数学:1.1整式课件1(北师大版七年级下)

合集下载

北师大版七年级数学下册第一章《整式》精品课件

北师大版七年级数学下册第一章《整式》精品课件

总数的 3 ,男生人数为 5
3 5
x
;
(3) 一个长方体的底面是边长为 a 的正方形,
高是 h , 体积是 a2h .
议议一一议议
前面所得出的代数式:1 mn 、
2 有什么特点?
3 5
x
、a2h、
(
b 4
)2 即
b2
16
都是由数与字母的乘积组成的, 这样的代数式叫做单项式; 单项式中的数字因数叫做这个单项式的 系数(coeff(icimenotn)om;ial); 一个单项式中,所有字母的指数的和 叫做这个单项式的 次数。
(degree).
例如
3x是 1 5
次的, a2h 是 3 次的;
1 2
mn

2 次的,
b2
16

2
次的
➢注 意 是圆周 率的代号,不是单项式 概念中的字母。
单项式概念中的字母具 有可任意取值的含义。
练一练
练一练
单项式
1 3
r 2h
2.035a2b
xyΒιβλιοθήκη 5 6x32 x2 y2z2 13a2bc
10、阅读一切好书如同和过去最杰出的人谈话。2021/7/292021/7/292021/7/297/29/2021 7:24:55 AM 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/292021/7/292021/7/29Jul-2129-Jul-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/292021/7/292021/7/29Thursday, July 29, 2021 13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/292021/7/292021/7/292021/7/297/29/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月29日星期四2021/7/292021/7/292021/7/29 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/292021/7/292021/7/297/29/2021 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/292021/7/29July 29, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/292021/7/292021/7/292021/7/29

北师大版数学七年级下册第一单元1同底数幂的乘法课件

北师大版数学七年级下册第一单元1同底数幂的乘法课件
练一练
判断(正确的打“√”,错误的打“×”)
(1)x4·x6=x24 ( × )
(2) x·x3=x3 ( × )
(3) x4+x4=x8 ( × )
(4) x2·x2=2x4 ( × )
(5)(-x)2 ·(-x)3 = (-x)5 ( √ ) (6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × )
(8) x7+x7=x14 ( × )
新课讲授
比一比
类比同底数幂的乘法公式am ·an = am+n (当m、n都是正
整数) a ·a6 ·a3 = a7 ·a3 =a10
想一想:当三个或三个以上同底数幂相乘时,是否也具 有这一性质呢?用字母表示 am ·an ·ap 等于什么呢?
am·an·ap = am+n+p (m、n、p都是正整数)
23×22=25
当堂小练
3.计算下列各题:
A组
注意符号哟! B组
(1)(-9)2×93 =92×93=95
(2)(a-b)2·(a-b)3=(a-b)5
(3)-a4·(-a)2 =-a4·a2 =-a6
(1) xn+1·x2n =x3n+1
(2)
1 10
m
1 10
n
1 10
m+n
(3) a·a2+a3=a3+a3=2a6
布置作业
请完成对应习题
新课讲授
归纳总结
同底数幂的乘法法则:
am ·an = am+n (m,n都是正整数).
同底数幂相乘, 底数不变,指数 相加.
注意 条件:①乘法

北师大版七年级数学下册1.1 整式 教案

北师大版七年级数学下册1.1 整式 教案

第一章整式的运算主备:复备:七年级备课组审阅:课时安排:1.1整式1课时1.2整式的加减2课时1.3同底数幂的乘法1课时1.4幂的乘方与积的乘方2课时1.5同底数幂的除法1课时1.6整式的乘法3课时1.7平方差公式2课时1.8完全平方公式2课时1.9整式的除法2课时复习与小结2课时ab第一章 整式的运算1.1 整式教学目标:1.在现实情境中进一步理解字母表示数的意义,发展符号感。

2.了解整式产生的背景和整式的概念,能求出整式的次数。

3.进一步发展观察、归纳、分类等能力,发展有条理的思考及语言表达能力。

4.在解决问题的过程中了解数学的价值,发展“用数学”的信心。

教学重点:整式的概念与整式的次数。

教学难点:整式的次数。

教学方法:尝试练习法,讨论法,归纳法。

本节课的教学目标是:教学过程:一、情境引入活动内容:逐渐递进地提供了一系列问题情境,要求学生列 出代数式,并试着将代数式分成两类。

1.一个三角尺如图所示,阴影部分所占的面积是____; 2.某校学生总数为x ,其中男生人数占总数的53,该校男生人数为___; 3.一个长方体的底面是边长为a 的正方形,高为h ,体积是___; 4.小明房间的窗户如图所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同)。

⑴装饰物所占的面积是多少?⑵窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计)二、概念的教学活动内容:在讲解完单项式、多项式、整式的概念及整式的次数后,立即让学生把上一环节中的代数式进行归类并求出它们的次数。

单项式、多项式的概念与其次数注意:(1)区分判别字母在分子中与字母在分母中的式子是否整式。

(2)多项式是“几个单项式的和”中的和如何理解。

(3)单独一个数或一个字母也是单项式,而单独一个非零的次数是0。

(4)单独一个字母的次数是1。

(5)常见错误多项式的次数就是把多项式的所有字母的指数相加。

与单项式的次数混淆。

三、练习提高与测试活动内容:1.下列整式哪些是单项式?哪些是多项式?它们的次数分别是多少?单项b n ma式的系数分别是多少?多项式的项数分别是多少?2.小红和小兰房间窗户的装饰物如图所示,它们分别由两个四分之一圆和两个半圆组成(半径分别相同)。

北师版初一下第一章整式的乘除复习课件

北师版初一下第一章整式的乘除复习课件

(x)3 (x)2 (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p amnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8,[(b2)3]4 b234 b24
A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为(B )
A1 B2
C 3 D4
4请你观察图形,依据图形面积间的关系,不需要添加辅助线,便 可得到两个你非常熟悉的公式,这两个公式分别是
1 c= 20 x+21
,则代
数式 a2+b2+c2-ab-bc-ca 的值是( B )
A. 4
B.3
C.2
D.1
12、若a,b都是有理数且满足 2a2 -2ab+b 2 +4a+4=0 ,
则2ab的值等于( B )
A. -8
B. 8
C.32
D.2004
13、下列算式正确的是( D )
A、—30=1
9、完全平方公式 法则:两数和(或差)的平方,等于这两数 的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(a b)2 a2 2ab b2; (a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.

初中数学北师大版七年级下册第一章整式的乘除1.1同底数幂的乘法(省一等奖)

初中数学北师大版七年级下册第一章整式的乘除1.1同底数幂的乘法(省一等奖)

同底数幂的乘法基础训练知识点1 同底数幂的乘法法则1.(2023·重庆)计算a3·a2结果正确的是()2.计算(-a)3·(-a)2的结果是()3.下列算式中,结果等于a6的是()+a2 +a2+a2·a3·a2·a24.下列各式能用同底数幂的乘法法则进行计算的是()A.(x+y)2·(x-y)3B.(-x-y)(x+y)2C.(x+y)2+(x+y)3(x-y)2·(-x-y)35.计算:(-a)4·a5·a=.6.若a·a3·a m=a8,则m=.7.用幂的形式表示结果:(x-y)2·(y-x)3=.8.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是.知识点2 同底数幂的乘法法则的应用017可以写成()010+a7010·a7010·a 008·a2 00910.计算(-2)2 017+(-2)2 016的结果是()01601601701711.某市2023年底机动车的数量是2×106辆,2023年新增3×105辆,用科学记数法表示该市2023年底机动车的数量是()辆辆辆辆12.(2023·大庆)若a m=2,a n=8,则a m+n=_________.13.已知a m=2,a n=3,求下列各式的值(用含a的式子表示):(1)a m+1;(2)a n+2;(3)a m+n+1.14.已知x m=3,x m+n=15,求x n的值.易错点对法则理解不透导致错误15.请分析以下解答过程是否正确.如不正确,请写出正确的解答过程.计算:(1)x·x3;(2)(-x)2·(-x)4;(3)x4·x3.解:(1)x·x3=x0+3=x3.(2)(-x)2·(-x)4=(-x)6=-x6.(3)x4·x3=x4×3=x12.提升训练考查角度1 利用同底数幂的乘法法则进行计算16.计算:(1)x·(-x)2·(-x)2n+1-x2n+2·x2(n为正整数);(2)(y-x)2(x-y)+(x-y)3+2(x-y)2(y-x).考查角度2 利用同底数幂的乘法法则求字母的值17.(1)已知a3·a m·a2m+1=a25,求m的值;(2)若(x+y)m·(y+x)n=(x+y)5,且(x-y)m+5·(x-y)5-n=(x-y)9,求m n n n的值.考查角度3 逆用同底数幂的乘法法则求式子的值18.已知a x=5,a x+y=25,求a x+a y的值.考查角度4 利用同底数幂的乘法法则求式子的值19.已知x m-n·x2n+1=x11,y m-1·y5-n=y6,求mn2的值.探究培优拔尖角度1 利用同底数幂的乘法法则解新定义问题20.已知M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),…,M(n)=(-2)×(-2)×…×(-2).⏟n个-2相乘(1)计算:M(5)+M(6);(2)求2M(2 016)+M(2 017)的值;(3)说明2M(n)与M(n+1)互为相反数.拔尖角度2 利用同底数幂的乘法法则解规律探究题21.阅读材料:求1+2+22+23+24+…+22 015+22 016的值.解:设S=1+2+22+23+24+…+22 015+22 016, ①将等式两边同时乘2,得2S=2+22+23+24+25+…+22 016+22 017, ②②-①,得2S-S=22 017-1,即S=22 017-1,所以1+2+22+23+24+…+22 015+22 016=22 017-1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n-1+3n(其中n为正整数).参考答案1.【答案】B2.【答案】B3.【答案】D4.【答案】B5.【答案】a106.【答案】47.【答案】-(x-y)5(或(y-x)5)8.【答案】xy=z解:因为21×22=23,22×23=25,23×25=28,25×28=213,…,所以x,y,z满足的关系式是xy=z.9.【答案】B10.【答案】A解:(-2)2 017+(-2)2 016=(-2)2 016×[(-2)1+1]=(-2)2 016×(-1)=22 016×(-1)=-22 016.11.【答案】C12.【答案】1613.解:(1)a m+1=a m·a=2a.(2)a n+2=a n·a2=3a2.(3)a m+n+1=a m·a n·a=6a.14.解:因为x m+n=15,所以x m·x n=15.又因为x m=3,所以3x n=15,所以x n=5.15.解:(1)(2)(3)的解答过程均不正确,正确的解答过程如下:(1)x·x3=x1+3=x4.(2)(-x)2·(-x)4=(-x)2+4=(-x)6=x6.(3)x4·x3=x4+3=x7.16.解:(1)x·(-x)2·(-x)2n+1-x2n+2·x2=-x2n+4-x2n+4=-2x2n+4.(2)(y-x)2(x-y)+(x-y)3+2(x-y)2(y-x)=(x-y)3+(x-y)3-2(x-y)3=0.17.解:(1)因为a3·a m·a2m+1=a25,所以a3+m+2m+1=a25,所以3+m+2m+1=25,所以m=7.(2)因为(x+y)m·(y+x)n=(x+y)5,(x-y)m+5·(x-y)5-n=(x-y)9,所以m+n=5,m+5+5-n=9,解得m=2,n=3.所以m n n n=23×33=216.18.解:因为a x+y=25,所以a x·a y=25.又因为a x=5,所以a y=5,所以a x+a y=10.19.解:由题意得m-n+2n+1=11,m-1+5-n=6,解得m=6,n=4,所以mn2=6×42=96.20.解:(1)M(5)+M(6)=(-2)5+(-2)6=-32+64=32.(2)2M(2 016)+M(2 017)=2×(-2)2 016+(-2)2 017=2×22 016-22 017=22 017-22 017=0.(3)因为2M(n)+M(n+1)=-(-2)×(-2)n+(-2)n+1=-(-2)n+1+(-2)n+1=0,所以2M(n)与M(n+1)互为相反数.21.解:(1)设M=1+2+22+23+24+…+29+210①,将等式两边同时乘2,得2M=2+22+23+24+25+…+210+211②,②-①,得2M-M=211-1,即M=211-1,所以1+2+22+23+24+…+29+210=211-1.(2)设N=1+3+32+33+34+…+3n-1+3n①,将等式两边同时乘3,得3N=3+32+33+34+35+…+3n+3n+1②,(3n+1-1),②-①,得3N-N=3n+1-1,即N=12所以1+3+32+33+34+…+3n-1+3n=1(3n+1-1).2分析:此题考查了同底数幂的乘法法则,弄清阅读材料中的技巧是解本题的关键.。

新北师大版七年级数学下册第一章《 整式的乘法(第3课时)》优课件

新北师大版七年级数学下册第一章《 整式的乘法(第3课时)》优课件
谢谢观赏
You made my day!
我们,还在路上……
(C)(a-5)(a+8)
Байду номын сангаас
(D)(a+5)(a-8)
【解析】选D.(a+4)(a-10)=a2-6a-40;(a-4)(a+10)=a2+6a-
40; (a-5)(a+8)=a2+3a-40;(a+5)(a-8)=a2-3a-40.
2.长方形一边长3m+2n,另一边比它长m-n,则这个长方形面积
是( )
(A)12m2+11mn+2n2
(B)12m2+5mn+2n2
(C)12m2-5mn+2n2
(D)12m2+11mn+n2
【解析】选A.由题意知,另一边的长为3m+2n+m-n=4m+n,
所以这个长方形的面积是
(3m+2n)(4m+n)=12m2+11mn+2n2.
3.若(x+m)(x+3)整理后结果中不含x的一次项,则m的值为_____. 【解析】因为(x+m)(x+3)=x2+(m+3)x+3m,又因为结果中 不含x的一次项,所以m+3=0,解得m=-3. 答案:-3
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月4日星期一2022/4/42022/4/42022/4/4 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/42022/4/42022/4/44/4/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/42022/4/4April 4, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。

北师大版七年级下册数学《整式的乘法》整式的乘除说课教学复习课件拔高

项数与原多项式项 数一致;
(3)单项式系数为负时,改变多项式每项的符号。
综合训练 2x ( 1 x2 1) 3x(1 x2 2 )
2
33

:
原式
2
x
1 2
x21
2x
3x
1 3
x2
3x
2 3
x3 2x x3 2x
4x
计算:
-2a2·(ab+b2)-5a(a2b-ab2)
解:原式=-2a3b-2a2b2-5a3b+5a2b2
方法总结:化简求值的题型,一定要注意先化简, 再求值,不能先代值,再计算.
一、选择题。 1.下列计算正确的是 ( C ) A.(x+1)(x+2)=x2+2 B.(x+y)(x2+y2)=x3+y3 C.(x-2)(x+1)=x2-x-2 D.(x-2)(x-1)=x2-2x+2
2.计算(x-2)(x-3)的结果是 ( A )
北师大版七年级下册第一章『整式的乘除』
1.4.整式的乘法
第3课时
课件
学习目标
1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点)
以下不同形状的长方形卡片各有若干张,请你选取其中的两张, 用它们拼成更大的长方形,尽可能采用多种拼法。
n m
范例 例2.计算:
(1)(2x)3(5xy2 )
(2)(3x2 y)3 (x2 )3
幂的乘方 (1)先算乘方
积的乘方 (2)再算乘法 单项式乘以单项式
巩固 3.计算:
(1)(2x)3 (3x)2 (2)( 1 x2 y)3 (3xy2 )2

(新)北师大版七年级数学下册课件(1-3章,共624张PPT)


解:2a+b+3=2பைடு நூலகம்•2b•23=5×3×8=120. 【类比精练】 2.若xm=3,xn=5,则xm+n15 = 解:∵xm=3,xn=5, ∴xm+n=xm•xn=3×5=15. 故答案为:15

Listen attentively
课堂精讲
知识点3 同底数幂的乘法应用 【例3】一个长方形的长是4.2×104 cm,宽是 2×104 cm,求此长方形的面积及周长. 解:面积=长×宽 =4.2×104×2×104=8.4×108cm2. 周长=2(长+宽)=2(4.2×104+2×104) =1.24×105cm. 综上可得长方形的面积为8.4×108cm2. 周长为1.24×105cm.
知识小测 B ) 2.(2014•温州)计算:m6•m3的结果( A.m18 B.m9 C.m3 D.m2 3.(2016•濉溪县二模)计算﹣a2•a3的结果是 B ( ) A.a5 B.﹣a5 C.﹣a6 D.a6
Listen attentively
课前小测
4.(2016•江岸区模拟)如果等式x3•xm=x6成立, 那么m=( B) A.2 B.3 C.4 D.5 5.(2016春•沛县期末)若am=2,an=3,则 am+n的值为( ) B A.5 B.6 C.8 D.9 5 3 2 x 6.(2016•南通)计算:x •x = . a2 . 7.(2015•柳州)计算:a×a= 8.(2016春•张家港市期末)已知:xa=4,xb=2, 则xa+b=8 .
目录 contents
课堂精讲
Listen attentively
课堂精讲
知识点1 同底数幂的乘法 【例1】计算:﹣(﹣a)•(﹣a)2•(﹣a). 解:原式=﹣a4.

整式的除法(第1课时)(课件)七年级数学下册(北师大版)

式子,再与等式右边的式子进行比较求解.
3 n 2
3 n 2
12 9
解:因为 (-3 x y ) ( x y ) ( 27 x y ) ( x y )
2
2
4
3 3
=18x12-ny7,
所以18x12-ny7=mx8y7.因此m=18,12-n=8.
所以n=4,所以n-m=4-18=-14.
(2) (8m2n2) ÷(2m2n) ;
(3) (a4b2c)÷(3a2b) .
可以用类似于
分数约分的方法
来计算.
探究新知
解:(1) (x5y)÷x2
5
= 2

∙∙∙∙∙
=

= x·x·x·y
=x3y
把除法式子写成分数形式
把幂写成乘积形式
约分
探究新知
被除式
除式
(x5y) ÷ x2
探究新知
例3:月球距离地球大约 3.84×105千米, 一架飞机的速度约为
8×102 千米/时. 如果乘坐此飞机飞行这么远的距离, 大约需要多
少时间 ?
解:3.84×105 ÷( 8×102 )
= 0.48×103
=480(小时) =20(天) .
答:如果乘坐此飞机飞行这么远的距离, 大约需要20天时间.
5
(2) 10a 4 b 3 c 2 5a 3 bc
(3) (2 x y ) ( 7 xy ) 14 x y
2
3
2
4
3
(4) (2a b)4 (2a b)2
分析:(1)(2)直接运用单项式除法的运算法则;
(3)要注意运算顺序:先乘方,再乘除;
(4)鼓励学生悟出:将(2a+b)视为一个整体来进行

北师大版七年级数学下册第一章整式的乘除PPT课件全套


(1) (-y)3÷(-y)2 ; (2) x12÷x-4 ;
(2)由 (ab)3=a3b3 出发, 你能想到更为一 般的公式吗?
猜想 (ab)n= anbn
n个ab
(ab)n = ab·ab·……·ab (
幂的意) 义
n个a
n个b
=(a·a·……·a) (b·b·……·b) (
乘法交换律、结合律
)
=an·b ( 幂的意义 )
积的乘方法则
(ab)n = an·bn (m,n都是正整数)
解 :am an (a a a)(a a a)
m个a
n个a
aa a 不变 m n个a
=am+n
相加
am ·an =am+n(m,n都是正整数)
同底数幂相乘,底数 不变 ,指数相加 .
指数相加
即 am an amn
底数不变
例1.计 算 : (1)(3)7 (3)6; (3) x3 x5;
公示逆用
(ab)n = an·bn(m,n都是正整数)
反向使用: an·bn = (ab)n
计算:
(1) 23×53 ; (3) (-5)16 × (-2)15 ; (5)0.25100×4100
(2) 28×58 ; (4) 24 × 44 ×(-0.125)4 ; (6)812×0.12513
课堂小结
1. am an amn m, n都是正整数
同底数幂相乘,底数不变,指数相加.
2. (am)n=amn (m,n都是正整数)
幂的乘方,底数不变,指数相乘.
课后作业
完成课本习题1.2中1、2 拓展作业:
你能尝试运用今天所学的知识解决下面 的问题吗
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.在
2 x 2 3x 2 y
5 xy 中,次数 7

单项式和多项式统称整式.
议一议
小红和小兰房间窗户的装饰物如图所示,它们分别由 两个四分之一圆和四个半圆组成(半径分别相同).
(1)窗户中能射进阳光的部分的面积分别是多少? (窗框面积忽略不计) (2)你能指出其中的单项式或多项式吗?它们的次 数分别是多少?
Hale Waihona Puke 随堂练习下列整式哪些是单项式,哪些是多项式?它们的次数分别是多 少?
1.1
整式
小明房间的窗户如图所示,其中上方的装饰物 由两个四分之一圆和一个半圆组成(它们的半径相 同)。 (1)装饰物所 占的面积是多少?
(2)窗户中 能射进阳光的部 分的面积是多少? (窗框面积忽略 不计)
做一做
(1)一个塑料三角尺如图1-2所示,阴影部分所占的面积 是 ;
b
n m a
图 1 ─ 2
1 a, x 2 y,2 x 1, x 2 xy y 2 . 3
补充练习
一、填空题:
1.单项式和多项式的统称
.
2.一辆火车以60千米/时的速度行驶,2小时后,速度改为V千米/时,行 驶了1.5小时,则火车行驶的路程为 千米. 3.底面积为a的长方体高不b,则长方体的体积为 .
4.在3月12日植树节这天,同学们积极响应学校的号召去植树,七 年级一班的学生植了a棵树之后,又帮七年级的二班的同学植树, 两个班共同植的树比一班同学植的树的一半多b棵,则两个班共植 了________棵树.
(2)某校学生总数为x,其中男生人数占总数的 3 ,男 5 生人数为 ; (3)一个长方体的底面是边长为a的正方体,高是h,体积 是 。
3 π 2 ─ 像 ─ b , 5 x,a2h等,都是数与字母的乘积, 16
这样的代数式叫做单项式. π 2 几个单项式的和叫做多项式,例如ab- ─ b ,
16 1 1 ─ ab - ─ mn等. 2 2
相关文档
最新文档