飞行动力学知识点

合集下载

飞行力学知识点

飞行力学知识点

飞行力学知识点一、协议关键信息1、飞行力学的基本概念和原理定义:____________________________研究范围:____________________________重要性:____________________________ 2、飞行器的受力分析重力:____________________________升力:____________________________阻力:____________________________推力:____________________________3、飞行性能参数速度:____________________________高度:____________________________航程:____________________________续航时间:____________________________4、飞行器的稳定性和操纵性稳定性的类型:____________________________操纵性的要素:____________________________稳定性与操纵性的关系:____________________________5、飞行轨迹和导航常见的飞行轨迹:____________________________导航方法:____________________________导航系统的组成:____________________________二、飞行力学的基本概念和原理11 飞行力学的定义飞行力学是研究飞行器在空中运动规律的学科,它综合了力学、数学、物理学和工程学等多学科的知识,旨在揭示飞行器在不同飞行条件下的受力、运动状态和性能特征。

111 研究范围飞行力学的研究范围涵盖了飞行器的起飞、爬升、巡航、下降、着陆等各个飞行阶段,以及飞行器在不同气象条件、飞行高度和速度下的运动特性。

112 重要性飞行力学对于飞行器的设计、性能评估、飞行控制和飞行安全具有至关重要的意义。

航空飞行理论知识点总结

航空飞行理论知识点总结

航空飞行理论知识点总结航空飞行理论知识点总结导论航空飞行理论是研究飞机飞行的基本原理和技术规律的学科,对于飞行员和航空工程师来说,掌握航空飞行理论知识十分重要。

本文将对航空飞行理论的各个知识点进行总结,包括空气动力学、飞行力学、飞行控制以及飞行器设计等方面的内容。

一、空气动力学1. 空气动力学基础知识空气动力学是研究空气对物体运动的力学规律的学科。

其中包括气动力、气动力矩的计算以及空气流动的特性等。

2. 静力学和动力学静力学研究物体在不发生运动时的平衡和稳定性,而动力学研究物体在发生运动时的运动规律和机构。

3. 空气动力学参数空气动力学参数包括气动力、气动力矩、气动力系数等,他们是描述物体在空气作用下所受力的重要指标。

4. 尺度效应尺度效应是指在不同尺寸的模型和实际飞机之间存在的差异。

了解尺度效应对于飞行器的设计和测试具有重要意义。

二、飞行力学1. 飞行动力学飞行动力学研究在不同飞行状态下飞机的力学行为,包括起飞、爬升、巡航、下降和着陆等各个阶段。

2. 稳定性与操纵性稳定性是指飞机在受到扰动后自动返回原始状态的能力,而操纵性是指飞机在操纵员操作下的灵活性和可控性能。

3. 飞行方程飞行方程是描述飞机在不同飞行状态下运动规律的方程,包括运动方程、气动力平衡方程和质量平衡方程等。

4. 外部干扰与驾驶负荷外部干扰包括风、气流和重力等对飞机造成的扰动,而驾驶负荷则是指操纵员在不同飞行状态下所需要的操作负荷。

三、飞行控制1. 飞行控制概述飞行控制是指通过操纵飞机各个控制面来改变飞机的运动状态,使其按照飞行员的意图实现飞行任务。

2. 飞行稳定性辅助系统飞行稳定性辅助系统是指通过计算机和传感器等设备来监测和控制飞机的姿态和稳定性的系统,如自动驾驶仪和导航系统等。

3. 飞行操纵系统飞行操纵系统由飞机上的各种操作机构和操纵面组成,通过操纵杆、脚蹬和配平机构等来操纵飞机的姿态和运动。

4. 飞行控制律设计飞行控制律设计是根据飞机的动力学和控制要求,设计出适用于不同飞行阶段的控制系统来保证飞行的安全和稳定性。

飞行器动力工程知识点总结

飞行器动力工程知识点总结

飞行器动力工程知识点总结一、飞行器动力系统概述飞行器动力系统是指驱动飞行器进行飞行的动力装置,是飞行器的重要组成部分,其性能直接影响着飞行器的飞行性能、经济性和安全性。

飞行器动力系统主要包括发动机、推进系统、燃料系统等部分。

1. 发动机发动机是飞行器动力系统的核心部件,其功能是将燃料燃烧产生的能量转化为机械能,推动飞行器进行飞行。

发动机根据其工作原理和结构,可以分为涡轮喷气发动机、涡桨发动机、活塞发动机、火箭发动机等几种类型。

2. 推进系统推进系统是将发动机产生的动力转化为推进力,推动飞行器进行飞行。

推进系统通常包括涡轮风扇、涡轮喷气发动机喷管、尾喷管等部分。

3. 燃料系统燃料系统是为发动机提供燃料和润滑油的系统,包括燃料供给系统、燃烧系统、排油系统等部分。

二、飞行器动力系统的基本原理和工作过程1. 动力系统的基本原理飞行器动力系统的基本原理是利用燃料的化学能转化为机械能,进而产生推进力,推动飞行器进行飞行。

不同类型的发动机有不同的工作原理,如涡轮喷气发动机是利用高速喷气产生的推进力进行推进,活塞发动机是通过活塞往复运动产生的机械能推动飞行器飞行。

2. 工作过程飞行器动力系统的工作过程通常包括燃烧室的燃烧过程、喷气和推进过程、涡轮的驱动过程等。

燃烧室的燃烧过程是将燃料燃烧产生高温高压气体,喷气和推进过程是将高温高压气体喷出产生推进力,涡轮的驱动过程是将喷出的气体推动涡轮转动,带动飞机前进。

三、飞行器动力系统的性能指标及影响因素1. 性能指标飞行器动力系统的性能指标主要包括动力性能、经济性能、可靠性等几个方面。

动力性能包括推力、功率、燃油效率等指标;经济性能包括单位功率燃油消耗、维护成本等指标;可靠性包括故障率、寿命等指标。

2. 影响因素影响飞行器动力系统性能的因素有很多,主要包括发动机结构和效率、燃料质量和供应、气温、气压等环境因素、飞行器的设计和载荷等因素。

四、飞行器动力系统的设计与发展1. 设计要求飞行器动力系统的设计要求主要包括实现足够的推力和功率、提高燃油效率、确保可靠性和安全性等几个方面。

飞行动力学公式总结

飞行动力学公式总结

飞行动力学第二章公式总结空气动力:X=C x qS阻力公式Y=C y qS升力公式Z=C z qS侧向力公式动压公式q=ρV22升力:C y=f(Ma,α,δ)升力系数函数C y=C y0+C yαα+C yδzδz升力系数在攻角和舵偏角不大的情况下的表达式C y=C yαα+C yδzδz轴对称时Y=Y0+Yαα+Yδzδ升力在攻角和舵偏角不大的情况下的表达式α攻角不大情况下攻角变化引起的升力Yα=C yαρV22Yδ=C yδzρV2δz舵偏角不大的情况下舵偏角变化引起的升力2侧向力:C z=C zββ+C zδzδz侧向力因数在侧滑角和舵偏角不大的情况下的表达式-C zβ=C yα轴对称下成立(不大)-C yδz=C zδz轴对称下成立(不大)阻力:X= X0+X i阻力的组成由零升阻力和诱导阻力构成C x=C x0+C x i阻力因数由零升阻力因数和诱导阻力因数构成气动力矩:M x1=m x1qSL滚转力矩M y1=m y1qSL偏航力矩M z1=m z1qSL俯仰力矩M z =f(M a ,H,α,δz ,,ωz ,α̇, δz ) 俯仰力矩的函数M z = M z 0+M z αα+M z δz δz+ M z ωz ωz+ M z αα̇+M z δz δz参数不大的情况下升力表达式 m z = m z 0+m z αα+m z δz δz+ m z ωz ̅̅̅̅ωz ̅̅̅̅+ m z α̅α̇̅+m z δz ̅̅̅̅δz̅ 无量纲力矩因数表达式 δz ̅=δzL/V 舵偏角角速度对应的无量纲参数 α̇̅=α̇L/V 攻角角速度对应的无量纲参数 ωz ̅̅̅̅=ωzL/V 俯仰角角速度对应的无量纲参数M z α=C z αSqα(x g −x F )=m z αSqαL 升力力矩和里表达式之间的关系m z α=C z α(X g ̅̅̅−X F ̅̅̅̅) 攻角升力系数和攻角升力力矩系数之间的关系 m z δz =C z δz (X g ̅̅̅−X r ̅̅̅) 舵偏角升力系数和舵偏角升力力矩系数之间的关系 m z =m z αα+m z δz δz 轴对称定常直线飞行下的升力力矩系数表达式m z ααb +m z δz δz=0 "瞬时平衡假设"下的升力力矩平衡状态方程C b y =C b ααb +C b δz δzb =(C b α−C b δz m z αm z δz )αb “瞬时平衡”状态下平衡升力的表达式m z α|α=αb <0 纵向静稳定条件m z C y =ðm zðC y =(X g ̅̅̅−X F ̅̅̅̅) 稳定性的定量表示——静稳定度 ∆α=arctanrωz V 俯仰角角速度引起的下洗角度 M z ωz =M z ω̅z ω̅z qSL 俯仰阻尼力矩表达式t t t αεεαα•∆()=(()-)实际下洗角 偏航力矩:m y =m y ββ+m y δy δy +m y ω̅y ω̅y +m y ω̅x ω̅x +m y δ̅y δy +m y β̅β 偏航力矩系数表达式 ω̅y =ωy L/V偏航角速度对应的无纲量因数 δy=δy L/V 航向舵偏角速度对应的无纲量因数 β=βL/V 偏航角角速度对应的无量纲因数m x =m x0+m x ββ+m x δy δy +m x δx δx +m x ω̅x ω̅x +m x ω̅y ω̅y 滚转力矩因数的表达式 m x ββ<0 横向静稳定性的条件M ℎ=m ℎq t S t b t 铰链力矩模式表达式M ℎ=−Y t ℎcos(α+δz ) 铰链力矩实际表达式M ℎ≈M ℎαα+M ℎδz δz 铰链力矩的近似表达式 推力:P =m s μe +S a (P a −P ℎ) 推力的表达式 M p =R p ×P 推力力矩表达式重力:G=G 1+F e 重力表达式F e =mR e Ωe 2cosψe 离心惯性力的表达式 g =g 0R e 2(R e +H e )2 重力加速度随高度变化的表达式导弹建模基础:m dV dt =F质心移动的动力学公式 dH dt =M 绕质心转动的动力学公式导弹质心移动的动力学方程:m dV dt =m (ðV ðt +Ω×V)=F 用相对坐标系表示以绝对坐标系为基准的矢量变化率表示-力 ρ=V θ 曲率半径的计算公式a y2=Vθ 弹道法线加速度 导弹绕质心转动的动力学方程:dH dt =ðH ðt +ω×H =M用相对坐标系表示以绝对坐标系为基准的矢量变化率表示-力矩 H =J ∙ω动量矩M =J ∙α力矩 J ={J x1−J x1y1−J z1x1−J x1y1J y1−J y1z1−J z1x1−J y1z1J z1} 三维空间下转动惯量矩阵 dm dt =−m s (t)导弹质量流率方程 m =m 0−∫m s (t)dt tf t0 导弹质量方程角度几何关系:cosφ=cosα1cosα2+cosβ1cosβ2+cosγ1cosγ2 余弦定理α=ϑ−θ 无滚转无侧滑角度关系时β=ψ−ψv 无攻角无滚转时角度关系操纵关系方程:N =P +R 控制力为空气动力与推力的合力N =N n +N τ 控制力的切向与法向的分解N τ=P τ−X 切向控制力分解 N n =P n +Y +Z 法向控制力分解导弹飞行的运动方程组(轴对称型导弹,以地面为绝对坐标系): 质心移动的动力学方程(弹体->弹道坐标系):m dV dt =Pcosαcosβ−X −mgsinθ切向运动的动力学方程 mV dθdt =P (sinαcosγv +cosαsinβsinγv )+Ycosγv −Zsinγv −mgcosθ 竖直法向运动的动力学方程 −mVcosθdψv dt =P (sinαsinγv −cosαsinβcosγv )+Ysinγv +Zcosγv 水平法向运动的动力学方程 绕质心转动的动力学方程(弹体坐标系):J xdωx dt +(J z −J y )ωy ωz =M x 弹体x 轴力矩表达式 J ydωy dt +(J x −J z )ωz ωx =M y 弹体y 轴力矩表达式 J z dωz dt +(J y −J x )ωx ωy =M z 弹体z 轴力矩表达式质心移动的运动学方程(弹道->地面坐标系):dxdt=Vcosθcosψv地面坐标系x轴方向运动学方程dydt=Vsinθ地面坐标系y轴方向运动学方程dxdt=−Vcosθsinψv地面坐标系z轴方向运动学方程绕质心转动的运动学方程(弹体->地面坐标系):dϑdt=ωy sinγ+ωz cosγ俯仰角角速度表达式dψdt =1cosϑ(ωy cosγ+ωz sinγ)偏航角角速度表达式dγdt=ωx−tanϑ(ωy cosγ+ωz sinγ)滚转角角速度表达式质量方程:dmdt=−m s角度转换:sinβ=cosθ[cosγsin(ψ−ψv)+sinϑsinγcos(ψ−ψv)]−sinθcosϑsinγ侧滑角用其他角的表达关系cosα=[cosϑcosθcos(ψ−ψv)+sinϑsinθ]/cosβ俯仰角用其他角进行表示cosγv=[cosγcos(ψ−ψv)−sinϑsinγsin(ψ−ψv)]/cosβ速度滚转角的表示控制方程:ε1=0 俯仰方向的控制方程ε2=0 滚转方向的控制方程ε3=0 偏航方向的控制方程ε4=0 速度大小的控制方程描述导弹纵向运动的方程组(忽略z、β、ψ、ψv、ωy、γ、γv、ωx):质心移动的动力学方程:m dVdt=Pcosα−X−mgsinθ纵向平面内沿速度方向的动力学方程mV dθdt=Psinα+Y−mgcosθ纵向平面内速度纵法线方向的动力学方程绕质心转动的动力学方程:J z dωzdt=M z纵向平面内绕弹体z轴旋转的动力学方程质心移动的运动学方程:dxdt=Vcosθ纵向平面水平运动学方程dydt=Vsinθ纵向平面竖直运动学方程绕质心转动的运动学方程:dϑdt=ωz弹体绕z轴的转动质量方程:dmdt=−m s质量变化方程几何关系方程:α=ϑ−θ纵向平面俯仰角、弹道倾角、攻角之间的关系控制方程:ε1=0 俯仰方向的控制方程ε4=0 速度大小的控制方程侧向运动方程组(基于纵向运动方程组):质心移动的动力学方程:−mVcosθdψvdt=P(sinα+Y)sinγv−(Pcosαsinβ−Z)cosγv速度侧法向方向动力学方程绕质心转动的动力学方程:J x dωxdt=M x−(J z−J y)ωzωy绕弹体x轴转动的力矩守恒J y dωydt=M y−(J x−J z)ωxωz绕弹体y轴转动的力矩守恒质心移动的运动学方程:dzdt=−Vcosθsinψv地面坐标系下z轴方向的运动绕质心转动的运动学方程:dψdt =1cosϑ(ωy cosγ−ωz sinγ)偏航方向转动方程dγ=ωx−tanϑ(ωy cosγ−ωz sinγ)滚转方向转动方程dt几何关系方程:sinβ=cosθ[cosγsin(ψ−ψv)+sinϑsinγcos(ψ−ψv)]−sinθcosϑsinγ侧滑角用其他角的表达关系cosγv=[cosγcos(ψ−ψv)−sinϑsinγsin(ψ−ψv)]/cosβ速度滚转角的表示控制方程:ε2=0 侧滑角的控制方程ε3=0 滚转角的控制方程有侧滑无倾斜的水平运动方程组:条件:θ=0弹道倾角为零γ=γv=0滚转角为零ωx=0滚转角速度为零质心移动的动力学方程(弹体->弹道坐标系):=Pcosαcosβ−X切向运动的动力学方程m dVdtPsinα+Y=mg竖直法向运动的动力学方程−mVcosθdψv=−Pcosαsinβ+Z水平法向运动的动力学方程dt绕质心转动的动力学方程(弹体坐标系):=M y弹体y轴力矩表达式J y dωydt=M z弹体z轴力矩表达式J z dωzdt质心移动的运动学方程(弹道->地面坐标系):dx=Vcosψv地面坐标系x轴方向运动学方程dtdx=−Vsinψv地面坐标系z轴方向运动学方程dt绕质心转动的运动学方程(弹体->地面坐标系):dϑdt=ωz俯仰角角速度表达式dψdt =ωycosϑ偏航角角速度表达式质量方程:dmdt=−m s角度转换:α=ϑ俯仰方向角度关系β=ψ−ψv偏航方向角度关系控制方程:ε2=0 偏航方向的控制方程ε4=0 速度大小的控制方程导弹的质心运动:条件:m zααb+m zδzδzb=0攻角方向的力矩守恒m yββb+m yδyδyb=0侧滑角方向的力矩守恒ε1=0 ε2=0 ε3=0 ε4=0 俯仰、侧滑、滚转、速度方向上实现理想控制质心移动的动力学方程(弹体->弹道坐标系):m dVdt=Pcosαb cosβb−X b−mgsinθ切向运动的动力学方程mV dθdt=P(sinαb cosγv+cosαb sinβb sinγv)+Y b cosγv−Z b sinγv−mgcosθ竖直法向运动的动力学方程−mVcosθdψvdt=P(sinαb sinγv−cosαb sinβb cosγv)+Y b sinγv+Z b cosγv水平法向运动的动力学方程质心移动的运动学方程(弹道->地面坐标系):dxdt=Vcosθcosψv地面坐标系x轴方向运动学方程dydt=Vsinθ地面坐标系y轴方向运动学方程dxdt=−Vcosθsinψv地面坐标系z轴方向运动学方程质量方程:dmdt=−m s描述导弹质心铅锤平面内运动方程组:质心移动的动力学方程:m dVdt=Pcosα−X−mgsinθ纵向平面内沿速度方向的动力学方程mV dθdt=Psinα+Y−mgcosθ纵向平面内速度纵法线方向的动力学方程质心移动的运动学方程:dxdt=Vcosθ纵向平面水平运动学方程dydt=Vsinθ纵向平面竖直运动学方程质量方程:dmdt=−m s质量变化方程几何关系方程:δzb=−m zαm zδzαb控制方程:ε1=0 俯仰方向的控制方程ε4=0 速度大小的控制方程导弹质心在水平面内的运动方程组:条件:θ=0弹道倾角为零γ=γv=0滚转角为零ωx=0滚转角速度为零α->0攻角很小β->0侧滑角很小质心移动的动力学方程(弹体->弹道坐标系):=P−X b切向运动的动力学方程m dVdtPαb+Y=mg竖直法向运动的动力学方程−mVcosθdψv=−Pβb+Z b水平法向运动的动力学方程dt质心移动的运动学方程(弹道->地面坐标系):dx=Vcosψv地面坐标系x轴方向运动学方程dtdz=−Vsinψv地面坐标系z轴方向运动学方程dt质量方程:dm=−m sdt角度转换:ψ=ψv+βb偏航角、速度滚转角、侧滑角水平飞行时的几何关系ϑ=α水平飞行时俯仰角和攻角之间的几何关系m zααb+m zδzδzb=0攻角方向的力矩守恒m yββb+m yδyδyb=0侧滑角方向的力矩守恒控制方程:ε2=0 滚转方向的控制方程ε4=0 速度大小的控制方程过载:过载矢量的定义n=NGF i=nG i通过过载来求导弹任意部分的外力大小过载的投影:(Pcosαcosβ−X)速度坐标系x轴方向过载的投影n x3=1Gn y3=1(Psinα+Y)速度坐标系y轴方向过载的投影Gn z3=1G(Pcosαcosβ+Z)速度坐标系z轴方向过载的投影n x2=1G(Pcosαcosβ−X)弹道坐标系x轴方向过载的投影n y2=1G(cos(γv) (sin(α) P + Y) − sin(γv) (−sin(β) cos(α) P + Z))弹道坐标系y轴方向过载的投影n z2=1G(sin(γv) (sin(α) P + Y) + cos(γv) (−sin(β) cos(α) P + Z))弹道坐标系z轴方向过载的投影过载表示动力学方程:m dVdt=N x2+G x2沿速度方向的动力学方程mV dθdt=N y2+G y2沿速度法向纵向对称面内的动力学方程−mVcosθdψvdt=N z2+G z2沿速度法向横向动力学方程用V、θ、ψv来表示过载:n x2=1gdVdt+sinθn y2=Vgdθdt+cosθn z2=−Vgdψvdtcosθ根据过载判断飞行状态:n x2=sinθ等速飞行n y2=cosθ不做上下拐弯n z2=0不做左右拐弯曲率半径与过载之间的关系:ρy2=V2g(n y2−cosθ)竖直转弯曲率半径与过载之间的关系ρz2=V2cosθg(n z2)水平转弯曲率半径与过载之间的关系n L=1G(PsinαL+qSC ymax)极限过载表达式n L>n P>n R(LIMIT>P ASSABLE>REQUIRE)ε1=α−α∗=0 给定攻角下的理想控制关系式ε1=n y2−n y2∗=0 给定法向过载下的理想控制关系式α=n y2−(n y2b )α=0n y2αb 给定过载下小攻角的表达式式ε1=θ−θ∗=0 给定弹道倾角下的理想控制关系式ε1=ϑ−ϑ∗=0 给俯仰角下的理想控制关系式δz =K ϑ(ϑ−ϑ∗) 给定俯仰角下升降舵的偏转控制律θ=arcsin (1VdH ∗dt ) 给定弹道倾角的方案飞行可按给定高度飞行的方案弹道 α=mg P+Y α←[Psinα+Y =mg] 等高飞行下小攻角的表达式δz =−m z0+mgm zαP+Y αm z δz 等高飞行小攻角瞬时平衡假设下舵偏角表达式δz =δz0+K H (H −H 0)+K H ΔH等高飞行下升降舵的偏转控制律(微分项消除震荡) 侧滑转弯飞行情况下的飞行方案:3303()=y y b y b n n n ααα=- 平衡状态下的攻角的法向过载表达式303()1=y b y b n n ααα=- 平衡状态下无倾斜的攻角的法向过载表达式3031/cos ()=y v b y b n n αααγ=- 平衡状态下无侧滑的攻角的法向过载表达式水平面内给定弹道偏角下侧滑转弯飞行情况下的飞行方案: 2*0v v 给定弹道偏角的理想控制关系式dV dt =P−X m 切向方程303()1=y b y b n n ααα=- 竖直法向方程 −V gdψv dt n z3 b β=β 水平法向方程 dx dt=Vcosψv x 轴方向方程*()V V t 给定弹道倾角水平面内给定侧滑角或偏航角下侧滑转弯飞行情况下的飞行方案: φ:2*0v v 给定弹道偏角的理想控制关系式β:2*0v v 给定侧滑角的理想关系式dV dt =P−X m 切向方程303()1=y b y b n n ααα=- 竖直法向方程 dψv dt=1mV (Pβ−Z) 水平法向方程 dx dt=Vcosψv x 轴方向方程 dz dt =−Vsinψv z 轴方向方程φ:*()t 给定偏航角v =-水平飞行下侧滑、偏航、弹道偏角之间的几何关系 β:()*=t 给定侧滑角水平面内给定侧向过载下侧滑转弯飞行情况下的飞行方案:222*=n n ()0x x t 给定过载下的控制方程dV dt =P−X m 切向方程303()1=y b y b n n ααα=- 竖直法向方程 dψv dt=−g V n z2 水平法向方程dz dt =−Vsinψv z 轴方向方程 22b z z n n β角度和过载间关系 22*()z z n n t 给法向过载自动瞄准的相对运动方程组(极坐标系): cos cos T T drV V dt导弹与目标之间的矢径方向关系式 sin sin T T dq rV V dt 导弹与目标之间的角度方向关系式 q 导弹自身角度关系式q T T 目标角度关系式=0 导引关系式遥控导引的运动学方程组:d cos RV dt基站与导弹之间矢径方向关系式 sindR V dt 速度垂直于目标线方向上的关系式 航天器的开普勒轨道推导:3r r r 万有引力下的动力学方程 const h r r单位质量的角动量守恒 r rv h L 拉普拉斯常量-守恒 22v E const r 能量守恒 222=+2L Eh 三个守恒量之间的关系。

北航飞行力学知识点总结

北航飞行力学知识点总结

北航飞行力学知识点总结
飞行力学是研究飞行器在空中运动时所受力和运动规律的学科。

作为航空航天
工程的基础,飞行力学涉及到多个重要的知识点。

下面是对北航飞行力学知识点的总结:
1. 空气动力学:空气动力学研究飞行器在空气流动中所受到的气动力。

重要的
概念包括升力、阻力、推力和侧力。

其中,升力是支撑飞行器在空中飞行的力,阻力是对飞行器运动的阻碍力,推力是提供飞行器前进动力的力,侧力是使飞行器侧向移动的力。

2. 运动学:运动学研究飞行器在空中的运动轨迹和速度。

重要的概念包括速度、加速度、位移和轨迹。

通过运动学分析,可以确定飞行器的位置和速度的变化。

3. 飞行力学平衡:飞行力学平衡是指飞行器在垂直和水平方向上所受到的力平衡。

在水平方向上,重力和阻力平衡。

在垂直方向上,升力和重力平衡。

4. 飞行器的稳定性和操纵性:稳定性是指飞行器自身在飞行中保持平衡和稳定
的能力。

操纵性是指飞行器在飞行过程中对操纵杆或操纵面的指令做出的响应能力。

稳定性和操纵性是设计和控制飞行器的关键要素。

5. 飞行器的气动设计:气动设计是指通过改变飞行器的外形和气动特性来改善
飞行器的性能。

通过优化飞行器的气动外形和控制面的设计,可以减小阻力、增大升力和提高飞行器的稳定性。

总之,北航飞行力学涵盖了空气动力学、运动学、飞行力学平衡、飞行器的稳
定性和操纵性以及气动设计等多个重要知识点。

掌握这些知识可以帮助我们更好地理解和设计飞行器,为航空航天工程的发展做出贡献。

飞行力学部分知识要点

飞行力学部分知识要点

空气动力学及飞行原理课程飞行力学部分知识要点第一讲:飞行力学基础1.坐标系定义的意义2.刚体飞行器的空间运动可以分为两部分:质心运动和绕质心的转动。

描述任意时刻的空间运动需要六个自由度:三个质心运动和三个角运动3.地面坐标系, O 地面任意点,OX 水平面任意方向,OZ 垂直地面指向地心,OXY 水平面(地平面),符合右手规则在一般情况下。

4.机体坐标系, O 飞机质心位置,OX 取飞机设计轴指向机头方向,OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则5.气流(速度)坐标系, O 飞机质心位置,OX 取飞机速度方向且重合,OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则6.航迹坐标系, O取在飞机质心处,坐标系与飞机固连,OX轴与飞行速度V重合一致,OZ轴在位于包含飞行速度V在内的铅垂面内,与OX轴垂直并指向下方,OY轴垂直于OXZ平面并按右手定则确定7.姿态角, 飞机的姿态角是由机体坐标系和地面坐标系之间的关系确定的:8. 俯仰角—机体轴OX 与地平面OXY 平面的夹角,俯仰角抬头为正;9. 偏航角—机体轴OX 在地平面OXY 平面的投影与轴OX 的夹角,垂直于地平面,右偏航为正;10. 滚转角—机体OZ 轴与包含机体OX 轴的垂直平面的夹角,右滚转为正11. 气流角, 是由飞行速度矢量与机体坐标系之间的关系确定的12. 迎角—也称攻角,飞机速度矢量在飞机对称面的投影与机体OX 轴的夹角,以速度投影在机体OX 轴下为正;13. 侧滑角—飞机速度矢量与飞机对称面的夹角14. 常规飞机的操纵机构主要有三个:驾驶杆、脚蹬、油门杆,常规气动舵面有三个升降舵、副翼、方向舵15. 作用在飞机上的外力,重力,发动机推力,空气动力16. 重力,飞机质量随燃油消耗、外挂投放等变化,性能计算中,把飞机质量当作已知的常量17. 空气动力中,升力,阻力,的计算公式,动压的概念。

大一飞行理论知识点归纳

大一飞行理论知识点归纳

大一飞行理论知识点归纳飞行理论是航空学中的基础学科,涵盖了飞机的原理、飞行规律、气象学、导航等内容。

作为大一航空专业的学生,对飞行理论的学习至关重要。

本文将对大一飞行理论课程中的重要知识点进行归纳总结,帮助大家更好地理解和掌握这些内容。

1. 飞行器结构和原理1.1 飞行器的构造:机翼、机身、机尾和控制面的作用及结构特点。

1.2 飞行器的原理:升力产生原理、气动力学基本方程、稳定性和操纵性原理。

2. 基本飞行力学2.1 坐标系:惯性坐标系、地理坐标系和飞行坐标系,以及各种坐标系在飞行中的应用。

2.2 动力学原理:牛顿运动定律在飞行中的应用,包括力的合成和分解等。

2.3 运动学原理:平直飞行、曲线飞行、爬升和下降等运动状态的分析。

3. 气流和气象学3.1 大气层结和气温变化规律:对飞行性能和气象条件的影响。

3.2 大气动力学:气压、密度、温度和湿度等与飞行相关的气象要素。

3.3 气象现象:云、降水、雷暴、大风等对飞行安全的影响和应对措施。

4. 飞行器系统和仪表4.1 飞行仪表:基础仪表、导航仪表和辅助仪表的功能和使用方法。

4.2 飞行器系统:动力系统、控制系统、导航系统和通讯系统的组成和工作原理。

4.3 自动飞行控制系统:自动驾驶仪、飞行管理计算机和飞行导航系统等自动化设备。

5. 飞行器性能和运行规范5.1 飞行性能参数:空速、地速、爬升率、滑跑距离等与飞行性能相关的参数。

5.2 稳定性和操纵性:飞行器在不同条件下的稳定性和操纵性特点。

5.3 运行规范:民航规章、航空法规和飞行操作手册等对飞行员行为的规范。

以上只是大一飞行理论课程中的一部分知识点,通过对这些知识的学习和理解,可以为进一步深入研究航空领域打下稳固的基础。

在学习中要注重理论与实践的结合,通过模拟飞行和实际飞行的训练,加深对飞行理论的理解,并掌握操作飞行器的技能。

需要指出的是,飞行理论是一个庞大而复杂的学科,涉及的内容非常广泛。

因此,在大一阶段,我们只能对相关知识点进行初步了解和学习,以便更好地应用于飞行实践中。

航空飞行器飞行动力学

航空飞行器飞行动力学

航空飞行器飞行动力学航空飞行器飞行动力学是研究飞行器在空气中运动的力学原理和规律的学科。

它涉及到飞行器的姿态稳定、操纵性能、飞行性能以及空气动力学等方面的内容。

本文将从航空飞行器的基本原理、力学模型、飞行动力学方程和相关应用等方面进行介绍。

一、航空飞行器的基本原理航空飞行器的基本原理是以牛顿运动定律为基础的。

根据牛顿第一定律,飞行器如果没有外力作用,将保持静止或匀速直线运动。

而根据牛顿第二定律,飞行器所受的合力等于质量乘以加速度,即F=ma。

根据牛顿第三定律,任何作用力都会有相等大小、方向相反的反作用力。

二、航空飞行器的力学模型航空飞行器的力学模型可以分为刚体模型和弹性模型。

刚体模型假设飞行器是一个刚体,不考虑其变形和挠曲;弹性模型考虑飞行器的变形和挠曲,可以更准确地描述飞行器的运动。

三、飞行动力学方程飞行动力学方程是描述飞行器运动的重要工具。

常用的飞行动力学方程包括牛顿定律、欧拉角运动方程、质心动力学方程等。

牛顿定律可以描述飞行器的平动运动,欧拉角运动方程可以描述飞行器的转动运动,质心动力学方程可以描述飞行器的整体运动。

四、航空飞行器的飞行性能航空飞行器的飞行性能包括速度性能、高度性能、加速性能等。

其中速度性能是指飞行器的最大速度、巡航速度和爬升速度等;高度性能是指飞行器的最大飞行高度、最大升限和最大下降高度等;加速性能是指飞行器的爬升率、加速度和制动性能等。

五、航空飞行器的操纵性能航空飞行器的操纵性能是指飞行器在各种操作条件下的控制性能。

它包括飞行器的稳定性、操纵性和敏感性等。

稳定性是指飞行器在受到扰动后能够自动恢复到平衡状态的能力;操纵性是指飞行器在操纵杆或操纵面的控制下实现各种机动动作的能力;敏感性是指飞行器对操纵输入的敏感程度。

六、航空飞行器的空气动力学航空飞行器的空气动力学是研究飞行器在空气中运动的力学学科。

它涉及到飞行器的升力、阻力、侧向力和滚转力等。

升力是飞行器在垂直方向上的支持力,阻力是飞行器在运动过程中受到的阻碍力,侧向力是飞行器在横向方向上的支持力,滚转力是飞行器的转动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《飞行动力学》掌握知识点
第一章
掌握知识点如下:
1)现代飞机提高最大升力系数采取的措施包括边条翼气动布局或近耦鸭式布局
2)飞行器阻力可分为摩擦阻力、压差阻力、诱导阻力、干扰阻力和激波阻力等
3)试描述涡喷发动机的三种特性:转速(油门)特性,速度特性,高度特性并绘出变化曲线. P8 答:转速特性是在给定调节规律下,高度和速度一定时,发动机推力和耗油率随转速的变化关系。

速度特性是在给定调节规律下,高度和转速一定时,发动机推力和耗油率随飞行速度或Ma的变化关系。

高度特性是在发动机转速和飞行速度一定时,发动机推力和耗油率随飞行高度的变化关系。

第二章
掌握知识点如下:
1)飞机飞行性能包括平飞性能、上升性能、续航性能和起落性能。

2)飞机定直平飞的最小速度受到哪些因素的限制?
答:允许升力系数,抖动升力系数,最大平尾偏角,发动机可用推力。

3)为提高飞机的续航性能,飞机设计中可采取哪些措施?答:设计中力求提高升阻比,增加可用燃油量,选用耗油率低,经济性好的发动机,选择最省油状态上升和最佳巡航状态巡航。

第三章
掌握知识点如下:
1)了解飞机机动性的基本概念。

答:飞机机动性是指飞机在一定时间内改变飞行速度,飞行高度和飞行方向的能力,相应的分为速度机动性,高度机动性和方向机动性。

按航迹特点分为铅垂平面内,水平平面内和空间的机动飞行。

2)了解飞机敏捷性的基本概念和目前用来评价敏捷性的指标。

答:飞机的敏捷性是指飞机在空中迅速精确的改变机动飞行状态的能力。

选用状态变化和时间两个属性来衡量飞机敏捷性。

敏捷性按照时间尺度分为瞬态敏捷性,功能敏捷性和敏捷性潜力;按照飞机运动形式分为轴向敏捷性,纵向敏捷性和滚转敏捷性。

第四章
掌握知识点如下:
1)了解“方案飞行”和“飞行方案”的基本概念。

答:
方案飞行是导弹按照某种固定的飞行程序飞行,用来攻击静止的或运动缓慢的目标,或将导弹及其他飞行器送到预定点。

飞行方案是设计弹道时所设定的某些运动参数随时间变化的规律。

第五章
掌握知识点如下:
1)导引规律运动学分析的基本假设条件。

答:1.控制系统的工作是理想的 2.导弹的速度是已知的时间函数,不受导引规律的影响3.把导弹和目标的运动都看成是可控制的质点运动。

2)相对弹道、绝对弹道的基本概念。

答:相对弹道是导弹重心相对某个活动目标的运动轨迹。

绝对弹道是导弹相对地面某个固定目标的运动轨迹。

3)了解平行接近法的基本概念,以及其优缺点。

答:平行接近法是指导弹在攻击目标的过程中目标视线始终平行移动,即目标视线角始终不变。

4)掌握选择导引方法时需要考虑的因素。

答:需要考虑导弹的飞行性能,作战空域,技术实施,导引精度,制导设备,战术使用等方面。

5)了解攻击区的基本概念,以及限制攻击区的条件。

答:只有在相对于目标的某一特定区域内发射导弹才可能命中目标,这一特定区域称为理论发射区,又称
攻击区。

限制因素:导引头截获目标的距离限制,最大能源工作时间限制,最大最小相对速度限制,引信解除保险所需时间的限制,导弹可用过载Na的限制,导引头最大跟踪角速度的限制,导引头最大离轴角的限制。

第六章
掌握知识点如下:
1)影响飞行器运动特性的因素包括机体的弹性变形、飞行器上的旋转部件、重量随时间的变化、地球的曲率和自转、大气的运动等。

2)推导飞行器动力学中用到的主要简化假设。

答:1.假设地球为平面大地,忽略地球的曲率和自转2.飞行器为刚体3.大气为静止标准大气,不考虑风的影响。

第七章
掌握知识点如下:
1)机翼的焦点的概念及其特性。

答:焦点是飞机各操纵面产生的力的延长线交汇点,又称气动中心。

迎角变化时,气动力对焦点的力矩始终保持不变,故焦点可以看作是迎角变化所产生的升力增量作用点;绕焦点的纵向力矩为零升力矩;随着马赫数改变,焦点位置会发生变化。

2)襟翼的操纵是一种增升装置,主要用来增加升力以
改善飞机的起落性能。

3)定常直线飞行时舵面纵向静操纵指标为。

4)定常拉升运动是指飞行器在垂直平面内以等速V,等α和等q作曲线运动,即是垂直平面内的圆周运动。

5)常见的气动补偿形式有:移轴补偿、突角补偿和内补偿。

6)喷气发动机引射作用的基本概念。

P239答:喷气发动机的尾喷流是一股高温高速燃气,不允许直接流过其他气动部件,以免烧坏结构。

但由于喷流气体分子粘性和扩散作用,向后流动时边界会扩大,由此吸引周围部分空气,形成所谓引射作用。

7)助力器操纵系统主要由液压助力器、载荷机构、调整片效应机构和力臂调节器等部分组成
第八章
掌握知识点如下:
1)横侧向操纵结构常见的有副翼、方向舵和推力矢量等。

2)由副翼偏转引起的横向力矩称为滚转操纵力矩,方向舵偏转和喷管左右偏转引起的偏航力矩称为偏航操纵力矩。

3)滚转引起的偏航交感力矩主要由机翼和垂尾引起。

4)掌握飞机的“蹬舵反倾斜”现象。

P274答:飞行
品质规范中规定蹬右舵,飞机向右滚转,蹬左舵飞机向左滚转。

如果蹬舵后的效果与应有的滚转方向相反,便出现蹬舵反倾转现象。

5)动力装置工作时的影响,主要考虑螺旋桨或涡轮喷气发动机压气机和涡轮的反作用扭矩、螺旋桨滑流及涡轮喷气发动机尾喷流的引射作用等。

第九章
掌握知识点如下:
1)飞机典型的纵向运动模态包括短周期模态和长周期模态。

2)飞机纵向静操纵性指标包括舵偏角平衡曲线梯度、驾驶杆力梯度、每g舵偏角、每g驾驶杆力等。

3)飞机纵向动操纵性指标包括超调量、振荡情况和达到新的稳定状态所需的时间等。

第十章
掌握知识点如下:
1)飞机横航向扰动运动一般具有三个模态:滚转收敛模态、螺旋模态和荷兰滚模态。

2)随飞行速度及动压的增加,荷兰滚转频率将增加。

3)随飞行高度增加,荷兰滚频率和阻尼比将下降。

4)根据控制要求,航线的自动飞行控制可分为两类:
运动航线的稳定和航线的控制。

第十一章
掌握知识点如下:
1)常见的三种失速现象:纵向偏离、机头侧偏和机翼摇晃。

2)自转是飞机进入尾旋的根本原因。

3)进入尾旋后,向适当的方向侧滑,是改出尾旋的一项关键性措施。

4)改出尾旋通常采用的两种操纵方法:反蹬舵和顺压杆。

5)飞机的机动性取决于两个基本指标:最大过载和单位剩余功率。

6)提高飞机机动性最常用的两种方法:放宽静稳定性技术和机动载荷控制技术。

7)纵向直接力控制系统可以实现新的三种纵向运动模式:直接升力模式、航迹不变的俯仰姿态变化和俯仰姿态不变的垂直平移。

8)侧向直接力控制系统可以实现新的三种侧向运动模式:无侧滑和滚转的侧向运动、航迹不变的偏航姿态变化和姿态不变的侧向平移。

相关文档
最新文档