汽车发动机凸轮轴的主要机械加工工艺设计 - 副本
课程设计--设计凸轮轴的机械加工工艺规程

课程设计--设计凸轮轴的机械加工工艺规程1. 引言本文档旨在设计凸轮轴的机械加工工艺规程,确保凸轮轴的加工过程符合技术标准,提高产品质量和生产效率。
2. 加工工艺流程以下是凸轮轴的机械加工工艺流程:2.1 材料准备- 选择适合的材料,如某种合金钢。
- 确保材料质量符合要求,进行材料检验和试样制备。
2.2 设计凸轮轴图纸- 根据产品要求和设计要求,在计算机辅助设计软件中绘制凸轮轴图纸。
- 确保凸轮轴的尺寸、形状和孔位准确无误。
2.3 加工准备- 准备适当的机床和刀具。
- 制定加工方案,包括选择合适的切削参数和加工顺序。
2.4 粗加工- 将所选材料加工成初步形状,以便后续加工。
- 采用合适的工艺方法,如车削、钻孔等。
2.5 精加工- 根据凸轮轴的要求,采用适当的工艺方法进行精加工,如磨削、镗削等。
- 确保凸轮轴的尺寸、形状和表面光洁度达到要求。
2.6 检验- 对加工后的凸轮轴进行尺寸、形状和质量检验。
- 确保凸轮轴符合技术标准和产品要求。
2.7 产品调试和完善- 安装凸轮轴到相关的设备上,并进行调试。
- 根据实际使用情况,进一步完善凸轮轴的性能。
3. 安全注意事项在进行凸轮轴的机械加工过程中,请注意以下安全事项:- 穿戴适当的个人防护装备。
- 检查机床和刀具的安全性能,确保操作安全。
- 注意切削液的使用和储存,避免造成伤害和环境污染。
- 遵循操作规程,严禁违规操作。
4. 结束语本文档详细介绍了设计凸轮轴的机械加工工艺规程,包括加工工艺流程、安全注意事项等。
在实际操作中,请务必遵循技术标准和相关要求,确保凸轮轴的加工质量和生产效率。
凸轮轴机械加工工艺

以CA 6102 发动机为例, 凸轮的升程偏差 为: A、 D 段为±0 . 015mm; B段为±0 . 05mm; C 段为±0 . 025mm。
二、凸轮轴的材料与毛坯
材料: 铸铁:冷硬铸铁、可淬硬的低合金铸铁、 球墨铸铁等。 钢: 中碳钢、渗碳钢。 毛坯制造方法: 精铸和精锻。 直接用棒料加工。
装配式凸轮轴加工线
装配式凸轮轴是将凸轮(精锻) 和轴颈 (机加工件)装配到一根心轴上, 焊接固定其 轴向和角向位置, 如图所示。
装配式凸轮轴可以对单个的凸轮表面 进行渗碳淬火,既可以提高其抗点蚀的能力 和耐磨性, 又可避免使整个凸轮轴产生变形, 明显地提高了产品质量; 同时装配式凸轮轴 还可以减轻凸轮轴的重量并降低生产成本。 因此, 越来越多的汽车制造厂采用了装配式 凸轮轴工艺。
多刀仿形单靠模车削
a) 车刀
b)工具的安装
2.凸轮形面的精加工
凸轮轴切点跟踪磨削加工
凸轮形面磨削的新技术
1)采用立方氮化硼砂轮 2)数控凸轮轴磨床 3)采用多片砂轮高强度砂轮进行高速磨削 4)采用主动测量 、自动补偿、自动修整等装置
(二)凸轮支撑轴颈的磨削
支撑轴颈的磨削可采用多砂轮磨床或无 心磨床, 如Junker 公司的Quick point 设备 可以高效率地磨削凸轮轴支撑轴颈。还有 的公司对凸轮轴的轴颈和桃形在精磨后进 行抛光, 与曲轴的超精加工类似。
工序10:磨正时齿轮轴颈和螺纹轴颈外圆等 外圆端面磨床
工序11:磨齿轮外圆
外圆磨床
工序12:磨四个支承轴颈外圆
外圆磨床
工序13:滚齿
滚齿机
工序14:去齿轮两端毛刺
去毛刺机
工序15:铣键槽
键槽铣床
工序17:车1、4、6、7、9、12凸轮及偏心轮
凸轮轴加工工艺

凸轮轴的加工工艺凸轮轴的加工工艺凸轮轴的材料:球墨铸铁、合金铸铁、冷激铸铁、中碳钢球墨铸铁:将接近灰铸铁成份的铁水经镁或镁的合金或其它球化剂球化处理后而获得具有球状石墨的铸铁。
石墨呈球状,大大减轻了石墨对基体的分割性和尖口作用,球墨铸铁具有较高的强度、耐磨性、抗氧化性、减震性及较小的缺口敏感性。
球墨铸铁的凸轮轴一般用在单缸内燃机上,如S195柴油机,做凸轮轴用的球墨铸铁用QT600-3或QT700-2,要求球化为2级(石墨球化率90-95%)石墨粒度大小大于6级。
凸轮轴整体硬度HB230-280合金铸铁:将接近灰铸铁成份的铁水加入Mn、Cr、Mo、Cu等元素。
从而与珠光体形成合金,减少铁素体的数量。
合金铸铁的凸轮轴一般用于高转速凸轮轴。
如CAC480凸轮轴,凸轮轴整体硬度HB263-311。
冷激铸铁:一般用于低合金铸铁表面冷激处理,使外层为白口或麻口组织,心部仍是灰口组织。
如:372凸轮轴。
使用冷激铸铁的凸轮轴处于干摩擦或半干摩擦工作状态,而具有承受较大的弯曲与接触应力,要求材料表面层抗磨且高的强度,心部仍有一定的韧性。
目前国内所用的冷激铸铁主要有两大类:铬、钼、铜冷激铸铁和铬、钼、镍冷激铸铁,冷硬层的金相组织:莱氏体+珠光体(索氏体)冷激铸铁硬度为HRC45—52,目前,国内冷激铸铁的硬度在HRC47左右。
中碳钢:一般用于大型发动机凸轮轴。
如:6102发动机采用模锻锻造成型,也有一部分用于摩托凸轮轴,成型较简单。
模锻后一般要进行退火处理以便于机械加工。
凸轮轴加工的典型工艺一.凸轮轴轴颈粗加工采用无心磨床磨削无心磨床的磨削方式有2种:贯穿式无心磨削和切入式无心磨削。
贯穿式无心磨削一般用于单砂轮,它的导轮是单叶双曲面,推动凸轮轴沿轴向移动,仅仅用于磨削光轴。
切入式无心磨削是由多砂轮磨削(若是单砂轮磨削,一般砂轮被修整成成型砂轮,如:磨削液压挺柱的球面),如现有480凸轮轴的磨削,可磨削阶梯轴,导轮为多片盘状组合而成,工件不能沿轴向移动,无论是哪一种磨削方式,工件的中心都高于砂轮和导轮的中心,一般切入式磨削都有上料工位、磨削工位、测量工位、卸料工位组成。
凸轮轴工艺流程

凸轮轴工艺流程
《凸轮轴工艺流程》
在汽车发动机中,凸轮轴是一个重要的零件,它控制着气门的开闭时间以及排气和进气的顺序。
因此,凸轮轴的制造工艺流程对于发动机的性能和效率都有很大的影响。
凸轮轴的制造工艺流程主要包括以下几个步骤:
1. 材料选择:凸轮轴通常采用优质的合金钢材料制造,以保证其强度和耐磨性。
材料选择是凸轮轴制造的第一步,关乎整个制造工艺的质量和效率。
2. 粗加工:在粗加工阶段,通过车床和铣床对原材料进行切削和成形,初步将凸轮轴的形状和尺寸加工出来。
3. 热处理:凸轮轴经过粗加工后需要进行热处理,以提高其硬度和耐磨性。
热处理通常包括淬火、回火等工艺,确保凸轮轴具有所需的材料性能。
4. 精加工:在精加工阶段,需要进行车削、磨削等工艺,对凸轮轴进行更精细的加工,以确保其表面平整度和尺寸精度。
5. 表面处理:凸轮轴的表面通常需要进行镀铬或其他表面处理,以提高其抗腐蚀性和表面光洁度。
6. 组装:最后,经过上述工艺流程加工完成的凸轮轴将进行组
装,与其他部件一起组装成为完整的汽车发动机。
通过上述工艺流程,凸轮轴可以获得优质的性能和精确的尺寸,从而保证发动机的高效运转和稳定性能。
凸轮轴的工艺流程需要严格的质量控制和精密的加工技术,以确保其质量和可靠性。
车铣技术凸轮轴加工工艺分析

车铣技术凸轮轴加工工艺分析车铣技术是一种将工件固定在机床上,通过旋转切削工具将工件表面削去一层金属的加工方法。
凸轮轴是一种常见的汽车发动机零件,其加工工艺具有一定的复杂性。
下面将对凸轮轴的加工工艺进行分析。
凸轮轴的加工工艺主要包括车削和铣削两个步骤。
首先进行车削工艺,将工件的两端加工成圆柱形,然后在其中一端加工凸出的凸轮部分。
车削过程中,需要根据凸轮的形状和尺寸选择合适的切削刀具,并进行切削参数的调整,以确保切削质量和加工效率。
凸轮轴的加工工艺还涉及到夹持和定位方式的选择。
夹持和定位方式直接影响加工精度和工件的稳定性。
常用的夹持和定位方式包括万向虎钳夹持、磁性夹持和真空吸附夹持等。
根据工件的形状和加工要求选择合适的夹持和定位方式,以确保加工的准确性和稳定性。
凸轮轴的加工工艺还需要考虑切削力和切削振动的控制。
切削力直接影响工件的加工精度和表面质量,需要通过合理选择切削刀具、切削参数和切削液等方式来控制。
切削振动是指切削过程中工件和刀具之间的相对振动,会导致加工表面的波纹状痕迹和加工精度的下降,需要通过刀具和工件的动态平衡和减振装置来控制。
在凸轮轴的加工工艺中,还需要考虑加工的环境因素。
切削加工会产生大量的切屑和切削液,对加工环境造成污染。
在加工过程中需要采取有效的措施,如切削液回收和处理、工件和刀具的处理等,以确保加工环境的清洁和工作人员的安全。
凸轮轴的加工工艺涉及到车削和铣削两个步骤,需要选择合适的刀具、切削参数和切削液,以确保加工质量和效率。
需要选择合适的夹持和定位方式,控制切削力和切削振动,处理加工环境,以确保加工的准确性和稳定性。
这些工艺控制因素的合理选择和调整,对凸轮轴的加工品质和效率具有重要影响。
汽车发动机凸轮轴加工工艺设计及质量控制研究

汽车发动机凸轮轴加工工艺设计及质量控制研究作者:王林峰来源:《时代汽车》2023年第18期摘要:凸轮轴作为关键性零部件,关乎到汽车发动机的性能表现,因此对凸轮轴的质量与性能提出了较高要求。
本文对汽车发动机凸轮轴的加工工艺进行分析,了解其设计原则以及工艺特征,随后提出了完整的工艺设计流程。
从生产线布置、定位基准选择、加工划分、凸轮形面加工等,并提出定位键优化改善、控制键槽裂纹、主动测量与自然补偿等方式全面提高凸轮轴加工质量。
关键词:汽车发动机凸轮轴质量控制工艺设计1 引言近年来我国汽车行业迅速发展,发动机生产厂商获得了前所未有的生产动力。
而在汽车发动机中最为重要的关键性结构就是凸轮轴的存在。
由于凸轮轴特殊的材料以及工艺要求,在加工过程中需要对其质量进行控制,并尽可能的实现成本节约,避免不合理环节布置,从而对凸轮轴生产线进行合理规划,确保其形成良好的生产效果。
基于凸轮轴在发动机中的性能表现,则需要确保其在实际加工制造过程中表现出更加精良的工艺特征以及质量成果。
2 汽车发动机凸轮轴加工工艺分析2.1 工艺设计原则凸轮轴不仅是组成汽车发动机的重要零部件,其使用性能与产品质量对汽车发动机安全稳定运行也有着直接影响。
科学合理设计汽车发动机凸轮轴加工工艺,有利于更好地把控凸轮加工精度和加工成本,并保障汽车发动机凸轮轴加工效益。
汽车发动机凸轮轴加工工艺设计原则,应遵循以下几点要求:(1)工艺设计合理性,并在工艺设计优化的基础上融合其他现代先进技术手段,增强产品核心竞争优势。
(2)国内外可靠且具有影响力厂家的先进设备优先考虑,以此保障汽车发动机凸轮轴加工工艺水平。
(3)既要体现工艺设计先进性,也要兼具经济性,做到在不影响产品质量的基础上最大程度地节约工艺成本。
(4)各生产环节的安全性与操作便捷性是汽车发动机凸轮轴加工工艺设计中需要给予高度重视的问题。
(5)基于经济条件允许的前提下,坚持柔性生产原则,根据凸轮轴结构特点,合理设计其加工工艺,尽可能减少凸轮轴在加工过程中对其精度的干扰影响。
凸轮轴机械加工工艺和标准

二、加工阶段的划分与工序顺序的安 排
(二)工序顺序的安排 各支承轴颈、凸轮、偏心轮: 车——粗磨——精磨——抛光 从粗到精,主要表面与次要表面的加工工序交叉进
行。 淬火工序安排在各主要表面的半精加工之前 防止工件经淬火后变形过大造成精加工困难
三、主要表面的加工
(一)凸轮形面的加工
1. 凸轮形面的粗加工 凸轮传统的粗加工方法是采用靠模车床及液压
工序3: 车1、2支承轴颈外圆等 凸轮轴轴颈车床
工序4: 车3、4支承轴颈外圆等 凸轮轴轴颈车床
工序5:钻φ7孔 钻床
工序6:校直 压床
工序7:磨第2、3轴颈外圆 外圆磨床
工序8:车凸轮侧面和连接轴颈等 凸轮轴车床
工序8:车凸轮侧面和连接轴颈等 凸轮轴车床
工序9:校直 压床
工序10:磨正时齿轮轴颈和螺纹轴颈外圆等 外圆端面磨床
第四节 凸轮轴的检验
中间检验 1)由加工阶段和中间检验的性质 、目的、作用所决定,每项检验内容的 中检数量所占百分比不同。 2) 对于单项检验,多使用专用定值量具(如量规),以保证检验的效率 和精度。 3)对于综合检验,(如齿轮的检验), 多使用检验夹具,以保证迅速准确 的反映多参数的测量结果。
最终检验
以CA 6102 发动机为例, 凸轮的升程偏差 为: A、 D 段为±0 . 015mm; B段为±0 . 05mm; C 段为±0 . 025mm。
二、凸轮轴的材料与毛坯
材料: 铸铁:冷硬铸铁、可淬硬的低合金铸铁、球墨铸铁等。 钢: 中碳钢、渗碳钢。
毛坯制造方法: 精铸和精锻。 直接用棒料加工。
a) 车刀
b)工具的安装
2.凸轮形面的精加工
凸轮轴切点跟踪磨削加工
凸轮形面磨削的新技术
汽车凸轮轴加工工艺及技术要求

汽车凸轮轴加工工艺及技术要求凸轮轴是活塞式发动机里的一个部件,对汽车的运行有着非常关键的作用,了解其加工工艺及要点是很有必要的。
下面由小编向你推荐汽车凸轮轴加工工艺及技术要求,希望你满意。
汽车凸轮轴简介凸轮轴的作用是控制气门的开启和闭合动作。
虽然在四冲程发动机里凸轮轴的转速是曲轴的一半,不过通常它的转速依然很高,而且需要承受很大的扭矩,因此设计中对凸轮轴在强度和支撑方面的要求很高,其材质一般是特种铸铁,偶尔也有采用锻件的。
轿车发动机按照顶置凸轮轴的数目,分为顶置单凸轮轴和顶置双凸轮轴。
当每缸采用两个以上气门时,气门排列形式一般有两种:一是进气门和排气门混合排列在一根凸轮轴上,即顶置单凸轮轴(SOHC-Single Over Head Cam)式发动机。
这种发动机在顶部只安装了一根凸轮轴,因此一般每个汽缸只有两到三个气门(进气一到两个,排气一个),高速性能受到了限制。
另一种是进气门与排气门分列在两根凸轮轴上,DOHC式(Double Over Head Cam,顶置双凸轮轴)发动机这种发动机由于配备了两根凸轮轴,每个汽缸可以安装四到五个气门(进气二到三个,排气二个),高速性能得到了显著的提升凸轮轴加工工艺技术要求根据凸轮轴的特点,主要有以下技术要求。
1.支承轴颈的尺寸精度及各支承轴颈之间的同轴度2.键槽的尺寸和位置精度3.止推面相对于支承轴颈线的垂直度4 .凸轮基圆的尺寸精度和相对于支承轴颈轴线的同轴度5.凸轮的位置精度6.凸轮的形状精度(曲线升程)等汽车凸轮轴关键加工工艺车(磨)止推面止推面是凸轮轴上轴向尺寸的基准。
也是和缸盖的配合基准。
止推面宽度为凸轮轴关键特性。
一般要求:宽度公差0.08、跳动:0.035一般跳动要求低于0.035采用磨削止推面,高于0.035可以采用以车代磨。
HARDINGE的车床可以满足跳动0.02的要求。
磨削轴颈凸轮轴的轴颈磨削一般加工过程有车,粗磨,精磨。
无心工艺只分粗磨和精磨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)汽车发动机凸轮轴的主要机械加工工艺设计教学单位:机电工程学院专业名称:机械设计制造及其自动化学号:学生姓名:指导教师:指导单位:完成时间:汽车发动机凸轮轴的主要机械加工工艺设计摘要凸轮轴作为发动机的重要组成部分,对其配气功能有着举足轻重的作用。
当发动机工作运转的时候,凸轮轴负责控制进排气门的开合和开合量,但是由于工作时转速比较高,需要承受的扭矩的比较大,所以对凸轮轴的强度和支撑力的要求也比较高,因此在材质的选择上必须满足凸轮轴对强度等性能的要求。
凸轮轴作为一个重要的零部件,它的改进和发展对汽车发动机的配气性能的提高和进步意义重大。
本课题选取直列四缸顶置气门式发动机F3000,对它的凸轮轴加工工艺进行分析与设计,而工艺路线的拟定是工艺规程制定中的关键阶段,是工艺规程制定的总体设计。
撰写一条合理科学的工艺路线,既可以保证加工质量和生产效率,也可以有效合理的安排工人、设备、工艺装备,最终有利于降低整个生产周期和生产成本。
所以,本次设计是在仔细分析凸轮轴零件加工技术要求及加工精度后,合理确定毛坯类型,经过查阅相关书籍、手册、图标、标准、等技术资料,确定工艺的机械加工余量、工序尺寸及公差,最终定制凸轮轴零件的加工工序卡片。
关键词: 发动机;凸轮轴;工艺设计The Main Machining Process Design Of The Automobile Engine CamshaftAbstractThe camshaft as an important part of engine, has a pivotal role on its distribution. When the engine running at work, camshaft is responsible for controlling the exhaust opening and closing and opening and closing of the door, however, because of the high speed in the work, it needs to bear large torque and also has a high strength and support of the camshaft. On the choice of the material must meet the requirements of camshaft on the strength of performance. The camshaft as an important component, its improvement and development is of great significance.In this paper, the camshaft of the OHV engine processing technology for analysis and design. operational path routing is the key stage and general design. Write a reasonable scientific process route are have many advantage. This design is the careful analysis of CAM shaft parts processing technical requirements and processing accuracy, reasonable blank type, after consulting related books, manuals, ICONS, standards, technical data, determine the process of machining allowance, process dimension and tolerance, and customize the camshaft parts machining process card finally.Keyword: Engine; Camshaft; Process Design目录1 概述 (1)2 确定凸轮轴的加工工艺过程 (4)2.1 凸轮轴的作用和分类 (4)2.2 凸轮轴传动与工作条件 (5)2.3 凸轮轴的结构及其特点 (5)2.4 凸轮轴的主要技术要求分析 (6)2.5 凸轮轴的材料和毛坯的确定 (7)2.6 凸轮轴的机械加工工艺过程 (7)2.7 凸轮轴的机械加工工艺路线 (8)3 凸轮轴的机械加工工艺过程分析 (10)3.1 凸轮轴的机械加工工艺特点及分析 (10)3.2 凸轮轴主要加工工序分析 (11)3.2.1 铣凸轮轴两端面,钻中心孔 (11)3.2.2 主轴颈的加工 (11)3.2.3 凸轮轴颈的加工 (11)3.2.4 凸轮轴颈的加工 (12)4 机械加工余量、工序尺寸及公差的确定 (14)4.1 凸轮轴主要加工表面的工序安排 (14)4.2 机械加工余量、工序尺寸及公差的确定 (14)4.2.1 凸轮轴主轴颈工序尺寸及公差的确定 (14)4.2.2 凸轮轴小外圆序尺寸及公差的确定 (15)4.3 凸轮轴机械加工工艺过程卡片的制定 (15)5 总结与展望 (18)参考文献 (19)致谢 (20)1 概述凸轮轴是发动机上的一个的旋转机件,它的运动对于发动机有极其重要的作用,在发动机工作循环中,它合理地控制进排气门的开启、关闭,使经过压缩的燃油混合气充分燃烧,推动活塞运动做功,然后将废气排出燃烧室。
凸轮轴主要有两个重要的加工部位:主轴颈和凸轮。
凸轮轴轴颈,主要是通过轴承与发动机接触,其表面有着足够高的精度、足够的刚度、较小的表面粗糙度以及良好的耐磨性,技术要求复杂而且比较高。
而另一个重要的加工部位是凸轮,它更是决定着凸轮轴的质量。
凸轮轴只是发动机的其中一个部件,发动机的机体另外还由气缸体、气缸盖、曲轴箱等组成,发动机各机构和各系统也是以发动机机体为基础安装的,发动机机体的内、外则是安装着发动机的所有主要零件和附件,承受各种载荷。
气缸体是发动机的框架,材料一般用灰铸铁制造,气缸体里面放置有活塞、曲轴等许多零部件,另外还有加强筋、润滑油道等结构。
曲轴箱是放置曲轴的空腔部件,其中分为上下两部分,上曲轴箱在铸造的时候就跟气缸体就是一体的,下曲轴箱的功能更,能够存放润滑油,分隔上曲轴箱,由于它受力小所以下曲轴箱厚度薄,形状不一,可根据发动机的结构和汽油量灵活变动。
气缸体的上面就是气缸盖安装的位置,从上部密封气缸并构成燃烧室。
由于气缸盖所处的特殊位置,所以气缸盖不得不承受气体力和紧固气缸螺栓所造成的机械负荷,同时还由于与高温燃气接触而承受很高的热。
汽车经100多年来的不断改进、创新,凝聚了人类的智慧和匠心,最后才发展成现在的样子。
而作为汽车的心脏发动机的重要零件,凸轮轴也经过漫长的发展过程成为现在的样子。
在过去凸轮轴大多是由铸造以及锻造生产,个别也有用碳钢切削加工制造。
铸造式凸轮轴主要有冷硬铸铁、淬火铸铁等。
为了减轻重量,有些凸轮轴采用型芯铸造,使轴呈空心状。
在不同的国家所采用凸轮轴种类也不同,日本使用冷硬铸铁凸轮轴较多,美国使用淬火铸铁凸轮轴较多。
近年为提高发动机性能,出现了重融冷硬铸铁、淬火球墨铸铁等多种形式的凸轮轴,但由于性价比较低等诸多因素影响并没有广泛使用。
锻造式凸轮轴以碳钢为主进行热锻,凸轮部分采用高频淬火处理,主要应用于大中型发动机上。
由于其耐点蚀性能较好,多与气门顶置式(OHV)机构的挺杆组合使用,也有与摇臂配合应用于柴油发动机凸轮上置式(OHC)结构上。
由于锻造式凸轮轴无法实现轻量化,发展潜力较小。
铸造凸轮轴生产工艺为冷激铸铁。
冷激铸铁产品,欧美国家早在上世纪二十年代初已经开始研制,广泛推广于上世纪六、七十年代,八十年代技术完全成熟。
冷激铸铁产品以其低成本、高性能的显著特点,广泛应用于内燃机上。
在国外,内燃机行业中有43%~47%汽油机、柴油机采用冷激铸铁作为凸轮轴材料,冷激铸铁普遍作为凸轮轴材料以其低成本、高性能的显著特点,得到了广泛的应用。
冷激铸铁凸轮轴的性能及应用冷激铸铁由于具有高硬度的碳化物组织而具有良好的抗磨性和抗擦伤性。
冷激铸铁中的白口层是莱氏体组织,在常温下是珠光体和碳1化物的机械混合物,由于含有大量的碳化物,它起一个骨架作用。
硬度较高,而莱氏体中的球光体起到储油作用。
冷激铸铁凸轮轴是在HT25基础上加入一定量的合金元素,经过特殊的铸造成型工艺铸造而成。
合金元素的加入提高了凸轮轴基体硬度和综合机械性能,大大提高耐磨性。
冷激铸铁凸轮轴的机械性能:抗拉强度ób>25N/mm2;硬度HRC48~54;耐磨层深度达6~1mm。
由于目前采用的球墨铸铁和45#钢采用等温淬火或高频淬火获得马氏体组织。
高速运转后,凸轮桃尖部位出现早期磨损,而冷激铸铁采用特殊的成型工艺,不需热处理。
凸轮轴各部位即能得到所需的不同硬度值。
桃尖部位的磨损量仅为球墨铸铁和45#钢的1/7,同时具有降低加工成本,提高经济性等优点。
为了减轻重量,凸轮轴芯铸成中空圆柱或者中空异型状成为发展趋势。
中空圆柱或者中空异型状对加工设备和生产材料提出了很高的要求,如对磨床等设备的加工精度和稳定性要求很高。
作为优化整个气门驱动系统的基本要素,组合式凸轮轴的发展正成为趋势。
组合式凸轮轴由精密钢管和装配于其上的凸轮节组成,而凸轮节的材料可以是钢或粉末金属材料。
装配式凸轮轴的发展前景由于传统的凸轮轴主要是铸造或锻造加工而成,各个部位金属性能相似。
这种凸轮轴很难同时保证发动机配气机构对凸轮轴各个部位不同性能的要求,凸轮的排列也不可能紧凑,材料利用不尽合理,后续加工复杂,在轻量化、功能高度集中和降低成本方面难有新的突破。
随着汽车轻量化发展,凸轮轴向轻量化、功能高度集中和低成本方向发展,装配凸轮轴的优势逐渐被人们认可和接受。
装配式凸轮轴的轴和凸轮分开制造,然后装配在一起。
凸轮一般采用碳钢或粉末冶金材料,轴颈采用粉末冶金件或集中于芯轴的钢管上,芯轴则采用冷拔薄壁无缝钢管。
碳钢凸轮可进行高频淬火或渗碳处理,具有较高的耐胶着、耐点蚀性能。
在设计方面装配式凸轮轴可将凸轮宽度设计较窄,间隔亦可很小,凸轮的排列非常紧凑。
它与传统凸轮轴相比具有重量轻、加工成本低、材料利用合理等优点,与实心轴凸轮轴相比,重量减轻多达45%。
装配式凸轮轴的关键技术是连接方法,因其连接方法不同而决定制造工艺及设备。
装配式凸轮轴始于上个世纪8年代,最先研制开发的是焊接连接式凸轮轴。