高中数学第二章随机变量及其分布2.3.2离散型随机变量的方差课件新人教A版选修2-3

合集下载

高中数学第二章随机变量及其分布全章素养整合课件新人教A版选修23

高中数学第二章随机变量及其分布全章素养整合课件新人教A版选修23

解析:(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击 5 次只击 中一次或一次也没有击中,故该事件的概率为 P=C15×23×134+135, 所以所求的概率为 1-P=1-C15×23×134+135=223423.
(2)当 ξ=4 时,记事件为 A, P(A)=C13×23×132×23=247, 当 ξ=5 时,意味着前 4 次射击只击中一次或一次也未击中,记为事件 B. 则 P(B)=C14×23×133+134=19, 所以所求概率为 P(A∪B)=P(A)+P(B)=247+19=277.
解析:(1)记事件 A1 为“从甲箱中摸出的 1 个球是红球”, A2 为“从乙箱中摸出的 1 个球是红球”, B 为“顾客抽奖 1 次能获奖”, 则 B 表示“顾客抽奖 1 次没有获奖”. 由题意 A1 与 A2 相互独立,则 A 1 与 A 2 相互独立,且 B = A 1·A 2, 因为 P(A1)=140=25,P(A2)=150=12, 所以 P( B )=P( A 1·A 2)=1-25·1-12=130, 故所求事件的概率 P(B)=1-P( B )=1-130=170.
[例 2] 甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为 0.6. 本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影 响,求前三局比赛甲队领先的概率. [解析] 单局比赛甲队胜乙队的概率为 0.6,乙队胜甲队的概率为 1-0.6=0.4, 记“甲队胜三局”为事件 A,“甲队胜二局”为事件 B,则: P(A)=0.63=0.216; P(B)=C23×0.62×0.4=0.432, ∴前三局比赛甲队领先的概率为 P(A)+P(B)=0.648.
X1 5 6 7 8 P 0.4 a b 0.1 且 X1 的均值 E(X1)=6,求 a,b 的值;

高中数学离散型随机变量的期望及方差课件

高中数学离散型随机变量的期望及方差课件

高三总复习
人教A版 ·数学(理)
(2)∵该同学的得分 η, η=10ξ+(5-ξ)×(-1)=11ξ-5, ∴得分 η 的期望为 Eη=E(11ξ-5)=11Eξ-5 =11×130-5=935, 方[思差维D拓η=展D] (11(1ξ-)当5求)=随11机2×变D量ξ=ξ的12期1×望1与90=方1差291时0.,可首先分析 ξ是否服从二项分布,如果服从,则用公式求解,可大大减少运算 量.(2)注意利用E(aξ+b)=aEξ+b及D(aξ+b)=a2Dξ求期望与方 差.
B.n=4,p=0.4
C.n=5,p=0.32
D.n=7,p=0.45
解析:由已知nnpp=1-1.6p,=1.28, 解得np= =80, .2. 答案:A
高三总复习
人教A版 ·数学(理)
2.如果ξ是离散型随机变量,η=3ξ+2,那么( ) A.Eη=3Eξ+2,Dη=9Dξ B.Eη=3Eξ,Dη=3Dξ+2 C.Eη=3Eξ+2,Dη=9Eξ+4 D.Eη=3Eξ+4,Dη=3Dξ+2 答案:A
高三总复习
人教A版 ·数学(理)
离散型随机)
1.离散型随机变量的均值与方差
(1)均值 若离散型随机变量ξ的概率分布为
ξ x1 x2 … xn … P p1 p2 … pn …
高三总复习
人教A版 ·数学(理)
则ξ的数学期望(或平均数、均值,简称期望)为 Eξ=x1p1+x2p2+…+xnpn+… 它反映了离散型随机变量取值的平均水平.
(2)由Dη=a2Dξ,得a2×2.75=11,
即a=±2.
又Eη=aEξ+b,
高三总复习
人教A版 ·数学(理)
∴当a=2时,由1=2×1.5+b,得b=-2; 当a=-2时,由1=-2×1.5+b,得b=4. ∴ab= =2-2 或ab= =- 4 2 即为所求.

高中数学2-3-2 离散型随机变量的方差 名师公开课市级获奖课件(人教A版选修2-3)

高中数学2-3-2 离散型随机变量的方差 名师公开课市级获奖课件(人教A版选修2-3)

0.2 0.3 0.2 0.1
∴ D(2X - 1) = ( - 1 - 2.6)2×0.2 + (1 - 2.6)2×0.2 + (3 - 2.6)2×0.3+(5-2.6)2×0.2+(7-2.6)2×0.1=6.24. 方法 2:利用方差的性质 D(aX+b)=a2D(X). ∵D(X)=1.56. ∴D(2X-1)=4D(X)=4×1.56=6.24.
2 ( x - E ( X )) 则 i 描述了 x (i=1,2,…,n)相对于均值 E(X)的
i
偏离程度,而 D(X)=
i=1
xi-EX2pi
n
为这些偏离程度的加权
平均,刻画了随机变量 X 与其均值 E(X)的 平均偏离程度. 我 们称 D(X)为随机变量 X 的方差,其算术平方根 DX为随机变 量 X 的 标准差.
[答案]
[ 解析 ]
B.2 和 2.4 D.6 和 5.6
B
∵ X ~ B(10,0.6) ,∴ E(X) = 10×0.6 = 6 , D(X) =
10×0.6×(1-0.6)=2.4, ∴E(η)=8-E(X)=2,D(η)=(-1)2D(X)=2.4.
建模应用引路
方差的实际应用
A、B 是治疗同一种疾病的两种药,用若干试验组 进行对比实验. 每个试验组由 4 只小白鼠组成, 其中 2 只服用 A, 另 2 只服用 B,然后观察疗效.若在一个试验组中,服用 A 有效 的小白鼠的只数比服用 B 有效的多, 就称该试验组为甲类组. 设 2 1 每只小白鼠服用 A 有效的概率为 ,服用 B 有效的概率为 . 3 2 (1)求一个试验组为甲类组的概率; (2)观察 3 个试验组,用 ξ 表示这 3 个试验组中甲类组的个 数,求 ξ 的分布列和数学期望.

2016-2017学年高中数学人教A版选修2-3课件:2.3.2离散型随机变量的方差

2016-2017学年高中数学人教A版选修2-3课件:2.3.2离散型随机变量的方差

7.错用公式DaX+b=a2DX
[典例] X P 已知随机变量 X 的分布列如下表: -2 0.1 -1 0.2 0 0.4 1 0.1 2 0.2
且 Y=3X+1,求 E(Y),D(Y).
[解] 因 为 E(X) = - 2×0.1 + ( - 1)×0.2 + 0×0.4 +
1×0.1+2×0.2=0.1, 所以 E(Y)=E(3X+1)=3E(X)+1=1.3.
刻画了随机变量 X 与其均值 E(X)的平均偏离程度. 称 D(X)为随机
算术平方根 DX 为随机变量 X 的标准差. 变量 X 的方差,其__________________
2.意义 随机变量的方差和标准差都反映了随机变量取值偏离平均值 的平均程度.方差或标准差 越小 ,则随机变量偏离于均值的平均 程度 越小 . 3.性质
若 E(X)=0,D(X)=1,则 a=______,b=______.
解析:由题意得 a+b+c+ 1 =1, 12 1 -1×a+0×b+1×c+2× =0, 12 1 2 2 2 2 -1-0 ×a+0-0 ×b+1-0 ×c+2-0 ×12=1, 5 1 解得 a=12,b=c=4. 5 答案:12 1 4
2
答案:A
2.已知 ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则 n 与 p 的值分别 为 A.100 和 0.08 C.10 和 0.2 B.20 和 0.4 D.10 和 0.8 ( )
解析:由于
np=8, ξ~B(n,p),所以 np1-p=1.6,
解得 n=10,p=0.8. 答案:D
[类题通法] 解此类问题,首先要确定正确的离散型随机变量,然 后确定它是否服从特殊分布,若它服从两点分布,则其方 差为 p(1-p); 若其服从二项分布, 则其方差为 np(1-p)(其 中 p 为成功概率).

2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.3.2 离散型随机变量的方差

2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.3.2 离散型随机变量的方差
栏 目 链 接
1 1 1 解析:因为 + +p=1,所以 p= . 2 3 6 1 1 1 2 又 E(ξ)=0× +1× +x× = .所以 x=2. 2 3 6 3
2 2 1 2 2 1 2 2 1 15 故 (1)D(ξ)= 0-3 × + 1-3 × + 2-3 × = 2 3 6 27
解得 p=0.2,n=10,故选 C. 答案:( B ) A.E(X)=3.5,D(X)=3.52 35 B.E(X)=3.5,D(X)= 12 C.E(X)=3.5,D(X)=3.5 35 D.E(X)=3.5,D(X)= 16
栏 目 链 接
栏 目 链 接
题型一 方差与标准差的计算 例1 已知离散型随机变量X的概率分布列为:
X P
1 1 7
2 1 7
3 1 7
4 1 7
5 1 7
6 1 7
7 1 7
栏 目 链 接
求其方差与标准差.
1 1 1 解析:∵E(X)=1× +2× +„+7× =4; 7 7 7 1 1 1 2 2 2 ∴D(X)=(1-4) × +(2-4) × +„+(7-4) × =4. 7 7 7 ∴ DX=2.
第二章
随机变量及其分布
2.3 离散型随机变量的均值与方差
2.3.2 离散型随机变量的方差
栏 目 链 接
1.通过实例理解取有限值的离散型随机变量方
差的概念. 2.能计算简单离散型随机变量的方差,并能解 决一些实际问题.
栏 目 链 接
栏 目 链 接
基 础 梳 理 1.一般地,若离散型随机变量X的概率分布列为:
栏 目 链 接
例如:设ξ~B(n,p),且E(ξ)=2.4,D(ξ) =1.44,求n,p. 答案:n=6,p=0.4

数学:2.1.2《离散型随机变量的分布列》课件(新人教A版选修2-3)

数学:2.1.2《离散型随机变量的分布列》课件(新人教A版选修2-3)

P
的变 0.2 离散型随机变量分布列 .如在 化情况可以用图象表示 ,掷出的点数 0.1 X 掷骰子试验中 的分布列在直角坐标系 中的 O 2 . 图象如图 .1− 2所示
1
2 3
4 5
6
X
在图 2.1 − 2 中, 横坐标是随 机变量的取值, 纵坐标为概 率 .从中可以看出, X 的取值 范围是 { ,2,3,4,5, 6},它取每 1 1 个值的概率都是 . 6
表2 −1
X P
1 1 6
2 1 6
3 1 6
4 1 6
5 1 6
6 1 6
利用表2 − 1可以求出能由X表示的事件的概率.例如, 在这个随机试验中事件{X < 3} = {X = 1} ∪ {X = 2}, 由概率的可加性得 1 1 1 P(X < 3 ) = P(X = 1) + P(X = 2) = + = . 6 6 3
3 3 4 4 5 5 C10C5−−10 C10C5−−10 C10C5−−10 30 30 30 = + + ≈ 0.191. 5 5 5 C30 C30 C30 55 左右 , 思考 如果要将这个游戏的中 奖控制在 % 那么应该如何设计中奖 ? 规则
Байду номын сангаас 作业:P49A组(4—6)和B组 P49A 4—6 B
X
P
0
0 n CMCN−0 −M n CN
1
n C1 CN−1 M −M n CN
⋅⋅⋅ ⋅⋅⋅
3
m n CMCN−m −M n CN
.如果随机变量 的分布列为 X 为 超几何分布列 , 超几何分布列 则称随机变量X服从超几何分 布(hypergeome tric distributi on).

离散型随机变量的均值与方差(课件)-(课件)-2022届新高考高三数学人教A版选修2-3


ξ=4k

a 2k
(k=
1,2,3,4),则Pξ>12=
1 5
,随机变量ξ的数学期望E(ξ)=
13 30 .
解析:因为随机变量ξ的分布列为Pξ=4k=2ak(k=1,2,3,4),所以a2+2a2+2a3+2a4
=1,解得a=1165,所以随机变量ξ的分布列为
ξ
1 4
1 2
3 4
1
P
8 15
4 15
3.(2021·河北衡水调研)一个袋中放有大小、形状均相同的小球,其中红球1 个、黑球2个.现随机等可能取出小球,当有放回地依次取出两个小球时,记取出 的红球数为ξ1;当无放回地依次取出两个小球时,记取出的红球数为ξ2,则( B )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)=E(ξ2),D(ξ1)>D(ξ2) C.E(ξ1)=E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
1.已知X的分布列为
X
-1
0
1
P
1 2
1
1
3
6
设Y=2X+3,则E(Y)的值为( A )
7 A.3
B.4
C.-1
D.1
解析:∵E(X)=-12+16=-13,∴E(Y)=E(2X+3)=2E(X)+3=-23+3=73.
2.(2021·浙江丽水模拟)已知某口袋中有 3 个白球和 a 个黑球(a∈N*),现从中2.方差ຫໍສະໝຸດ 设离散型随机变量X的分布列为:
X
x1
x2

xi

xn
P
p1
p2

离散型随机变量的均值和方差课件-高二下学期数学人教A版(2019)选择性必修第三册


数学期望
一般地,若离散型随机变量X的概率分布为:
X
x1
x2
P
p1
p2
··· x i
··· pi
··· x n
··· pn
则称
E ( X ) x1 p1 x2 p2 … xi pi … xn pn
为随机变量X的均值或数学期望。它反映了离
散型随机变量取值的平均水平。
情景回顾
X
18
24
简称分布列.如下表所示
X
x1
x2

xi

xn
P
P1
P2

Pi

Pn
3.两点分布列
X
0
1
P
1-P
P
问题引导 讲授新课
问题一:如果你期末考试各门成绩为:
90、81、79、69、85、91
那你的平均成绩是多少?
90 81 79 69 85 91
82.5
6
… xn
x1 x2
p1 p2
加权平均:计算若干数量的平均数时,考虑
到每个数量在总量中所具有的重要性不同,
分别给予不同的权数。
问题情景1
18元/kg
24元/kg
36元/kg
按3:2:1的比例混合,混合糖果
中每一粒糖果的质量都相等.
定价为混合糖果的平均价格才合理
情景探究
按3:2:1混合以下糖果
X
18 18元/kg
概率
0.1
股票B收益的分布列
0
2
收益Y / 元
0
1
2
0.3
0.6
概率

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-

2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。

人教版高中数学选修2-3第二章2.3.2离散型随机变量的方差

导入新课复习回顾1 .离散型随机变量 X 的均值 均值反映了离散型随机变量取值的平均水平.2 . 两种特殊分布的均值(1)若随机变量X 服从两点分布,则EX=p.(2)若X~B(n ,p) ,则EX=np.ni ii=1EX =x p数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.2.3.2离散型随机变量的方差教学目标知识与技能(1)了解离散型随机变量的方差、标准差的意义;(2)会根据离散型随机变量的分布列求出方差或标准差.过程与方法了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1-p)”,并会应用上述公式计算有关随机变量的方差 .情感、态度与价值观承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值.教学重难点重点离散型随机变量的方差、标准差.难点比较两个随机变量的期望与方差的大小,从而解决实际问题 .思考要从两名同学中挑选出一名,代表班级参加射击比赛. 根据以往的成绩记录,第一名同学击中目标靶的环数X1的分布列为X1 5 6 7 8 9 10P 0.03 0.09 0.20 0.31 0.27 0.10第二名同学击中目标靶的环数X2的分布列为X2 5 6 7 8 9P 0.01 0.05 0.20 0.41 0.33根据已学知识,可以从平均中靶环数来比较两名同学射击水平的高低,即通过比较X1和X2的均值来比较两名同学射击水平的高低. 通过计算E(X1)=8,E(X2)=8,发现两个均值相等,因此只根据均值不能区分这两名同学的射击水平.思考除平均中靶环数外,还有其他刻画两名同学各自射击特点的指标吗?图(1)(2)分别表示X 1和X 2的分布列图. 比较两个图形,可以发现,第二名同学的射击成绩更集中于8环,即第二名同学的射击成绩更稳定. O 5 6 7 10 9 8 P 1X 0.10.20.30.40.5O 5 6 7 9 8 P 2X 0.1 0.2 0.3 0.4 0.5 (1) (2) 怎样定量刻画随机变量的稳定性?1.方差设离散型随机变量X 的分布列为知识要点X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E(X))2描述了x i (i=1,2,…,n)相对于均值E(X)的偏离程度.为这些偏离程度的加权平均,刻画了随机变量 X 与其均值 EX 的平均偏离程度.我们称 DX 为随机变量 X 的方差(variance). 其算术平方根 为随机变量X 的标准差(standard deviation). 记为 n2i ii=1DX =(x -EX)p DX σX 随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.说明:随机变量集中的位置是随机变量的均值;方差或标准差这种度量指标是一种加权平均的度量指标.思考随机变量的方差与样本的方差有何联系与区别?随机变量的方差是常数,而样本的方差是随着样本的不同而变化的,因此样本的方差是随机变量.对于简单随机样本,随着样本容量的增加,样本方差越来越接近总体方差,因此常用样本方差来估计总体方差.现在,可以用两名同学射击成绩的方差来刻画他们各自的特点,为选派选手提供依据.由前面的计算结果及方差的定义,得∑102DX=(i-8)P(X=i)=1.50,11i=5∑92DX=(i-8)P(X=i)=0.8222i=5因此第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.知识要点2.几点重要性质(1)若X服从两点分布,则D(X)=p(1-p); (2)若X~B(n,p),则D(X)=np(1-p); (3)D(aX+b)=a2D(X).例题1A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:0 1 2 3次品数ξ1概率P 0.7 0.2 0.06 0.040 1 2 3次品数ξ1概率P 0.8 0.06 0.04 0.10问哪一台机床加工质量较好?解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44, Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44. 它们的期望相同,再比较它们的方差Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2 ×0.06+(3-0.44)2×0.04=0.6064,Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2 ×0.04+(3-0.44)2×0.10=0.9264.∴Dξ1< Dξ2 故A 机床加工较稳定、质量较好.例题2有甲乙两个单位都愿意聘用你,而你能获得如下信息:/元1200 1400 1600 1800 甲单位不同职位月工资X10.4 0.3 0.2 0.1获得相应职位的概率P1乙单位不同职位月工资X/元1000 1400 1800 220020.4 0.3 0.2 0.1获得相应职位的概率P2根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得1EX =12000.4 + 1 4000.3 + 16000.2 + 18000.1 =1400⨯⨯⨯⨯2221DX = (1200-1400) 0. 4 + (1400-1400 )0.3 + (1600 -1400 )0.2⨯⨯⨯2+(1800-1400) 0. 1= 40 000⨯2EX =1 0000.4 +1 4000.3 + 1 8000.2 + 22000.1 = 1400⨯⨯⨯⨯2222DX = (1000-1400)0. 4+(1 400-1400)0.3 + (1800-1400)0.2⨯⨯⨯2+ (2200-1400 )0.l = 160000 .⨯分析:因为 ,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.1212EX =EX ,DX <DX例题3有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为X.(1)求随机变量的概率分布;(2)求X的数学期望和方差.4411689P(X =4)==,P(X =3)=0,P(X =2)=,P(X =1)=,P(X =0)=A 242424249861E(X)=0+1+2+30+4=124242424⨯⨯⨯⨯⨯222229861V(X)=(0-1)+(1-1)+(2-1)+(3-1)0+(4-1)=124242424⨯⨯⨯⨯⨯解:(1)因此X 的分布列为(2) X 0 1 23 4 P 9/24 8/24 6/24 0 1/24例题3有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元.试用数学知识解释其中的道理.解 :设庄家获利的数额为随机变量,根据两枚骰子的点数之和可能的结果以及游戏规则可得随机变量的概率分布为:X -30 -20 -10 10 20 30 P 2/36 4/36 6/36 8/36 10/36 6/36 246810665 E(X)=(-30)+(-20)+(-10)+10+20+30=⨯⨯⨯⨯⨯⨯3636363636369因此,顾客每玩36人次,庄家可获利约260元,但不确定顾客每玩36人次一定会有些利润;长期而言,庄家获利的均值是这一常数,也就是说庄家一定是赢家.1.熟记方差计算公式课堂小结n 2i i i=1DX =(x -EX)p 2=E(X-EX)22=EX -(EX)2. 三个重要的方差公式(1)若 X 服从两点分布,则 (2)若 ,则 X ~B(n,p)DX =np(1-p)DX =p(1-p)2(3)D(aX +b)=a DX3.求离散型随机变量X的方差、标准差的一般步骤:①理解X 的意义,写出X 可能取的全部值;②求X取各个值的概率,写出分布列;③根据分布列,由期望的定义求出EX;④根据方差、标准差的定义求出、σXDX高考链接1. (2005年天津)某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:投资成功投资失败192次8次则该公司一年后估计可获收益的期望是_____(元).[答案]4760提示:分布列为ξ0.6 -2.5P 192/200 8/192故1928Eξ=0.6-2.5=4760()200200元⨯⨯2.(2002年天津)甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:5t/hm2)表所示:品种第一年第二年第三年第四年第五年甲9.8 9.9 10.1 10 10.2 乙9.4 10.3 10.8 9.7 9.8则其中产量比较稳定的小麦品种是_______.[答案]甲种3.(2004年湖北)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用,单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率分别为0.9和0.85,若预防方案允许甲、乙两种预防措施单独采用,联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值)[解析]①不采用预防措施时,总费用即损失期望值为400×0.3=120(万元);②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.l=40(万元),所以总费用为45+40=85(万元);③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);继续④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.1.填空课堂练习(1)已知x~B(100,0.5),则Ex=___,Dx=____,sx=___. E(2x-1)=____, D(2x-1)=____, s(2x-1)=_____. 50 25 59910010(1)已知随机变量x 的分布列如上表,则E x 与D x 的值为( )A. 0.6和0.7B. 1.7和0.3C. 0.3和0.7D. 1.7和0.21(2)已知x~B(n ,p),E x =8,D x =1.6,则n , p 的值分别是( )A .100和0.08;B .20和0.4;C .10和0.2;D .10和0.8 2.选择 √ x1 2 P 0.3 0.7√3.解答题(1)一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3①当ξ=0时,即第一次取得正品,试验停止,则P (ξ=0)= ②当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P (ξ=1)= 43129=449119123=⨯③当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P (ξ=2)= ④当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则 P (ξ=3)= 所以,Eξ= 3299=121110220⨯⨯32191=1211109220⨯⨯⨯399130+1+2+3=44422022010⨯⨯⨯⨯继续(2)有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ~B(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算.解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ~ B(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98.习题解答1. E(X)=0×0.1+1×0.2+2×0.4+3×0.2+4×0.1=2. D(X)=(0-2)2×0.1+(1-2)2×0.2+(2-2)2×0.4+(3- 2)2×0.2+(4-2)2×0.1=1.2.D(X) 1.095.2. E(X)=c×1=c,D(X)=(c-c)2×1=0.3. 略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档