2020年考研数学(一)真题(1)
2020年考研数学一真题及答案(全)

全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2020考研数学一真题及解析【完整版】

( x, y2
y))
|
0
3.答案:A 解析:
f (x, y)在(0, 0) 处可微. f (0, 0)=0
lim f (x, y) f (0, 0) f x(0, 0) x f y(0, 0) y 0
x0 y0
x2 y2
即 lim f (x, y) f x(0, 0) x f y(0, 0) y 0
4 12 6
P(BAC) P(B AUC) P(B) P[B(AUC)] P(B) P(BA) P(BC) P(ABC) 1 0 1 0 1
4 12 6
P(CBA) P(C BUA) P(C) P[CU (BUA)] P(C) P(CB) P(CA) P(ABC) 1 1 1 0 1
1
2 f y 2
48y
当 x 0, y 0时.A 0.B 1.C 0
AC B2 0 故不是极值.
当x1y 1 时 6 12
A 1.B 1.C 4.
AC
B2
0.A
1
0故
1, 6
1 12
是极小值点
极小值
f
1 6
,
1 12
1 3 6
8
1 12
3
6 1 12
1 216
16.(本题满分 10 分)
x0 y0
x2 y2
n x, y, f (x, y) f x(0, 0)x f y(0, 0) y f (x, y)
n x, y, f (x, y)
lim
0 存在
( x, y)(0,0)
x2 y2
选 A.
4.设 R 为幂级数 anr n 的收敛半径,r 是实数,则( ) n1
明过程或演算步骤. 15.(本题满分 10 分)
2020年考研数学一真题及答案解析

(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1
2020年考研数学一真题(含完整答案)

x2
+
y2
=
2,方向为逆时针方向.
(17)
( 设数列 {an} 满足 a1 = 1,(n + 1)an+1 = n +
1 2
)
an.
证明:当
|x|
<
1
时,幂级数
∑∞
anxn
收敛,
n=1
并求其和函数.
√ (18) 设 Σ 为曲面 z = x2 + y2(1 ≤ x2 + y2 ≤ 4) 的下侧,f (x) 为连续函数. 计算
.
则
d2 y dx2
=
t=1
.
(11)
设
f (x)
满足
f ′′(x)
+
af ′(x)
+
f (x)
=
0(a
>
0),f (0)
=
m,f ′(0)
=
n,则
´ +∞
0
f (x)dx
=
.
(12)
设
f (x,
y)
=
´ xy
0
ext2 dt,则
∂2f ∂x∂y
=
(1,1)
.
a 0 −1 1
(13) 行列式 0
a
1 −1 =
,·-·O X
.r-0 X
.r-·•O X
排除 CD)'故应选 CC). (3) 【答案】A
。, + 【解析】
利用函数z=
一
.I 位,y)在(x
Yo)处可微的充要条件Jim 幻 -J'心 . X 汇�,Jt:,x2
- J:t:,y= t:,yZ
2020年全国硕士研究生招生考试《数学一》真题及解析

2020年全国硕士研究生招生考试《数学一》真题及解析1. 【单项选择题】当x→0+时,下列无穷小量中是最高阶的是( ).A.B.C.D.正确答案:D参考解析:2. 【单项选择题】A.B.C.D.正确答案:C参考解析:3. 【单项选择题】A.B.C.D.正确答案:A 参考解析:4. 【单项选择题】A.B.C.D.正确答案:A参考解析:5. 【单项选择题】若矩阵A经初等列变换化成B,则( ).A. 存在矩阵P,使得PA=BB. 存在矩阵P,使得BP=AC. 存在矩阵P,使得PB=AD. 方程组Ax=0与Bx=0同解正确答案:B参考解析:6. 【单项选择题】A.B.C.D.正确答案:C 参考解析:7. 【单项选择题】A.B.C.D.正确答案:D 参考解析:8. 【单项选择题】A.B.C.D.正确答案:B参考解析:9. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:-1【解析】10. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:【解析】11. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:n+am【解析】12. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:4e13. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:a4-4a2【解析】14. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:15. 【解答题】求函数f(x,y)=x3+8y3-xy的极值.请查看答案解析后对本题进行判断:答对了答错了参考解析:16. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:17. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:18. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:19. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:20. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:21. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:22. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:23. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:。
2020年考研数学(一)真题及解析

2020年考研数学(一)真题一、选择题:1~8小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. +→0x 时,下列无穷小量中最高阶是( )A.()⎰-xt dt e 012B.0ln(1x dt +⎰C.⎰xdt t sin 02sin D.⎰-xdt t cos 103sin【答案】D【解析】()A 22++3200(1)(1)1lim lim33xxt t x x e dt e dt x x →→--==⎰⎰,可知0x +→,2301(1)~3x t e dt x -⎰, ()B ++500222limlim ln(155xx x xx dt→→==+⎰,可知5202ln(1~5x dt x +⎰,0x +→ ()C +++s 3in 2200020sin sin(sin )co cos 1limlim lim 333s x x x xx x t dt x x x →→→===⋅⎰,可知sin 2301sin ~3x t dt x ⎰,0x +→()D ++1co 50s 0limlim x x x →→-===⎰,可知1cos 50~x -⎰,0x +→ 通过对比,⎰-xdt t cos 103sin 的阶数最高,故选()D2. 设函数()x f 在区间()1,1-内有定义,且()0lim 0=→x f x ,则( )A. 当()0lim=→xx f x ,()x f 在0=x 处可导.B. 当()0lim2=→xx f x ,()x f 在0=x 处可导.C. 当()x f 在0=x 处可导时,()0lim=→xx f x .D. 当()x f 在0=x 处可导时,()0lim2=→xx f x .【答案】C 【解析】当()f x 在0x =处可导时,由()0(0)lim 0x f f x →==,且0()(0)()(0)limlim 0x x f x f f x f x x →→-'==-,也即0()lim x f x x →存在,从而()0lim0=→xx f x ,故选C 3. 设函数(),f x y 在点()0,0处可微,()00,0=f ,()0,01,,⎪⎪⎭⎫⎝⎛-∂∂∂∂=y f x f n 非零向量d 与n 垂直,则( )A.()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在. B.()()()()0,,,lim220,0,=+⨯→yx y x f y x n y x 存在.C. ()()()()0,,,lim220,0,=+⋅→yx y x f y x d y x 存在. D.()()()()0,,,lim220,0,=+⨯→yx y x f y x d y x .【答案】A【解析】函数(),f x y 在点()0,0处可微,()00,0=f ,(,)(0,0)(0,0)(0,0)0x y f x y f f x f y→→''---=,00(,)(0,0)(0,0)0x y f x y f x f y→→''--=由于()(),,,n x y f x y ⋅=(0,0)(0,0)(,)x y f x f y f x y ''+-,所以()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在4. 设R 为幂级数1nn n a r∞=∑的收敛半径,r 是实数,则( )A.1nn n a r∞=∑发散时,R r ≥. B.1nn n a r∞=∑发散时,R r ≤.C.R r ≥时,1nn n a r∞=∑发散. D. R r ≤时,1nn n a r∞=∑发散.【答案】A【解析】R 为1nn n a r∞=∑的收敛半径,所以1nn n a r∞=∑在(,)R R -必收敛,所以1nn n a r∞=∑发散时,R r ≥.故选A5. 若矩阵A 经初等列变换化成B ,则( )A. 存在矩阵P ,使得B PA =.B.存在矩阵P ,使得A BP =.C.存在矩阵P ,使得A PB =.D. 方程组0=Ax 与0=Bx 同解. 【答案】B【解析】A 经过初等列变换化成B ,存在可逆矩阵1P 使得1AP B =,令11PP -=,得出A BP =,故选B6. 已知直线12121212:c c b b y a a x L -=-=-与直线23232322:c c b b y a a x L -=-=-相交于 一点,法向量i i i i a b c α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,3,2,1=i . 则 A. 1a 可由32,a a 线性表示. B. 2a 可由31,a a 线性表示. C.3a 可由21,a a 线性表示. D. 321,,a a a 线性无关. 【答案】C【解析】令22211112:x a y b c L t a b c ---===,即有21212121=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由2L 方程得32323223=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两条线相交,得2132++t t αααα=即2123123+(1)t t t t ααααααα-=⇔+-=,故选C 7. 设A ,B ,C 为三个随机事件,且()()()41===C P B P A P ,()0=AB P , ()()121==BC P AC P ,则A ,B ,C 中恰有一个事件发生的概率为 A. 43. B. 32. C. 21. D. 125. 【答案】D【解析】()()()(())P ABC P ABUC P A P A BUC ==-111()()()()004126P A P AB P AC P ABC =--+=--+=()()()(())P BAC P B AUC P B P B AUC ==-111()()()()004126P B P AB P BC P ABC =--+=--+=()()()(())P CAB P C AUB P B P C AUB ==-1111()()()()04121212P C P CB P CA P ABC =--+=--+=所以1115()()()661212P ABC P ABC P ABC ++=++= 8. 设n x x x ,,,21 为来自总体X 的简单随机样本,其中()()2110====X P X P , ()x Φ表示标准正态分布函数,则利用中心极限定理可得⎪⎭⎫⎝⎛≤∑=100155i i X P 的近似值为A. ()11Φ-.B. ()1Φ.C.()2,01Φ-.D.()2,0Φ. 【答案】B【解析】由题意12EX =,14DX =,根据中心极限定理1001~(50,25)i i X N =∑,所以⎪⎭⎫ ⎝⎛≤∑=100155i i X P=10050(1)iX P ⎛⎫- ⎪≤=Φ⎝⎭∑二、填空题:9~14小题,每小题2分,共24分.请将解答写在答题纸指定位置上. 9. ()=⎥⎦⎤⎢⎣⎡+--→x e x x 1ln 111lim 0 . 【答案】-1【解析】()()()()2000ln 11ln 1111lim lim lim 1ln 1(1)ln 1x x x x x x x x e x e e x e x x →→→⎡⎤⎡⎤+-++-+-==⎢⎥⎢⎥-+-+⎣⎦⎣⎦ =()2222001111ln 1122lim lim 1xx x x x x x x e x x→→----++-+==-10. 设()⎪⎩⎪⎨⎧++=+=1ln 122t t y t x ,则==122t dx y d .【答案】【解析】1dy dy dt dx dx dt t ===22231=dy dy d d d y dt dx dt dx dx dt dx t t t⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭===--得212t d y dx==11. 若函数()x f 满足()()()()00>=+'+''a x f x f a x f ,且()m f =0,()n f ='0,则()f x dx +∞=⎰.【答案】n am +【解析】特征方程210a λλ++=,则1212,1a λλλλ+=-⋅=,所以两个特征根都是负的。
2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)2020年考研数学一真题及答案解析(完整版)一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
XXX 时,下列无穷小量中最高阶是()A。
$\int_{x^2}^{et-1}dt$B。
$\int_0^x\frac{3\ln(1+tdt)}{t}$C。
$\int_0^x\frac{\sin x}{\sin t^2}dt$D。
$\int_0^x\frac{1-\cos x}{\sin t^2}dt$2.设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义,且$\lim\limits_{x\to 0}f(x)=0$,则()A。
当 $\lim\limits_{x\to 0}\frac{f(x)}{|x|}=0$,$f(x)$ 在$x=0$ 处可导。
B。
当 $\lim\limits_{x\to 0}\frac{f(x)}{x^2}=0$,$f(x)$ 在$x=0$ 处可导。
C。
当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{|x|}=0$。
D。
当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{x^2}=0$。
3.设函数 $f(x,y)$ 在点 $(0,0)$ 处可微,$f(0,0)=0,n=\begin{pmatrix}\frac{\partial f}{\partialx}(0,0)\\\frac{\partial f}{\partial y}(0,0)\\-1\end{pmatrix}$ 非零向量 $d$ 与 $n$ 垂直,则()A。
$\lim\limits_{(x,y)\to(0,0)}n\cdot(x,y,f(x,y))$ 存在。
B。
$\lim\limits_{(x,y)\to(0,0)}n\times(x,y,f(x,y))$ 存在。
2020考研数一真题答案及详细解析

一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0X—r•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X3, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
an
,证明:当
x
1时幂级数
an xn
n1
收
敛,并求其和函数. 18. (本题满分 10 分)
设 为由面 Z : x2 y2 x2 y2 4 的下侧, f x是连续函数,计算
I xf xy 2 ydydz yf xy 2 y xdzdx 2 f xy 2dxdy .
19. (本题满分 10 分)
的最大似然估计值 .
x0 x
D. 当 f x在 x 0 处可导时, lim f x 0 .
x x0
2
3.
设函数
f
x在点 0,0处可微,
f 0,0 0 ,n
f x
,
f y
,1
0,0
非零向量
d
与n
垂直,则( )
n x, y, f x, y
A. lim
0 存在.
x, y 0,0
x2 y2
n x, y, f x, y
1co s x
D.
sin t3dt
0
2. 设函数 f x在区间 1,1内有定义,且 lim f x 0 ,则( ) x0
A. 当 lim f x 0 , f x在 x 0 处可导.
x0 x
B. 当 lim f x 0 , f x在 x 0 处可导.
x x0
2
C. 当 f x在 x 0 处可导时, lim f x 0 .
x1 x2
Q
y1 y2
化为二次型
gy1, y2 ay12 4 y1y2 by22 ,其பைடு நூலகம் a b .
(1)求 a , b 的值;(2)求正交矩阵 Q .
21. (本题满分 11 分)
设 A 为 2 阶矩阵, P , A ,其中 是非零向量且不是 A 的特征向量.
(1)证明 P 为可逆矩阵;
(2)若 A2 A 6 0 ,求 P1AP ,并判断 A 是否相似于对角矩阵.
22. (本题满分 11 分)
设随机变量 X1, X 2, X3 相互独立,其中 X1 与 X 2 均服从标准正态分布, X 3 的概率分布
为 PX3
0
PX 3
1
1 2
,Y
X3X1
1
X3X2 .
(1)求二维随机变量 X1,Y 的分布函数,结果用标准正态分布函数 x 表示.
D. a1, a2, a3 线性无关.
7. 设 A , B , C 为三个随机事件,且 PA PB PC 1 , PAB 0 ,
4
PAC PBC 1 ,则 A , B , C 中恰有一个事件发生的概率为
12
A. 3 . 4
B. 2 . 3
C. 1 . 2
D. 5 . 12
8.
设 x1, x2,, xn 为来自总体 X
设函数 f x在区间 0,2上具有连续导数,f 0 f 2 0,M max f x,证明: x0, 2
(1)存在号 0,2,使得 f M ;(2)若对任意的 x 0,2 ,f x M ,则 M 0 .
20. (本题满分 11 分)
设二次型
f
x1,
x2
x12
4x1x2
4x22
经正交变换
6.
已知直线 L1 :
x a2 a1
y
b2 b1
2 c2 c1
与直线 L2
:
x a3 a2
y b3 b2
2 c3 c2
相交于
ai
一点,法向量 ai
bi
,
i
1,2,3 .
则
ci
A. a1 可由 a2, a3 线性表示.
B. a2 可由 a1, a3 线性表示.
C. a3 可由 a1, a2 线性表示.
e
1 x
1
1
ln 1
x
.
10.
设
y
x t2 ln t
1 t2 1
,则 d 2 y dx2
t 1
.
11. 若函数 f x满足 f x af x f x 0a 0 ,且 f 0 m , f 0 n ,则
f0 f xdx
.
12. 设函数 f
x, y
xy ext2 dt ,则 2 f
B. lim
0 存在.
x, y 0,0
x2 y2
d x, y, f x, y
lim
0 存在.
C. x, y 0,0
x2 y2
d x, y, f x, y
D. lim
0.
x, y 0,0
x2 y2
4. 设 R 为幂级数 an xn 的收敛半径, r 是实数,则( )
n1
A. an xn 发散时, r R .
(2)证明随机变量Y 服从标准正态分布.
23. (本题满分 11 分)
设某种元件的使用寿命 T 的分布函数为
F t
1
e
t
m
,
0,
t 0, 其他.
其中 , m 为参数且大于零.
(1)求概率 PT t与 PT S t T S,其中 S 0 , t 0 .
(2)任取 n 个这种元件做寿命试验,测得它们的寿命分别为 t1,t2,,tn ,若 m 已知,求
0
xy
1,11
.
a 0 1 1
13. 行列式 0
a
1 1
.
1 1 a 0
1 1 0 a
14. 设 x 顺从区间 , 上的均匀分布,Y sin X ,则 CovX ,Y
.
2 2
三、解答题:15~23 小题,共 94 分. 请将解答写在答题纸指定位置上. 解答写出文字说明、 证明过程或演算步骤.
n1
B. an xn 发散时, r R .
n1
B. r R 时, an xn 发散.
n1
D. r R 时, an xn 发散.
n1
5. 若矩阵 A 经初等列变换化成 B ,则( ) A. 存在矩阵 P ,使得 PA B . C.存在矩阵 P ,使得 PB A.
B.存在矩阵 P ,使得 BP A. D. 方程组 Ax 0 与 Bx 0 同解.
2020 年考研数学(一)真题
一、选择题:1~8 小题,每小题 4 分,共 32 分. 下列每题给出的四个选项中,只有一 个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. x 0 时,下列无穷小量中最高阶是( )
A. x et2 1 dt 0
B.
x
ln(1
t3 )dt
0
C. sinx sin t2dt 0
的简单随机样本,其中 PX
0
PX
1
1 2
,
x表示标准正态分布函数,则利用中心极限定理可得 P 100 Xi 55 的近似值为
i1
A. 1 1 .
B. 1 .
C.1 0,2.
D. 0,2.
二、填空题:9~14 小题,每小题 2 分,共 24 分.请将解答写在答题纸指定位置上.
9.
lim
x0
15. (本题满分 10 分)
求函数 f x, y x3 8y3 xy 的最大值.
16. (本题满分 10 分)
计算曲线积分 I
L
4x 4x2
y y2
dx
x y 4x2 y
dy
,其中
L
是
x2
y
2
,方向为逆时针
方向. 17. (本题满分 10 分)
设数列an满足 a1
1x
1an
1
n