运动控制系统课程设计-说明书讲解
《运动控制系统》课程设计任务书

理解运动控制系统的基本原理和组成 掌握运动控制系统的调试方法 掌握运动控制系统的优化方法
提高运动控制系统的性能和稳定性 提高运动控制系统的适应性和灵活性 提高运动控制系统的可靠性和安全性
确定运动控制系统的目标和需求
编写运动控制系统的软件代码
选择合适的运动控制算法和硬件设备
测试和调试运动控制系统
系统原理:阐述运动控制系统的基本原理和设计思路 硬件组成:详细描述运动控制系统的硬件组成和功能 软件编程:介绍运动控制系统的软件编程方法和实现过程 调试过程:描述运动控制系统的调试过程和注意事项
性能优化:优化运动控制系统 的性能,如提高响应速度、降 低能耗、提高稳定性等
基本功能:实现运动控制系统 的基本功能,如速度控制、位 置控制、力控制等
趋势
方案论证:对初步设计方案进 行论证,确保方案的可行性和
创新性
硬件选型:选择合适的传感器、控制器、执行器等硬件设备 硬件搭建:根据硬件选型结果,搭建运动控制系统的硬件平台 编写硬件电路原理图:根据硬件搭建结果,绘制硬件电路原理图 编写硬件PCB图:根据硬件电路原理图,绘制硬件PCB图,用于制作电路板
测试方法:模拟实际应用场 景进行测试
测试目的:验证系统功能是 否满足设计要求
测试内容:系统稳定性、准 确性、响应速度等
优化方法:根据测试结果进 行系统优化,提高系统性能
制定设计方案:根据设计题 目,制定初步设计方案
确定设计题目:根据课程要 求,选择合适的设计题目
文献调研:查阅相关文献,了 解相关领域的研究现状和发展
提高系统的响应速度 降低系统的误差 提高系统的稳定性
优化系统的控制算法 提高系统的抗干扰能力 优化系统的人机交互界面
软件设计:包括系统架构设 计、模块划分、接口设计等
运动控制系统的课程设计

运动控制系统的课程设计一、课程目标知识目标:1. 学生能理解运动控制系统的基本概念、组成和分类。
2. 学生能掌握运动控制系统中常见传感器的原理和应用。
3. 学生能描述运动控制系统的执行机构工作原理及其特点。
4. 学生了解运动控制算法的基本原理,如PID控制、模糊控制等。
技能目标:1. 学生具备运用所学知识分析和解决实际运动控制问题的能力。
2. 学生能设计简单的运动控制系统,并进行仿真实验。
3. 学生能熟练使用相关软件和工具进行运动控制系统的调试与优化。
情感态度价值观目标:1. 学生培养对运动控制系统相关技术的兴趣,激发学习热情。
2. 学生养成合作、探究的学习习惯,培养团队协作精神。
3. 学生认识到运动控制系统在工程实际中的应用价值,增强社会责任感。
课程性质:本课程为电子信息工程及相关专业高年级学生的专业课程,旨在帮助学生掌握运动控制系统的基本原理、设计方法和实际应用。
学生特点:学生已具备一定的电子、电气和控制系统基础,具有较强的学习能力和实践操作能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生的动手能力和创新能力培养。
通过本课程的学习,使学生具备运动控制系统设计、调试和应用的能力。
教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 运动控制系统概述- 运动控制系统的基本概念、组成和分类- 运动控制系统的发展及应用领域2. 运动控制系统传感器- 常见运动控制传感器的工作原理、特性及应用- 传感器的选型及接口技术3. 执行机构- 电动伺服电机、步进电机、液压气动执行机构的工作原理及特点- 执行机构的控制策略及性能分析4. 运动控制算法- PID控制算法原理及其在运动控制中的应用- 模糊控制、神经网络等其他先进控制算法介绍5. 运动控制系统设计- 系统建模、控制器设计及仿真- 硬件在环(HIL)仿真与实验- 运动控制系统调试与优化6. 运动控制系统实例分析- 分析典型运动控制系统的设计过程及解决方案- 案例教学,培养学生的实际操作能力教学内容安排与进度:- 第1周:运动控制系统概述- 第2-3周:运动控制系统传感器- 第4-5周:执行机构- 第6-7周:运动控制算法- 第8-9周:运动控制系统设计- 第10周:运动控制系统实例分析教材章节关联:本课程教学内容与教材中第3章“运动控制系统”相关内容相衔接,涵盖第3章中的3.1-3.5节。
《运动控制系统》教案

《运动控制系统》教案一、教学目标1. 理解运动控制系统的概念和组成2. 掌握运动控制系统的分类和原理3. 了解运动控制系统在实际应用中的重要性二、教学内容1. 运动控制系统的概念和组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类和原理2.1 模拟运动控制系统2.2 数字运动控制系统2.3 位置控制、速度控制和加速度控制3. 运动控制系统在实际应用中的重要性3.1 运动控制系统在工业生产中的应用3.2 运动控制系统在技术中的应用3.3 运动控制系统在自动驾驶技术中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
2. 案例分析法:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
3. 讨论法:组织学生探讨运动控制系统的发展趋势和挑战,培养学生的创新思维和问题解决能力。
四、教学资源1. 教材:《运动控制系统》2. 多媒体课件:PPT、动画、视频等3. 网络资源:相关论文、案例、新闻报道等五、教学评价1. 课堂参与度:评估学生在课堂讨论、提问等方面的积极性。
2. 课后作业:布置相关练习题,评估学生对运动控制系统知识的理解和掌握程度。
3. 小组项目:组织学生团队合作完成一个运动控制系统的应用案例,评估学生的实践能力和问题解决能力。
六、教学安排1. 课时:共计32课时,每课时45分钟2. 教学计划:第1-4课时:运动控制系统的概念和组成第5-8课时:运动控制系统的分类和原理第9-12课时:运动控制系统在实际应用中的重要性第13-16课时:运动控制系统的的发展趋势和挑战七、教学步骤1. 引入:通过一个实际应用案例,引出运动控制系统的重要性,激发学生的学习兴趣。
2. 讲解:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
3. 案例分析:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
运动控制系统课程设计指导书B5胶印版2014.doc

运动控制系统课程设计指导书成都大学电子信息工程学院自动化系谭健敏编2013年10月目录前言 (2)一.课程设计任务 (3)1.1 课程设计题目 (3)1.2 课程设计的内容 (3)1.3 课程设计的主要技术参数 (3)1.4 课程设计时间安排 (4)1.5 课程设计的主要参考资料 (4)二.直流调速系统的工程设计方法 (5)2.1 控制系统的设计 (5)2.2 闭环调速控制系统的工程设计方法 (7)2.3 转速环与电流环的关系: (10)三.直流调速系统串联校正设计实例(参考) (11)前言1、运动控制系统课程设计的目的与任务运动控制系统课程设计是运动控制系统(电力拖动自动控制系统)课程教学的一个环节,任务是通过课程设计使学生掌握运动控制系统设计(综合)的基本方法(工程设计方法),掌握调速系统工程设计的具体步骤和方法。
2、课程设计基本内容及要求本课程设计包括运动控制系统的工程设计方法、直流调速系统的设计和控制参数计算、调试系统和参数分析三部份内容。
要求掌握对调速系统进行测试和分析、操作和调试的基本方法、步骤和基本操作技能,具备对控制系统的调试和故障分析的能力。
设计说明书应对整个设计过程有清晰的说明, 包括设计过程说明、主回路设计说明、控制电路设计说明、调试说明,以及设计计算公式、计算数据、设计图表等内容。
3、适用专业本课程设计适用自动化专业,电气工程及自动化专业。
4、考核方式课程设计的考核成绩由平时成绩、设计计算和设计报告(包括设计测试)叁部分组成。
5、本课程设计指导书适用于“运动控制系统”或“电力拖动自动控制系统”等相关课程。
6、本课程设计指导书根据学校实验室配置的教学实验装置和专业教学要求编写。
谭健敏2012年9月一.课程设计任务1.1 课程设计题目采用工程设计方法设计转速电流双闭环直流调压调速系统1.2 课程设计的内容1)调速控制系统的总体设计;2)设计主回路;3)根据指标设计调速系统的调节器, 并选择各环节参数;4)按设计结果组成系统,在实验室用实验系统进行调试;5)研究参数变化对系统性能的影响;1.3 课程设计的主要技术参数1.3.1闭环控制系统性能要求1)稳态无静差;2)调速范围D=5;3)静差率 s ≤5%;4)起动时电流超调量σi ≤5%;5)在额定转速时的转速超调量σn ≤10%;6)动态速降≤10%;7)振荡次数≤2次;8)控制参数:R0=40/30/20/10kΩ; U*n= U*i= Uct= 10V;9)电流反馈滤波常数: 0.002 s;10)转速反馈滤波常数: 0.01 s;11)电流过载倍数λ=1.5 ;1.3.2 晶闸管—电动机系统主电路1)晶闸管整流电路方案的讨论和选择;(单相/三相桥式整流器)2)晶闸管的选择;3)绘制晶闸管调速成系统主电路原理图和设备明细表。
山东交通学院《运动控制系统》课程设计说明书

《运动控制系统》课程设计任务书题目三相交流调压调速系统设计系 (部) 自动化专业自动化班级学生姓名学号指导教师(签字)系主任(签字)年月日目录摘要 (1)前言: (2)1概述 (3)1.1三相异步电动机基本工作原理和背景 (3)1.2异步电机运行状态、转差率与调速系统的应用领域: (3)2、设计方案的分析与选择 (4)2.1三相异步电动机的调速方法 (4)2.2调压调速 (4)2.3、机械特性 (5)调压调速系统的设计 (7)3.1 调压电路 (7)3.2调压调速特性及其调速性能 (7)3.3 缺相保护 (9)4、Matlab仿真 (10)4.1调压电路仿真模型 (10)4.2参数设置 (11)4.3仿真总电路图 (12)4.4 仿真结果 (12)4.5结果分析 (14)5、小结 (14)6、主要参考资料 (15)摘要二十一世纪,工业化正在突飞猛进的向前发展,随着我国工业的不断成熟,机械化程度加深。
对调速系统的性能和精度要求越来越高。
有不少方法可以实现电机调速。
研究电机调速,找出符合实际的调速方法能最大限度的节约能源,所以研究调压调速就显得很有必要。
异步电机调压调速控制系统是一种比较简单实用的调速系统,该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。
本课程设计介绍了异步电动机调压调速系统的几大组成部分,并且着重讲述了三相异步电动机、测速发电机、晶闸管交流调压器的简单的工作原理。
三相异步电机调压调速控制系统是一种比较简单实用的调速系统,该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。
在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。
还将调压调速与其他的调速方法相比,所具有的优点以及不足之处,分析了异步电机调速的原理,介绍MATLAB 的相关知识,并通过MATLAB软件分别对异步电机开环控制系统与速度反馈闭环控制系统进行了仿真。
关键词:调压调速;三相异步电动机;控制;仿真;前言:现在社会工业化越来越体现着它的强大。
运动控制系统教学教案

运动控制系统教学教案一、教学目标1. 让学生了解运动控制系统的概念、组成和作用。
2. 使学生掌握运动控制系统的常见类型及特点。
3. 培养学生运用运动控制系统知识解决实际问题的能力。
二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的常见类型及特点2.1 开环运动控制系统2.2 闭环运动控制系统2.3 混合运动控制系统3. 运动控制系统的应用实例3.1 运动控制系统3.2 数控机床运动控制系统3.3 电动汽车运动控制系统三、教学方法1. 讲授法:讲解运动控制系统的概念、组成、类型及应用。
2. 案例分析法:分析具体运动控制系统的实例,让学生深入了解原理及应用。
3. 讨论法:组织学生讨论运动控制系统在不同领域的应用及优缺点。
四、教学准备1. 教案、课件及教学素材。
2. 相关领域的实际案例资料。
3. 讨论话题及问题。
五、教学过程1. 引入:介绍运动控制系统在现代工业及日常生活中的应用,激发学生的兴趣。
2. 讲解:详细讲解运动控制系统的概念、组成、类型及应用。
3. 案例分析:分析具体运动控制系统的实例,让学生深入了解原理及应用。
4. 讨论:组织学生讨论运动控制系统在不同领域的应用及优缺点。
5. 总结:对本节课内容进行总结,强调运动控制系统的重要性和应用价值。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对运动控制系统基本概念的理解。
3. 小组讨论:评估学生在小组讨论中的参与程度和问题解决能力。
七、教学拓展1. 介绍运动控制系统在最新的技术发展中的应用,如、智能制造等。
2. 探讨运动控制系统在未来的发展趋势和挑战。
八、教学反思1. 评估学生对运动控制系统知识的掌握程度,反思教学效果。
2. 根据学生反馈调整教学方法和内容,提高教学质量。
九、教学资源1. 推荐学生阅读关于运动控制系统的书籍、学术论文和在线资源。
运动控制系统课程设计-上海交通大学自动化系

运动控制系统课程设计实验指导书上海交通大学自动化教学实验室第一章 硬件介绍及注意事项一、实验设备的基本组成运动控制系统主要组成如下:1.FX3U PLC;2.触摸屏;2. 变频器;3. 交流异步电动机和编码器;4. 直流电机和变阻器。
伺服与变频调速控制系统实验装置布置图 如下所示:由PLC、触摸屏、变频器、交流电机、直流电机和电阻组成的运动控制系统,其中PLC为控制核心,负责采集交流电机转速并控制变频器输出;触摸屏用于显示系统状态和接收操作指令;交流电机为被控对象,直流电机和电阻组成可调负载。
二、硬件连接1、通过USB接口将计算机与PLC连接。
2、接好实验箱上的连线或被控对象板的其他连线。
3、检查是否有错误,然后开机实验。
三、 对参加实验学生的要求:1、仔细阅读实验指导书,复习与实验相关的理论知识,明确每次实验目的,了解实验内容和方法。
2、按实验指导书中的要求进行接线和操作,经检查和实验老师同意后再通电。
3、在实验中注意观察,记录有关的数据和图像,并由指导老师复查后才能结束实验。
4、实验后应断电,整理实验台,恢复到实验前的状况。
5、认真填写实验报告,按规定格式作出图标、曲线、并分析实验结果。
6、爱护实验设备,遵守实验室规章制度。
伺服与变频调速控制系统实验装置设备布置图第二章 交流变频调速系统课程设计1)本课程设计主要设备1、FX3U PLC;触摸屏。
2、变频器。
3、交流异步电动机和编码器。
4、直流电机和变阻器。
2)本课程设计的性质和任务本课程设计是自动化专业本科生的综合教学实践课。
该课程设计涉及到自动控制原理、电力拖动自动控制系统、数字程序控制系统、微机控制技术等课程的内容。
本课程设计的基本任务是:1. 熟悉和掌握开环交流变频调速系统的基本结构、工作原理和机械特性,以及对该系统的硬件设备选型和配置,编制和调试用户程序。
2. 熟悉和掌握转速单闭环有静差交流变频调速系统的基本结构、工作原理和机械特性,编制和调试用户程序。
《运动控制系统》教案

《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常用传感器、执行器和控制器。
3. 学会分析运动控制系统的原理和应用。
4. 能够运用运动控制系统知识解决实际问题。
二、教学内容1. 运动控制系统的概念及组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素1.3 运动控制系统的分类2. 运动控制系统的常用传感器2.1 速度传感器2.2 位置传感器2.3 力传感器2.4 加速度传感器3. 运动控制系统的执行器3.1 电动机3.2 液压执行器3.3 气动执行器3.4 步进执行器4. 运动控制系统的控制器4.1 开环控制器4.2 闭环控制器4.3 模糊控制器4.4 神经网络控制器三、教学方法1. 讲授法:讲解运动控制系统的概念、原理和特点。
2. 案例分析法:分析运动控制系统的应用实例。
3. 实验法:进行运动控制系统的实验操作。
4. 小组讨论法:探讨运动控制系统相关问题。
四、教学重点与难点1. 教学重点:运动控制系统的概念、组成、原理及应用。
2. 教学难点:运动控制系统的传感器、执行器和控制器的选择与配置。
五、教学课时本课程共48课时,其中理论教学32课时,实验教学16课时。
教案内容请根据实际教学需求进行调整和补充。
希望这份教案能对您的教学有所帮助!如有其他问题,请随时联系。
六、教学过程1. 引入:通过生活中的运动控制实例,如智能家居中的窗帘自动打开、关闭,引出运动控制系统的基本概念。
2. 讲解:详细讲解运动控制系统的概念、组成和作用,以及常用传感器、执行器和控制器的工作原理及应用。
3. 案例分析:分析典型的运动控制系统应用实例,如、数控机床等,让学生了解运动控制系统在实际工程中的应用。
4. 实验操作:安排实验室实践环节,让学生动手操作运动控制系统,加深对理论知识的理解。
5. 总结:对本次课程内容进行总结,强调运动控制系统在现代工业中的重要性。
七、教学评价1. 平时成绩:考察学生在课堂上的表现,如发言、提问等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津职业技术师范大学课程设计题目:X-Y数控机床运动控制系统设计学生姓名:班级:学院:机械工程学院指导老师:2015年1月19日目录一、总体方案设计 (1)1.1 设计任务 (3)1.2 总体方案确定 (3)二、机械系统设计 (4)2.1、工作台外形尺寸及重量估算 (4)2.2、滚动导轨的参数确定 (4)2.3、滚珠丝杠的设计计算 (5)2.4、步进电机的选用 (7)2.5、确定齿轮传动比 (8)2.6、确定齿轮模数及有关尺寸 (8)2.7、步进电机惯性负载的计算 (9)3.1 CPU板 (10)3.2 驱动系统 (11)参考文献 (14)一、总体方案设计1.1 设计任务设计一个数控X-Y工作台及其控制系统。
该工作台可用于铣床上坐标孔的加工和腊摸、塑料、铝合金零件的二维曲线加工,重复定位精度为±0.01mm,定位精度为0.025mm。
设计参数如下:负载重量G=150N;台面尺寸C×B×H=100mm×120mm×12mm;底座外形尺寸C1×B1×H1=210mm×220mm×140mm;最大长度L=288mm;工作台加工范围X=55mm,Y=30mm;工作台最大快移速度为2m/min。
1.2 总体方案确定(1)系统的运动方式与伺服系统由于工件在移动的过程中没有进行切削,故应用点位控制系统。
定位方式采用增量坐标控制。
为了简化结构,降低成本,采用步进电机开环伺服系统驱动X-Y工作台。
(2)计算机系统本设计采用了美国PMAC运动控制卡pmac(program multiple axises controller)是美国delta tau公司生产制造的多轴运动控制卡,是世界上功能最强,计算速度最快,质量可靠的运动控制产品。
(3)X-Y工作台的传动方式为保证一定的传动精度和平稳性,又要求结构紧凑,所以选用丝杠螺母传动副。
为提高传动刚度和消除间隙,采用预加负荷的结构。
由于工作台的运动载荷不大,因此采用有预加载荷的双V形滚珠导轨。
采用滚珠导轨可减少两个相对运动面的动、静摩擦系数之差,从而提高运动平稳性,减小振动。
考虑电机步距角和丝杆导程只能按标准选取,为达到分辨率的要求,需采用齿轮降速传动。
图1-1 系统总体框图二、机械系统设计2.1、工作台外形尺寸及重量估算X 向拖板(上拖板)尺寸:长⨯宽⨯高 100×120×30 重量:按重量=体积×材料比重估算28108.7103012010023≈⨯⨯⨯⨯⨯--NY 向拖板(下拖板)尺寸: 100×120×30 重量:约28N 。
上导轨座(连电机)重量:223(2201403821558)7.81010 1.110107π--⨯⨯+⨯⨯⨯⨯⨯⨯+⨯≈()N夹具及工件重量:约150N 。
X-Y 工作台运动部分的总重量:约163N 。
2.2、滚动导轨的参数确定⑴、导轨型式:圆形截面滚珠导轨 ⑵、导轨长度 ①上导轨(X 向)取动导轨长度 100B l = 动导轨行程 55l =支承导轨长度 155B L l l =+= ②下导轨(Y 向)30=l 100B l = 130=L选择导轨的型号:GTA16 ⑶、直线滚动轴承的选型 ①上导轨240()X G N =②下导轨()N G Y 163=由于本系统负载相对较小,查表后得出LM10UUOP 型直线滚动轴承的额定动载荷为370N ,大于实际动负载;但考虑到经济性等因素最后选择LM16UUOP 型直线滚动轴承。
并采用双排两列4个直线滚动轴承来实现滑动平台的支撑。
⑷、滚动导轨刚度及预紧方法当工作台往复移动时,工作台压在两端滚动体上的压力会发生变化,受力大的滚动体变形大,受力小的滚动体变形小。
当导轨在位置Ⅰ时,两端滚动体受力相等,工作台保持水平;当导轨移动到位置Ⅱ或Ⅲ时,两端滚动体受力不相等,变形不一致,使工作台倾斜α角,由此造成误差。
此外,滚动体支承工作台,若工作台刚度差,则在自重和载荷作用下产生弹性变形,会使工作台下凹(有时还可能出现波浪形),影响导轨的精度。
2.3、滚珠丝杠的设计计算滚珠丝杠的负荷包括铣削力及运动部件的重量所引起的进给抗力。
应按铣削时的情况计算。
⑴、最大动负载Q 的计算H Q f P ω=查表得系数1f ω=,1H f =,寿命值66010nTL =查表得使用寿命时间T=15000h ,初选丝杠螺距t=4mm ,得丝杠转速5004210001000max =⨯==t V n (r/min) 所以 4501015000500606=⨯⨯=LX 向丝杠牵引力1.414x x P f G =当 ()f 当——当量摩擦系数1.4140.01240 3.39()N =⨯⨯=Y 向丝杠牵引力()N G f Py3.216301.0414.1414.1x =⨯⨯==当所以最大动负荷 X 向 ()N Qx3039.3114503=⨯⨯⨯=Y 向()N Qy6.173.2114503=⨯⨯⨯=查表,取滚珠丝杠公称直径 010d mm =,选用滚珠丝杠螺母副的型号为 SFK1004,其额定动载荷为390N ,足够用。
⑵、滚珠丝杠螺母副几何参数计算见表2-1。
⑶、传动效率计算7.260.973()(7.260.2)tg tg tg tg γηγϕ===++oo o式中:ϕ——摩擦角;γ——丝杠螺纹升角。
⑷、刚度验算滚珠丝杠受工作负载P 引起的导程0L 的变化量EFPL L o±=∆1 Y 向所受牵引力大,故应用Y 向参数计算()N P 6.17= 00.4()L cm = 6220.610(/)E N cm =⨯ ()材料为钢()2220.7983.140.52F R cm π⎛⎫=== ⎪⎝⎭所以 ()cm L 6611085.05.0106.205.076.1-⨯±=⨯⨯⨯±=∆ 丝杠因受扭矩而引起的导程变化量2L ∆很小,可以忽略。
所以导程总误差。
()m m L L/13.24.01001085.010060μ=⨯=∆=∆- 查表知E 级精度的丝杠允许误差15m μ,故刚度足够。
⑸、稳定性验算由于丝杠两端采用止推轴承,故不需要稳定性验算。
2.4、步进电机的选用⑴、步进电机的步距角b θ取系统脉冲当量0.01/p mm step δ=,初选步进电机步距角 1.5b θ=o。
⑵、步进电机启动力矩的计算设步进电机等效负载力矩为T ,负载力为P ,根据能量守恒原理,电机所做的功与负载力做功有如下关系T Ps ϕη=式中:ϕ ——电机转角;s ——移动部件的相应位移;η ——机械传动效率。
若取 b ϕθ=,则p s δ=,且S P P G μ=+,所以[]()cm N G P T b S p •+=ηπθμδ2360式中:S P ——移动部件负载(N );G ——移动部件重量(N ); z P ——与重量方向一致的作用在移动部件上的负载力(N );μ ——导轨摩擦系数;b θ——步进电机步距角,(rad );T ——电机轴负载力矩(cm N •)本例中,取0.03μ=(淬火钢滚珠导轨的摩擦系数),0.96η=,S P 为丝杠牵引力,N P P h s 6.17==。
考虑到重力影响,Y 向电机负载较大,因此取N G G y 163==,所以[]()cm N T •=⨯⨯⨯+⨯=89.096.05.1216303.06.1701.036π若不考虑启动时运动部件惯性的影响,则启动力矩0.3~0.5q TT =取安全系数为0.3,则 ()cm N T q •==97.23.089.0 对于工作方式为三相六拍的三相步进电机 4.3866.0max ==q j T T ()cm N •⑶、步进电机的最高工作频率()Hz V f p 333401.06021000601000max max =⨯⨯==δ查表选用两个45BF003-2型步进电机。
电机的有关参数见表2-2。
2.5、确定齿轮传动比因步进电机步距角 1.5b θ=o,滚珠丝杠螺距 4t mm =,要实现脉冲当量0.01/p mm step δ=,在传动系统中应加一对齿轮降速传动。
齿轮传动比123600.013600.61.54p b Z i Z t δθ⨯⨯====⨯o选 117Z = ,228Z = 。
2.6、确定齿轮模数及有关尺寸因传递的扭距较小,取模数1m mm =,齿轮有关尺寸见表3-3。
2.7、步进电机惯性负载的计算表2-3 齿轮尺寸根据等效转动惯量的计算公式,得()22101232180p d b Z J J J J J M Z δπθ⎛⎫ ⎪⎛⎫=++++ ⎪ ⎪⎝⎭ ⎪⎝⎭式中: d J ——折算到电机轴上的惯性负载(2cm kg •); 0J ——步进电机转轴的转动惯量(2kg cm g );1J ——齿轮 的转动惯量(2cm kg •);2J ——齿轮 的转动惯量(2cm kg •);3J ——滚珠丝杠的转动惯量(2cm kg •);M ——移动部件质量(kg )。
对材料为钢的圆柱零件转动惯量可按下式估算()2431078.0cm kg L D J •⨯=-式中:D ——圆柱零件直径(cm );L ——零件长度(cm )。
所以()234311026.35.07.11078.0cm kg J •⨯=⨯⨯⨯=-- ()23432109.235.08.21078.0cm kg J •⨯=⨯⨯⨯=-- ()23433109.3511078.0cm kg J •⨯=⨯⨯⨯=--电机轴转动惯量很小,可以忽略,则()233173.261023.9 3.91028d J --⎛⎫=⨯++⨯ ⎪⎝⎭()252104.05.118014.3001.0m kg •⨯=⎪⎪⎪⎪⎭⎫⎝⎛⨯+- 因为10.40.31914 1.274d M J J <==<,所以惯性匹配比较符合要求。
三、控制系统硬件设计X-Y 数控工作台控制系统硬件主要包括CPU 、传动驱动、传感器、人机交互界面。
硬件系统设计时,应注意几点:电机运转平稳、响应性能好、造价低、可维护性、人机交互界面可操作性比较好。
3.1 CPU 板3.1.1 CPU 的选择随着微电子技术水平的不断提高,单片微型计算机有了飞跃的发展。
单片机的型号很多,而目前市场上应用MCS-51芯片及其派生的兼容芯片比较多,如目前应用最广的8位单片机89C51,价格低廉,而性能优良,功能强大。
在一些复杂的系统中就不得不考虑使用16位单片机,MCS-96系列单片机广泛应用于伺服系统,变频调速等各类要求实时处理的控制系统,它具有较强的运算和扩展能力。