形,求y 与x 之间的函数关系式和自变量x 的取值范围;2连结EG,当x 取何值时,EG ∥AB 求此时矩形DEFG 的面积;例7、如图,在直角梯形ABCD 中,AD ∥BC,∠A=90°,BC=8,AB=12,AD=a ;试问:能否在边AB 上找到点P,使得△ADP 与△BCP 相似 并说明a 的取值对点P 的个数是否有影响,请加以说明;例8、如图,在△ABC 内有一点O,连结AO 、BO 、CO 并分别延长后与BC 、CA 、AB 相交于点D 、E 、F;求证:1=++CFOF BE OE AD OD ;综合演练:1、已知:如图,在△ABC 中,D 为AB 边上一点,∠A=36°,AC=BC,AD AB AC ⋅=2;1试说明:△ADC 和△BDC 都是等腰三角形;2若AB=1,求AC 的值;3试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形;标明各角的度数2、如图所示,一段街道的两边缘所在的直线分别为AB 、PQ,并且AB ∥PQ;建筑物的一端DE 所在的直线MN ⊥AB 于点M,交PQ 于点N;小亮从胜利街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮; 1请你在图纸中画出小亮恰好看见小明时的视线,以及此时小亮所在位置用点C 标出2已知MN=20m ,MD=8m ,PN=24m ,求1中的点C 到胜利街口的距离CM;3、已知:如图1,在ABC Rt ∆中,∠C=90°,AC=4cm ,BC=3cm ,点P 由B 出发沿BA 向点A 匀速运动,速度为1cm ∕s ;点Q 由A 出发沿CA 方向向点C 匀速运动,速度为2cm ∕s ;连结PQ;若设运动的时间为)20)((<<t s t ,解答下列问题:1当t 为何值时,PQ ∥BC2说明理由;4如图2,连结PC,并把△PQC 沿QC 翻折,得到四边形C PQP ',那么是否存在某一时刻t ,使四边形C PQP '为菱形 若存在,求出此时菱形的边长;若不存在,说明理由;1 24、如图,四边形ABCD 为一梯形纸片,AB ∥CD,AD=BC,翻折纸片ABCD,使点A 与点C 重合,折痕为EF,已知CE ⊥AB;1求证:EF ∥BD;2若AB=7,CD=3;求线段EF 的长;5、如图,在ABC Rt 中,∠A=90°,AB=6,AC=8,D 、E 分别是边AB 、AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q,过点Q 作QR ∥BA 交AC 于R,当点Q 与点C 重合时,点P 停止运动;设BQ=x ,QR=y ; 1求点D 到BC 的距离DH 的长;2求y 关于x 的函数关系式不要求写出自变量的取值范围;3是否存在点P,使△PQR 为等腰三角形 若存在,请求出所有满足要求的x 的值;若不存在,请说明理由;。

三角形全等之辅助线——截长补短经典习题

三角形全等之辅助线——截长补短经典习题

三角形全等之截长补短一、知识点睛截长补短:题目中出现线段间的和差倍分时,考虑截长补短;截长补短的目的是把几条线段间的数量关系转为两条线段的等量关系.二、精讲精练(可以尝试用多种方法)1. 已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .2. 已知:如图,在正方形ABCD 中,AD =AB ,∠D =∠ABC =∠BAD =90°,E ,F 分别为DC ,BC 边上的点,且∠EAF =45°,连接EF .求证:EF =BF +DE .3. 已知:如图,在△ABC 中,∠ABC =60º,△ABC 的角平分线AD ,CE 交于点O .求证:AC =AE +CD .21D CB A 21D CB A F EA BDCF EAB DC21D CB A AEBD COA EBD CO- 2 -4. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于点E .求证:CE =21BD .5. 如图,在梯形ABCD 中,AD ∥BC ,CE ⊥AB 于E ,△BDC 为等腰直角三角形,∠BDC =90°,BD CD ,CE 与BD 交于F ,连接AF .求证:CF =AB +AF .6.如图,△ABC 中,AM 是BC 边上的中线,求证:ABCDEAB CDEB F CE DA B F C E D A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形常见辅助线作法练习题
1如图:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.
2如图:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。

3如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF
4如图:AD 为 △ABC 的中线,求证:AB +AC >2AD
A B C D E
A
B C D
E F G A B C
D E F 123
4
A B C D
5已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形, 求证EF =2AD 。

6如图:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。

求证:AB -AC >PB -PC 。

7如图:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。

求证:BD =2CE
8已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD
9已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2
A B C D E
F
A
B
C
D P 1
2D
A E 12 A
D
B
C
B
A C
D
F
2 1 E
10已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC
11已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C
12已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE
13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

14.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF
C
D
B A
15:如图,ΔABC 中,AB=AC ,E 是AB 上一点,F 是AC 延长线上一点,连EF 交BC 于D ,若EB=CF 。

求证:DE=DF 。

16:△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q ,求证:AB+BP=BQ+AQ 。

17.如图5,在四边形ABCD 中,已知BD 平分∠ABC ,∠A+∠C=180°.证明:AD=CD .
18.如图4,在△ABC 中,AC=BC ,∠B=90°,BD 为∠ABC 的平分线.若A 点到直线BD 的距离AD 为a ,求BE 的长.
D
A
C
B。

相关文档
最新文档