圆锥曲线高考选择填空压轴题专练

合集下载

圆锥曲线高考选择填空压轴题专练

圆锥曲线高考选择填空压轴题专练

圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA ,PB 的斜率倒数之和为3,则0y =( )A. 1B. 2C. 3D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x =上,所以200,4y P y ⎛⎫⎪⎝⎭,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=--- ,化简,得01211214y k k ⎛⎫=+-=⎪⎝⎭, 故选D. 2.已知双曲线221221(0,0)x y C a b a b-=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F , 1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈ 【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为x ,则0000011,1,121p a x ex a x x a x a a++=-+=-=- ,001111112cos 1132111a x aa a x a aθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C.3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x 轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()1 B.⎫⎪⎪⎝⎭C.⎛⎝⎭D. )1,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-,1e <或1e >,又01e <<,11e << ,选D .4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为A.B. C. D. 2【答案】A【解析】由()2,0F c 到渐近线by x a=的距离为d b == ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,bOA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有62c e a == ,故选A. 5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( )A. 2y x =+或2y x =--B. 2y x =+C. 22y x =+或22y x =-+D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b-=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( )A. [)2,+∞B. (]1,2C. (]1,3D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2a x c =,正好是双曲的右准线.由于AF= c a -,所以AF弦,圆心)2a c O c a ⎛⎫+- ⎪ ⎪⎝⎭,半径R c a =-圆上任取一点P, 30APF ∠=,现在转化为圆与准线相交问题.所以()22a c a c a c+-≤-,解得2e ≥.填A. 7.中心为原点O 的椭圆焦点在x 轴上, A 为该椭圆右顶点, P 为椭圆上一点,090OPA ∠=,则该椭圆的离心率e 的取值范围是 ( )A. 1,12⎡⎫⎪⎢⎣⎭B. ,12⎛⎫⎪ ⎪⎝⎭C. 1,23⎡⎫⎪⎢⎪⎣⎭D. 0,2⎛ ⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x y a b a b+=>>,设P(x,y),点P 在以OA 为直径的圆上。

压轴题10 圆锥曲线压轴解答题常考套路题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题10  圆锥曲线压轴解答题常考套路题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题10圆锥曲线压轴解答题常考套路题型解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大考向展开.考向一:轨迹方程考向二:向量搭桥进行翻译考向三:弦长、面积范围与最值问题考向四:斜率之和差商积问题考向五:定值问题考向六:定点问题1、直接推理计算,定值问题一般是先引入参数,最后通过计算消去参数,从而得到定值.2、先猜后证,从特殊入手,求出定点或定值,再证明定点或定值与参数无关.3、建立目标函数,使用函数的最值或取值范围求参数范围.4、建立目标函数,使用基本不等式求最值.5、根据题设不等关系构建不等式求参数取值范围.1.(2023·北京海淀·统考一模)已知椭圆:2222:1(0)x y E a b a b+=>>的左、右顶点分别为12,A A ,上、下顶点分别为12,B B ,122B B =,四边形1122A B A B的周长为.(1)求椭圆E 的方程;(2)设斜率为k 的直线l 与x 轴交于点P ,与椭圆E 交于不同的两点M ,N ,点M 关于y 轴的对称点为M '、直线M N '与y 轴交于点Q .若OPQ △的面积为2,求k 的值.【解析】(1)由122B B =,得22b =,即1b =,由四边形1122A B A B的周长为,得=25a =,所以椭圆的方程为2215x y +=.(2)设直线l 的方程为y kx m =+(0k ≠,0m ≠),11(,)M x y ,22(,)N x y ,则(,0)m P k-,11(,)M x y '-,联立方程组2215x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得,222(51)10550k x kmx m +++-=,222(10)4(51)(55)0km k m ∆=-+->,得2251k m >-,1221051km x x k +=-+,21225551m x x k -=+,直线M N '的方程为212212()y y y y x x x x --=-+,令0x =,得211221221212(0)y y x y x y y x y x x x x -+=-+=++,又因为()()1221122112122102()51k x y x y x kx m x kx m kx x m x x k -+=+++=++=+,所以1(0,)Q m ,OPQ △的面积1122m k m ⨯-=,得14k =±,经检验符合题意,所以k 的值为14±.2.(2023·山西太原·太原五中校考一模)如图,小明同学先把一根直尺固定在画板上,把一块三角板的一条直角边紧靠在直尺边沿,再取一根细绳,它的长度与另一直角边相等,让细绳的一端固定在三角板的顶点A 处,另一端固定在画板上点F 处,用铅笔尖扣紧绳子,让细绳紧贴住三角板的直角边,然后将三角板沿着直尺上下滑动,这时笔尖在平面上留下轨迹C .已知细绳长度为3cm ,经测量,当笔尖运动到点P 处时,30,90FAP AFP ∠∠== .设直尺边沿所在直线为a ,以过F 垂直于直尺的直线为x 轴,以过F 垂直于a 的垂线段的中垂线为y 轴,以1cm 为单位长度,建立平面直角坐标系.(1)求C 的方程;(2)过点()0,3D -且斜率为k 的直线l 与C 交于,M N 两点,k 的取值范围为()0,2,探究:是否存在λ,使得DM DN λ= ,若存在,求出λ.的取值范围,若不存在,说明理由.【解析】(1)依题意,笔尖到点F 的距离与它到直线a 的距离相等,因此笔尖留下的轨迹为以F 为焦点,a 为准线的抛物线,设其方程为22(0)y px p =>,则(,0)2p F ,由30,90FAP AFP ︒︒∠=∠=,得2PA PF =,又||||3PF PA +=,所以1PF =,所以点P 到直线a 的距离为1,由60FPA ︒∠=得点P 的横坐标122p -,而抛物线的准线方程为2p x =-,则11222p p -+=,解得32p =,所以轨迹C 的方程为23y x =.(2)假设存在λ,使得DM DN λ= ,设()()1122,,,M x y N x y ,直线l 的方程为3y kx =-,由233y kx y x=-⎧⎨=⎩消去y 得:22(63)90k x k x -++=,而(0,2)k ∈,22(63)363690k k k ∆=+-=+>,121222639,k x x x x k k++==,222121222112263()(14249)k x x x x k x x x x k k k ++++==++,由DM DN λ= 得12x x λ=,即12x x λ=,于是21142k kλλ+=++,令11(,)2t k =∈+∞,22214242(2)2t t t k k ++=++=+-17(,)4∈+∞,因此1174λλ+>,又0λ>,即217104λλ-+>,解得104λ<<或4λ>,所以存在1(0,(4,)4λ∈⋃+∞,使得DM DN λ= 成立.3.(2023·浙江杭州·统考二模)已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右顶点分别为A 、B ,点P 、Q 为椭圆上异于A 、B 的两点,PAB 面积的最大值为2.(1)求椭圆C 的方程;(2)设直线AP 、BQ 的斜率分别为1k 、2k ,且1235k k =.①求证:直线PQ 经过定点.②设PQB △和PQA △的面积分别为1S 、2S ,求12S S -的最大值.【解析】(1)当点P 为椭圆C 短轴顶点时,PAB 的面积取最大值,且最大值为112222AB b ab ab ⋅=⨯==,由题意可得22222c a ab c a b ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以,椭圆C 的标准方程为2214x y +=.(2)①设点()11,P x y 、()22,Q x y .若直线PQ 的斜率为零,则点P 、Q 关于y 轴对称,则12k k =-,不合乎题意.设直线PQ 的方程为x ty n =+,由于直线PQ 不过椭圆C 的左、右焦点,则2n ≠±,联立2244x ty n x y =+⎧⎨+=⎩可得()2224240t y tny n +++-=,()()()22222244441640t n t n t n ∆=-+-=+->,可得224n t <+,由韦达定理可得12224tn y y t +=-+,212244n y y t -=+,则()2121242n ty y y y n -=+,所以,()()()()()()()()212121121112221212122122422222422222n y y n y ty n y ty y n y k y x n n k x y ty n y ty y n y y y n y n-++-+-+--=⋅===-++++++++()()()()1211222222522223n y y ny n n n n y y ny n ++---=⋅==+-+++,解得12n =-,即直线PQ 的方程为12x ty =-,故直线PQ 过定点1,02M ⎛⎫- ⎪⎝⎭.②由韦达定理可得1224t y y t +=+,()1221541y y t =-+,所以,12121·2S S AM BM y y -=--=41=++,20t ≥因为函数()1f x x x=+在)+∞上单调递增,故15≥=,所以,12161515S S -≤0=t 时,等号成立,因此,12S S -的最大值为154.4.(2023·全国·校联考二模)在平面直角坐标系xOy 中,椭圆2222:1(0)C bb x a a y +>>=的上焦点为F ,且C 上的点到点F的距离的最大值与最小值的差为过点F 且垂直于y 轴的直线被C 截得的弦长为1.(1)求C 的方程;(2)已知直线l :(0y kx m m =+≠)与C 交于M ,N 两点,与y 轴交于点P ,若点P 是线段MN靠近N 点的四等分点,求实数m 的取值范围.【解析】(1)设C 的焦距为2c,由题意知2222()()21a c a c b a a b c ⎧+--=⎪⎪=⎨⎪=+⎪⎩解得21a b c ⎧=⎪=⎨⎪=⎩故C 的方程为2214y x +=.(2)设()()1122,,,M x y N x y ,联立2214y kx m y x =+⎧⎪⎨+=⎪⎩消去y 整理得()2224240k x mkx m +++-=,所以()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+.因为点P 是线段MN 靠近点N 的四等分点,所以3MP PN = ,所以123x x =-,所以()()()221222212332434x x x x x x x +=⨯-=-⨯-=-.所以()21212340x x x x ++=所以()()2222224412044m k m k k -+=++,整理得222240m k m k +--=,显然21m =不成立,所以22241m k m -=-.因为3240k m -+>,所以2224401m m m --+>-,即()222401m m m ->-.解得21m -<<-,或12m <<,所以实数m 的取值范围为(2,1)(1,2)--⋃.5.(2023·河北沧州·统考模拟预测)已知()2,0A -,()2,0B ,动点(),Q x y 关于x 轴的对称点为1Q ,直线AQ 与1BQ 的斜率之积为14-.(1)求点Q 的轨迹C 的方程;(2)设点P 是直线1x =上的动点,直线PA ,PB 分别与曲线C 交于不同于A ,B 的点M ,N ,过点B 作MN 的垂线,垂足为D ,求AD 最大时点P 的纵坐标.【解析】(1)由题意得()1,Q x y -,且2x ≠±,2AQ k y x =+,12BQ y k x -=-,所以1224y y x x -⋅=-+-,整理得曲线()22:124x C y x -=≠±.(2)设()01,P y ,()11,M x y ,()22,N x y ,若直线MN 平行于x 轴,根据双曲线的对称性,可知点P 在y 轴上,不符合题意,故设直线MN :()2,0x ty m m =+≠±,代入曲线C 中,得()2224240t y tmy m -++-=,则12224tm y y t -+=-,212244m y y t -=-,则()2121242m ty y y y m -=-+,由P ,A ,M 三点共线得PA MA k k =,即01132y y x =+,同理,由P ,B ,N 三点共线得2022y y x -=-,消去0y ,得()()21122320y x y x ++-=,即()()121243220ty y m y m y +-++=,得()()()()21212243220m y y m y m y m --++-++=,得()()()()1224240m m y m m y ---+-=,即对任意1y ,2y ,都有[]12(4)(2)(2)0m m y m y ---+=成立,故4m =或12(2)(2)0m y m y --+=,若12(2)(2)0m y m y --+=,由212244m y y t -=-,12224tm y y t -+=-可得:1222(2)(2),,44m t m t y y t t -+--==--所以22222(4)444m t m t t --=--即224t t =-,矛盾,故12(2)(2)0m y m y --+≠,所以4m =.所以直线MN :4x ty =+恒过点()4,0H ,则点D 的轨迹是以HB 为直径的圆,其方程为()2231x y -+=,当D 与H 重合时,AD 最大,此时MN x ⊥轴,AM :)2y x =+,1,2P ⎛± ⎝⎭.所以当AD 最大时,点P 的纵坐标为2±.6.(2023·湖南·校联考二模)已知椭圆E :()222210x y a b a b+=>>经过点(,且离心.F 为椭圆E 的左焦点,点P 为直线l :3x =上的一点,过点P 作椭圆E 的两条切线,切点分别为A ,B ,连接AB ,AF ,BF .(1)求证:直线AB 过定点M ,并求出定点M 的坐标;(2)记△AFM 、△BFM 的面积分别为1S 和2S ,当12S S -取最大值时,求直线AB 的方程.参考结论:点()00,Q x y 为椭圆22221x ya b+=上一点,则过点Q 的椭圆的切线方程为00221x x y ya b+=.【解析】(1)由题意可得b =,ca =222a b c =+,所以26a =,22b =,椭圆E 的方程为22162x y +=.设()11,A x y ,()22,B x y ,()03,P y ,由参考结论知过点P 在A 处的椭圆E 的切线方程为11162x x y y +=,同理,过点P 在B 处的椭圆E 的切线方程为22162x x y y +=.因为点P 在直线PA ,PB 上,所以101202122122y y x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线AB 的方程为0122x y y+=,则直线AB 过定点()2,0M .(2)设直线AB 的方程为2x ty =+,联立方程组222162x ty x y =+⎧⎪⎨+=⎪⎩,得()223420t y ty ++-=,故12243ty y t +=-+,12223y y t =-+,1212122882233t S S y y y y t t t-=-=+==≤++,当且仅当3tt=,即t =此时直线AB 的方程为2x =+.7.(2023·上海金山·统考二模)已知椭圆:Γ()2221024x y b b+=<<.(1)已知椭圆ΓΓ的标准方程;(2)已知直线l 过椭圆Γ的右焦点且垂直于x 轴,记l 与Γ的交点分别为A 、B ,A 、B 两点关于y 轴的对称点分别为A '、B ',若四边形ABB A ''是正方形,求正方形ABB A ''的内切圆的方程;(3)设О为坐标原点,P 、Q 两点都在椭圆Γ上,若OPQ △是等腰直角三角形,其中OPQ ∠是直角,点Р在第一象限,且O 、P 、Q 三点按顺时针方向排列,求b 的最大值.【解析】(1)由题意得2a =,c a =c =所以2221b a c =-=,所以椭圆Γ的标准方程为2214x y +=;(2)设右焦点()1,0F c ,左焦点()2,0F c -,因为四边形ABB A ''是正方形,不妨设点A 在第一象限,则(),A c c ,所以12,AF c AF ===,由(12124AF AF c a +===,得1c ,正方形ABB A ''的内切圆的圆心为()0,01-,所以所求圆的方程为226x y +=-;(3)设直线OP 的倾斜角为π,0,2θθ⎛⎫∈ ⎪⎝⎭,斜率为()0k k >,则直线OQ 的斜率为π1tan 41k k θ-⎛⎫-= ⎪+⎝⎭,设()()1122,,,P x y Q x y ,则2110,0x x y >>>,联立22214x y b y kx⎧+=⎪⎨⎪=⎩,得2212244b x k b =+,同理可得()()()2222222222414141141b k b x k k b k b k +==--++⎛⎫+ ⎪+⎝⎭,由OQ 得222OQ OP =,即()2222222211121k x x x k x k -⎛⎫+=+ ⎪+⎝⎭,整理得()()222244002b k b k b +-+=<<,注意到()22240b b->且240b >,则要使上述关于k 的一元二次方程有正数解,只需要()222Δ44160b b =--≥,解得01b <≤,所以b 1.8.(2023·上海黄浦·统考二模)已知双曲线C 的中心在坐标原点,左焦点1F 与右焦点2F 都在x 轴上,离心率为3,过点2F 的动直线l 与双曲线C 交于点A 、B .设222AF BF ABλ⋅=.(1)求双曲线C 的渐近线方程;(2)若点A 、B 都在双曲线C 的右支上,求λ的最大值以及λ取最大值时1AF B ∠的正切值;(关于求λ的最值.某学习小组提出了如下的思路可供参考:①利用基本不等式求最值;②设2||AF AB 为μ,建立相应数量关系并利用它求最值;③设直线l 的斜率为k ,建立相应数量关系并利用它求最值).(3)若点A 在双曲线C 的左支上(点A 不是该双曲线的顶点,且1λ=,求证:1AF B △是等腰三角形.且AB 边的长等于双曲线C 的实轴长的2倍.【解析】(1)设双曲线方程为22221x y a b-=(),0a b >,焦距为2c ,由3c e a ==,所以b a ==y =±.(2)由(1)可得3c a =,b =,所以双曲线C 的方程为222218x y a a-=,设21AF t =,22BF t =,因为点A 、B 都在双曲线C 的右支上,所以12AB t t =+,所以()()2212122221214AF BF t t t t t t ABλ⋅==≤=+,当且仅当12t t =时取等号,即max 14λ=,当14λ=时12t t =,所以121122AF a t a t BF =+=+=,所以l x ⊥轴且1212AF F BF F ∠=∠,又双曲线C 的方程为222218x y a a -=,即22288x y a -=,由222388x a x y a =⎧⎨-=⎩,解得8y a =±,可知28AF a =,又126F F a =,所以2121284tan 63a AF F AF F F a ∠===,121122122tan 24tan tan 21tan 7AF F AF B AF F AF F ∠∠=∠==--∠.(3)设直线l 的方程为3x my a =+,将它代入22288x y a -=,可得()22228148640my may a -++=,设()11,A x y ,()22,B x y ,可得1224881am y y m +=--,21226481a y y m =-,由1λ=,可得222AF BF AB ⋅=,)21212y -=,又1y 、2y 同号,所以()21212y y y y =-,即()212125y y y y =+,所以2222644858181a am m m ⎛⎫= ⎪⎝--⎭⨯-,解得254m =,此时直线l<l 与双曲线的两支都相交,又221226464819a a y y m ==-,所以()2212222296411649A a m y y B a AF BF =⋅==+=⨯,则4AB a =,它等于双曲线实轴长的2倍,此时211222422AF AF a BF a a BF a BF =-=+-=+=,所以1AF B △是等腰三角形.9.(2023·江西九江·校联考模拟预测)已知P 为椭圆22142x y +=上一点,过点P 引圆222x y +=的两条切线PA 、PB ,切点分别为,A B ,直线AB 与x 轴、y 轴分别交于点M 、N .(1)设点P 坐标为0(x ,0)y ,求直线AB 的方程;(2)求MON △面积的最小值(O 为坐标原点).【解析】(1)先求在圆上一点的切线方程:设圆U 的方程为()()222x a y b r -+-=,圆心为(),U a b ,半径为r ,设()00,V x y 是圆U 上的一点,则()()22200x a y b r -+-=①,设(),W x y 是圆U 在()00,V x y 处的切线方程上任意一点,则0VU VW ⋅=,即()()()()()()00000000,,0a x b y x x y y a x x x b y y y --⋅--=--+--=②,-①②并整理得()()()()200x a x a y b y b r --+--=,即圆U 在()00,V x y 处的切线方程为()()()()200x a x a y b y b r --+--=.根据题意,设1(A x ,1)y ,2(B x ,2)y ,0(P x ,0)y ,PA 是圆222x y +=的切线且切点为A ,则PA 的方程为112x x y y +=,同理PB 的方程为222x x y y +=,又由PA 、PB 交于点P ,则有10102x x y y +=,20202x x y y +=,则直线AB 的方程为002x x y y +=.(2)要使,,O M N 围成三角形,则P 不是椭圆的顶点,所以000,0x y ≠≠,由(1)可得M 的坐标为02(x ,0),N 的坐标为2(0,)y ,00122OMN S OM ON x y =⋅= ,又由点P 是椭圆22142x y +=上的动点(非顶点),则有2200142x y +=,则有220000142x y y =+≥,即00||x y ≤当且仅当22001422x y ==时等号成立,0012=2OMN S OM ON x y =⋅ 即OMN.10.(2023·河南商丘·商丘市实验中学校联考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的上顶点为A ,右顶点为B ,坐标原点O 到直线AB,AOB 的面积为2.(1)求椭圆C 的方程;(2)若过点()2,0P 且不过点()3,1Q 的直线l 与椭圆C 交于M ,N 两点,直线MQ 与直线4x =交于点E ,证明://PQ NE .【解析】(1)依题意,(0,),(,0)A b B a,有||AB =,因为AOB 的面积为2,则122AOB S ab == ,又点O 到直线AB的距离为5,则有1||22AOB S AB == ,于是22410ab a b =⎧⎨+=⎩,而0a b >>,解得a b ⎧=⎪⎨=⎪⎩,所以椭圆C 的方程为22182x y +=.(2)直线PQ 的斜率10132PQ k -==-,当直线l 的斜率不存在时,直线l 的方程为2x =,代入椭圆方程得1y =±,不妨设此时(2,1)M ,(2,1)N -,则(4,1)E ,直线NE 的斜率1(1)142NE PQ k k --===-,因此//PQ NE ;当直线l 的斜率存在时,设其方程为(2)(1)y k x k =-≠,设1122(,),(,)M x y N x y ,则直线MQ 的方程为1111(3)3y y x x --=--,令4x =,得1114(4,)3y x E x +--,由2248(2)x y y k x ⎧+=⎨=-⎩消去y 得:2222(14161680)k x k x k +-+-=,由于点P 在椭圆C 内,必有0∆>,则21221614k x x k +=+,212216814k x x k -=+,1121243114NE y x y x k x +----=--()()()11212143143y x y x x x +---=---()()()()()()()1121212124234343k x x k x x x x x x -+-------=--[]()()()()22221212212148168(1)(8)(1)3(814140)4343k k k k x x x x k k x x x x -----+--++===----,因此1NE PQ k k ==,即//PQ NE ,所以//PQ NE .11.(2023·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.【解析】(1)由题意可得2a b =,则椭圆C :222214x y b b +=,联立22221412x y b b y x⎧+=⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩或2x y b ⎧=⎪⎨=⎪⎩,4=,解得285b =,所以2325a =,所以椭圆C 的方程为22132855x y +=,即2252032x y +=;(2)因为四边形MNPQ 为菱形,所以,MP NQ 垂直且平分,设()()1122,,,M x y P x y ,则2222112252032,52032x y x y +=+=,两式相减得()()222212125200x x y y -+-=,即()()()()1212121240x x x x y y y y -++-+=,设菱形的中心为()00,x y ,若直线,MP NQ 的斜率都存在,设直线,MP NQ 的斜率分别为12,k k ,由()()()()1212121240x x x x y y y y -++-+=,得()()()()1212121240y y x x y y x x -+++=-,所以001280x y k +=,即00140x y k +=,同理00240x y k +=,所以0102y k y k =,由121k k =-得00y =,所以00x =,即菱形的中心为原点,则直线MP 的方程为1y k x =,直线NQ 的方程为2y k x =,联立12252032y k x x y =⎧⎨+=⎩,解得212132520x k =+,所以()()22122221111213211520k OM x y k x k +=+=+=+,同理()22222321520k ON k +=+,因为1122OMN S OH OM ON ==,所以2222222111OM ON OHOMONOMON+==()()22222212121222222212121252052028555321321321k k k k k k k k k k k k +++++=+=⋅+++++()()2222121222221212285525525321132232k k k k k k k k +++++=⋅=⋅=+++++,所以点H 在圆222532x y +=上;若直线,MP NQ 中有一条直线的斜率不存在,由对称性可知棱形的中心为原点,,,,M N P Q 四点分别为椭圆的顶点,不妨设M 为右顶点,N 为上顶点,则22328,55OM ON ==,同理可得22222221112532OM ON OHOMONOMON+==+=,点H 任在圆222532x y +=上,综上所述,H 的轨迹方程为222532x y +=.12.(2023·上海闵行·统考二模)已知O 为坐标原点,曲线1C :()22210xy a a -=>和曲线2C :22142x y +=有公共点,直线1l :11y k x b =+与曲线1C 的左支相交于A 、B 两点,线段AB 的中点为M .(1)若曲线1C 和2C 有且仅有两个公共点,求曲线1C 的离心率和渐近线方程;(2)若直线OM 经过曲线2C 上的点)2,1T-,且2a 为正整数,求a 的值;(3)若直线2l :22y k x b =+与曲线2C 相交于C 、D 两点,且直线OM 经过线段CD 中点N ,求证:22121k k +>.【解析】(1)因为曲线1C 和2C 有且仅有两个公共点,所以曲线1C 和2C 的两公共点为左右顶点,则2a =,曲线1C 的半焦距5c =所以曲线1C 的离心率52c e a ==,渐近线方程为12y x =±;(2)联立222111x y a y k x b⎧-=⎪⎨⎪=+⎩,得()()22222211111210a k x a k b x a b ---+=,设()()1122,,,A x y B x y ,则()222111121222221112,11a b a k b x x x x a k a k -++==--,所以2112211M a k b x a k =-,21111122221111M a k b b y k b a k a k =+=--,故直线OM 的方程为211y x a k =,依题意直线OM 经过点)2,1T -,代入得212a k =4212a k =,所以2142k a =,因为直线1l 与曲线1C 的左支相交于两点,故()()221221101a b a k -+>-,得2211a k >,则422212a aa >=,所以22a <,又曲线1C 和2C 有公共点,所以204a <≤,所以202a <<,又2a 为正整数,所以21a =,所以1a =;(3)由(2)可得()12102M M y k a x a=<≤,同理,联立直线2l :22y k x b =+与曲线2C :22142x y +=,可得212N N y k x =-,因为N M M N y y x x =,所以2212a k k =-,又因为2211a k >,所以42222221121114a k k k k a k +=+>≥,即22121k k +>.13.(2023·重庆九龙坡·统考二模)已知椭圆C :()222210x y a b a b+=>>的离心率为12,左、右焦点分别为1F ,2F ,过1F 的直线()1y t x =+交椭圆于M ,N 两点,交y 轴于P 点,1PM MF λ= ,1PN NF μ=,记OMN ,2OMF △,2ONF △的面积分别为1S ,2S ,3S .(1)求椭圆C 的标准方程;(2)若123S mS S λ=-,433μ-≤≤-,求m 的取值范围.【解析】(1)由题意得,左焦点1(1,0)1F c -⇒=,122c a a =⇒=,2223b a c =-=,所以椭圆C 的标准方程为:22143x y +=.(2)设1122(,),(,)M x y N x y ,令0x =,y t =,则()0,P t ,则11(,)PM x y t =-uuu r,()1111,MF x y =--- 由1PM MF λ=得()()1111,1,x y t x y λ-=---,解得11t y λ=-,同理21ty μ=-.由()221431x y y t x ⎧+=⎪⎨⎪=+⎩,得2236490y y t t ⎛⎫+--= ⎪⎝⎭,则1226,43t y y t +=+2122943ty y t -=+,()1212128223t y y t t y y y y λμ++=+-=-=-.不妨设120y y >>,1121211122S y y y y =⋅⋅-=-(),21111122S y y =⋅⋅=,32211122S y y =⋅⋅=-,由11t y λ=-,21t y μ=-.得11t y λ=+,21t y μ=+,2111513y y λλμλ++==-++.代入123S mS S λ=-,有()2121121122y y y m y λ-+=,则1212m y y y y λ=-+,解得22221114(1)15911(1)1()553333y y y m y y y λλλλλλ+=--=-+=+=-+++++,43,3μ-≤≤-Q 511[,2]33λμ∴+=--∈设53u λ=+,则1[,2]3u ∈,则()4193h u u u=-++,则()2419h u u -'=-,令()0h u '>,解得223u <<,令()0h u '<,解得1233u <<,故()h u 在12,33⎛⎫⎪⎝⎭上单调递减,在2,23⎛⎫ ⎪⎝⎭上单调递增,则()min 213h u h ⎛⎫== ⎪⎝⎭,且()1417,2339h h ⎛⎫== ⎪⎝⎭,则()171,9h u ⎡⎤∈⎢⎥⎣⎦,则171,9m ∈⎡⎤⎢⎥⎣⎦.14.(2023·上海静安·统考二模)已知双曲线Γ:22221x y a b-=(其中0,0a b >>)的左、右焦点分别为1F (-c ,0)、2F (c ,0)(其中0c >).(1)若双曲线Γ过点(2,1)且一条渐近线方程为2y x =;直线l 的倾斜角为4π,在y轴上的截距为2-.直线l 与该双曲线Γ交于两点A 、B ,M 为线段AB 的中点,求△12MF F 的面积;(2)以坐标原点O 为圆心,c 为半径作圆,该圆与双曲线Γ在第一象限的交点为P .过P 作圆的切线,若切线的斜率为Γ的离心率.【解析】(1)双曲线Γ:22221x y a b -=渐近线方程为b y x a =±,已知一条渐近线方程为y =,所以a =,双曲线Γ经过点(2,1),所以22411a b -=,解得222,1a b ==.所以双曲线Γ:2212x y -=.直线l 的倾斜角为π4,则斜率为1,又l 在y 轴上的截距为2-,则l 方程为:2y x =-,代入双曲线方程得:28100x x -+=,设两点A 、B 坐标分别为(1x ,1y )、(2x ,2y ),M (x ,y ),则1284,2x x x y +=⇒==.又12F F =则12MF F △的面积1111222F F y =⋅⋅=⨯=(2)方法一:由题可知圆方程为:222x y c +=,将其与双曲线方程联立:22222222222221x y c b b x b c x y x y a c ab ⎧+=⎪⇒+-=⇒==⎨-=⎪⎩,即2,b P c c ⎛⎫⎪ ⎪⎝⎭,又切线斜率为2OP b k c =⋅=()22442242334803840c a c a a c e e ⇒-=⇒+-=⇒-+=,解得22e =,所以双曲线Γ;方法二:设切线与x 轴交于E点,因切线斜率为3πPEO ∠=,又2πOPE ∠=,则1566ππ,POE POF ∠=∠=.注意到12OF OF c OP ===,则在2 POF 中,由余弦定理,22PF c -===,在1POF △中,由余弦定理,1PF ===.则()12122c a PF PF c e a=-=⇒==15.(2023·辽宁大连·统考一模)已知双曲线C 上的所有点构成集合()(){}22,10,0P x y axby a b =-=>>和集合()(){}22,010,0Q x y axby a b =<-<>>,坐标平面内任意点()00,N x y ,直线00:1l ax x by y -=称为点N 关于双曲线C 的“相关直线”.(1)若N P ∈,判断直线l 与双曲线C 的位置关系,并说明理由;(2)若直线l 与双曲线C 的一支有2个交点,求证:N Q ∈;(3)若点N Q ∈,点M 在直线l 上,直线MN 交双曲线C 于A ,B ,求证:MA MBAN BN=.【解析】(1)直线l 与双曲线C 相切.理由如下:联立方程组220011ax by ax x by y ⎧-=⎨-=⎩,∴()222220000210aby a x x ax x by -+--=①,∵N P ∈,∴22001ax by -=,即22001ax by -=,代入①得,220020ax ax x ax -+-=,∴222200440a x a x ∆=-=,∴直线l 与双曲线C 相切.(2)由(1)知()222220000210aby a x x ax x by -+--=,∵直线l 与双曲线C 的一支有2个交点,则2220020222000Δ010aby a x by aby a x ⎧⎪-≠⎪⎪>⎨⎪--⎪>⎪-⎩,∴()()()22222222000000044141a x a by ax by aby by ax ∆=----=+-,∴22001ax by -<,∵()2200222220000110by by aby a x a ax by --+=>--,∴220001ax by <-<,∴()00,N x y Q ∈.(3)设()11,M x y ,(),A x y ,设MA AN λ= ,MB BN μ=,∵()00,N x y l ∉,∴1λ≠-,则101011x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,代入双曲线22:1C ax by -=,利用M 在l 上,即01011ax x by y -=,整理得()222220011110ax by ax by λ--+--=,同理得关于μ的方程()222220011110ax by ax by μ--+--=.即λ、μ是()222220011110ax by t ax by --+--=的两根,∴0λμ+=,∴MA MBAN BN=.16.(2023·湖南益阳·统考模拟预测)已知1F 、2F 分别为双曲线22122:1(0,0)y xC a b a b-=>>的上、下焦点,其中1F 坐标为()0,2点M 是双曲线1C 上的一个点.(1)求双曲线1C 的方程;(2)已知过点()4,1P 的直线与22122:1(0,0)y x C a b a b-=>>上支交于不同的A 、B 两点,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在某条定直线上.【解析】(1)由1F 坐标为()0,2得224a b +=,点M在双曲线1C 上得22231a b -=,解得2213a b ⎧=⎨=⎩,双曲线方程为221.3x y -=(2)设直线与双曲线交于()11,A x y ,()22,B x y ,点(),Q x y ,由AP QB AQ PB ⋅=⋅得(0AP AQ PBQBλλ==>且1)λ≠,AP PB λ=- ,AQ QB λ=,代入坐标得()()1122414,1,x y x y λ--=---,()()1122,,x x y y x x y y λ--=--,整理得:()1241x x λλ-=-①()121x x x λλ+=+,②,得()22221241x x x λλ-=-③,同理121y y λλ-=-④,()121y y y λλ+=+⑤,得()2222121y y y λλ-=-⑥,由于双曲线1C 上的点满足2233y x -=,⑥3⨯-③得()()()222222112233341y x y x y x λλ---=--,即()()2233341y x λλ-=--,所以343y x -=,表示点(),Q x y 在定直线4330x y -+=上.17.(2023·贵州黔西·校考一模)已知双曲线()2222:10,0x y C a b a b-=>>5点(3,2P -在双曲线C 上.(1)求双曲线C 的方程;(2)设()1,0A -,M 为C 上一点,N 为圆221x y +=上一点(M ,N 均不在x 轴上).直线AM ,AN 的斜率分别记为1k ,2k ,且2140k k +=,判断:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由双曲线离心率为2215c b e a a ==+224b a =,所以双曲线方程为222214x y a a-=,又点(3,2P -在双曲线上,即2293214a a -=,解得21a =,24b =,所以双曲线的方程为2214y x -=;(2)由已知得10k ≠,20k ≠,设直线()1:1AM y k x =+,点()11,M x y ,由()122114y k x y x ⎧=+⎪⎨-=⎪⎩得()22221114240k x k x k ----=,0∆>,则212144A M k x x k +=--,即212144M k x k +-=--,212144M k x k +=-,所以211221148,44k k M k k ⎛⎫+ ⎪--⎝⎭由2140k k +=,得124k k =-,所以2222222418,141k k M k k ⎛⎫+ ⎪--⎝⎭设直线()2:1AN y k x =+,联立直线与圆221x y +=,得()22222221210k x k x k +++-=,0∆>,则222211A N k x x k -=+,即222211N k x k --=+,222211N k x k -=+,所以222222212,11k k N k k ⎛⎫- ⎪++⎝⎭,所以222222222222222281141141114MNk k k k k k k k k k --+-==--+-+-,即21MN k k ⋅=-,所以MN AN ⊥,又点A 在圆221x y +=上,设圆221x y +=与x 轴的另一个交点为B ,则()10B ,,且AN BN ⊥,即直线BN 与MN 重合,所以直线MN 恒过点()10B ,.18.(2023·浙江宁波·统考二模)已知双曲线2222:1x y E a a-=,点(0,2)D 与双曲线上的点的(1)求双曲线E 的方程;(2)直线:l y kx m =+与圆22:(2)1C x y ++=相切,且交双曲线E 的左、右支于A ,B 两点,交渐近线于点M ,N .记DAB ,OMN 的面积分别为1S ,2S ,当12847S S -=时,求直线l 的方程.【解析】(1)设(,)P x y 是双曲线上的任意一点,则2222222(2)2442(1)2DP x y y y a y a =+-=-++=-++,所以当1y =时,2DP 的最小值为22a +,所以223a +=,得21a =,所以双曲线E 的方程为221x y -=.(2)由直线:l y kx m =+与圆22:(2)1C x y ++=1=,由直线交双曲线的左、右支于A ,B 两点,设()11,A x y ,()22,B x y ,联立221x y y kx m⎧-=⎨=+⎩,消y 整理得()()2221210k x mkx m ---+=,则()221Δ410m k=+->,212211m x x k +=-,12221mk x x k +=--,所以12x x -=所以221222110142m m x x k m m ++==<-++,即2420m m ++<,解得22m -<<-,1=,则21m +≥,解得1m ≥-或3m ≤-,所以(231,2m ⎤⎡∈--⋃--⎦⎣,所以12AB x x =-=,又点(0,2)D 到AB 的距离1d =1121(2242m S AB d m m -==---,设()33,M x y ,()44,N x y ,联立方程组220x y y kx m⎧-=⎨=+⎩,消y 整理得()222120k x mkx m ---=,则22Δ4m =,34221mk x x k +=-,23421m x x k -⋅=-,所以34221m x x k --=-,所以34221mMN x x k -=-=-,又点O 到MN 的距离2d =22221242mS MN d m m ==---,所以当12847S S -=时,有222(2)428442427m m m m m m --=------,整理得()24(25847m m m -=--,即4(2(52)(2)7m m m -=+-,又2m ≠,4(52)7m -=+,即2200258810m m ++=,解得134m =-,22750m =-(舍去),所以34m =-,则34k =±,所以直线方程为3344y x =±-.19.(2023·上海松江·统考二模)已知椭圆2212:12x y C b+=的左、右焦点分别为12F F 、,离心率为1e ;双曲线2222:12x y C b -=的左、右焦点分别为34F F 、,离心率为2e ,12e e ⋅=.过点1F 作不垂直于y 轴的直线l 交曲线1C 于点A 、B ,点M 为线段AB 的中点,直线OM 交曲线2C 于P 、Q 两点.(1)求1C 、2C 的方程;(2)若113AF F B =,求直线PQ 的方程;(3)求四边形APBQ 面积的最小值.【解析】(1)由题意可知:12e e ==所以12222e e ⋅===,解得:21b =,所以椭圆方程为2212x y +=,双曲线方程为:2212x y -=.(2)由(1)知()11,0F -,因为直线AB 不垂直与y 轴,设直线AB 的方程为:1x my =-,设点()()1122,,,A x y B x y ,则()1111,,AF x y =---()1221,F B x y =+ ,由113AF F B =,则123y y -=,即123y y =-,联立:22112x my x y =-⎧⎪⎨+=⎪⎩,可得:()222210m y my +--=,()()222442810m m m ∆=++=+>,由韦达定理可得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,将123y y =-代入得:()222222132m y m y m -⎧=⎪+⎪⎨=⎪+⎪⎩解得1m =±,当1m =时,弦AB 的中点21,33M ⎛⎫- ⎪⎝⎭,此时直线PQ 的方程为:12y x =-;当1m =-时,弦AB 的中点21,33M ⎛⎫-- ⎪⎝⎭,此时直线PQ 的方程为:12y x =.所以直线PQ 的方程为12y x =-或12y x =.(3)设AB 的中点()00,M x y ,由(2)可得)2212m AB m +=+,且000222,122m y x my m m -==-=++,点222,22m M m m -⎛⎫ ++⎝⎭,2PQ OM m k k ==-,直线PQ 的方程为:2my x =-,联立22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩可得:2242x m =-,2222m y m =-,且220m ->,由双曲线的对称性,不妨取点P ⎛⎫⎪⎭、Q ⎛⎫,所以点P 到直线AB的距离为:21d =,点Q 到直线AB的距离为:22d ==21222m d d ++=,所以四边形APBQ的面积为()1212S AB d d =+===2022m <-≤,所以当222m -=,即0m =时,四边形APBQ 的面积取最小值2.20.(2023·湖北武汉·统考模拟预测)过点()4,2的动直线l 与双曲线()2222:10,0x y E a b a b-=>>交于,M N 两点,当l 与x 轴平行时,MN=l 与y 轴平行时,MN =(1)求双曲线E 的标准方程;(2)点P 是直线1y x =+上一定点,设直线,PM PN 的斜率分别为12,k k ,若12k k 为定值,求点P 的坐标.【解析】(1)由题意可知:双曲线()2222:10,0x y E a b a b-=>>过点()2±,(4,±,将其代入方程可得:222284116121a b a b⎧-=⎪⎪⎨⎪-=⎪⎩,解得:2244a b ⎧=⎨=⎩,∴双曲线E 的标准方程为:22144x y -=.(2)方法一:设()()1122,,,M x y N x y ,点()4,2与,M N 三点共线,12122244y y x x --∴=--,()()12124422x x y y λλ⎧-=-⎪∴⎨-=-⎪⎩(其中R λ∈,0λ≠),()()12124121x x y y λλλλ⎧=+-⎪∴⎨=+-⎪⎩,()()222241214x y λλλλ⎡⎤⎡⎤∴+--+-=⎣⎦⎣⎦,又22224x y -=,整理可得:()()2212420x y λλλλ--+-=,当1λ=时,12x x =,12y y =,不合题意;当1λ≠时,由222420x y λλλ-+-=得:22122y x λ=-+,设()00,P x y ,则001y x =+,()()102012102011y x y x k k x x x x -+-+∴⋅=⋅--()()()22220202202220222211243222y y x x x y x y x x x y x x ⎛⎫-+--++ ⎪-+⎝⎭=⋅-⎛⎫-+--+ ⎪⎝⎭()()()0220020020220031212223422x y x x x y x x x x y x x x ⎛⎫-+-- ⎪-+⎝⎭=⋅-⎛⎫-+-+- ⎪⎝⎭,若12k k 为定值,则根据约分可得:000121x x x --=-且000114222x x x --=--,解得:03x =;当03x =时,()3,4P ,此时22122226441322x y k k x y --=⋅=--;∴当()3,4P 时,124k k =为定值.方法二:设()()()112200,,,,,M x y N x y P x y ,直线()():420MN y k x k =-+≠,由()22424y k x x y ⎧=-+⎨-=⎩得:()224240x k x ⎡⎤--+-=⎣⎦,12,x x 为方程()224240x k x ⎡⎤--+-=⎣⎦的两根,()()()()222124241x k x k x x x x ⎡⎤∴--+-=---⎣⎦,则()()()()222001024241x k x k x x x x --+-=---⎡⎤⎣⎦,由()42y k x =-+得:24y x k-=+,由22244y x k x y -⎧=+⎪⎨⎪-=⎩可得:222440y y k -⎛⎫+--= ⎪⎝⎭,同理可得:()()()()222220001022441y k k y k k y y y y -+--=---,则()()()()()()()()()()201020102122121211k y y y y y y y y k k x x x x k x x x x -----==-----()()2222002200244424y k k y k x k x -+--=--+-⎡⎤⎣⎦()()()()2220000222000012816448164168y k y k y y x x k x k x -++-+-+=-+-+-++-,若12k k 为定值,则必有22000022000012816448164168y y y y x x x x -+--+==-+--+-,解得:0034x y =⎧⎨=⎩或00x y ⎧=⎪⎪⎨⎪=⎪⎩或00x y ⎧=⎪⎪⎨⎪=⎪⎩又点P 在直线1y x =+上,∴点P 坐标为()3,4;当直线MN 斜率为0时,,M N坐标为()2±,若()3,4P ,此时124k k ==;当直线MN 斜率不存在时,,M N坐标为(4,±,若()3,4P ,此时124443434k k -+=--;综上所述:当()3,4P 时,124k k =为定值.21.(2023·贵州黔西·校考一模)已知双曲线2222:1(0,0)x y C a b a b-=>>(3,P -在双曲线C 上.(1)求双曲线C 的方程;(2)设()1,0A -,M 为C 上一点,N 为圆221x y +=上一点(,M N 均不在x 轴上).直线,AM AN 的斜率分别记为12,k k ,且2140k k +=,判断:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由双曲线2222:1(0,0)x y C a b a b-=>>可得222225,4c a b b a a a+=∴=∴=,又点(3,P -在双曲线C 上,即2293214a a-=,解得221,4a b ==,故双曲线C 的方程为2214y x -=.(2)由题意可知120,0k k ≠≠,且AM 的方程为11y k x k =+,联立112214y k x k y x =+⎧⎪⎨-=⎪⎩,可得2222111(4)240k x k x k ----=,2140k -≠,Δ640=>,设11(,)M x y ,由题意可知该方程有一根为1-,故221111221144(1),44k k x x k k --+-=∴=--,则111112184k y k x k k =+=-,AN 的方程为22y k x k =+,联立22221y k x k x y =+⎧⎨+=⎩,可得2222222(1)210k x k x k +++-=,40'∆=>,设2221(,),N x y x x ≠,由题意可知该方程有一根为1-,故222222222211(1),11k k x x k k ---=∴=++,则222222221k y k x k k =+=+,由于2140k k +=,即124k k =-,由于2140k -≠,故224160k -≠,故22122164416k x k +=-,212232416k y k -=-,所以直线MN 的斜率为222221222222212222232141611641416MNk k y y k k k k k x x k k ---+-==-+--+-2222222222222222222(416)(1)(32)401(1)(416)(1)(164)40k k k k k k k k k k k --+-===----++-,故直线MN 的方程为1121()y y x x k -=--,即22222222321641()416416k k y x k k k ++=----,即222(164)(1)0k x k y -+-=,由于224160k -≠,故210x k y +-=,即直线MN 过定点(1,0).22.(2023·上海宝山·统考二模)已知抛物线Γ:24y x =.(1)求抛物线Γ的焦点F 的坐标和准线l 的方程;(2)过焦点F 且斜率为12的直线与抛物线Γ交于两个不同的点A 、B ,求线段AB 的长;(3)已知点()1,2P ,是否存在定点Q ,使得过点Q 的直线与抛物线Γ交于两个不同的点M 、N (均不与点Р重合),且以线段MN 为直径的圆恒过点P ?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)∵抛物线Γ:24y x =,则2p =,且焦点在x 轴正半轴,故抛物线Γ的焦点()1,0F ,准线:1l x =-.(2)由(1)可得:()1,0F ,可得直线()1:12AB y x =-,设()()1122,,,A x y B x y ,联立方程()21124y x y x⎧=-⎪⎨⎪=⎩,消去y 得21810x x -+=,可得()212184113200,18x x ∆=--⨯⨯=>+=,故1220AB x x p =++=.(3)存在,理由如下:设直线()()3443:,,,,MN x my n M x y N x y =+,联立方程24x my n y x=+⎧⎨=⎩,消去x 得2440y my n --=,则()23434160,4,4m n y y m y y n ∆=+>+==-,可得()()33441,2,1,2PM x y PN x y =--=--uuu r uuu r,若以线段MN 为直径的圆恒过点P ,则PM PN ⊥,。

2023年新高考地区数学名校地市选填压轴题好题汇编-圆锥曲线1-3

2023年新高考地区数学名校地市选填压轴题好题汇编-圆锥曲线1-3

数学名校选填压轴题好题-圆锥曲线一、单选题1.已知直线2140ax by -+=平分圆2242110C x y x y +---=:的面积,过圆外一点()P a b ,向圆做切线,切点为Q ,则PQ 的最小值为( ) A .4 B .5 C .6 D .7【答案】A【解析】圆2242110C x y x y +---=:化为标准方程为()()222116x y -+-=,所以圆心()21C ,,半径4r =, 因为直线2140ax by -+=平分圆2242110C x y x y +---=:的面积,所以圆心()21C ,在直线2140ax by -+=上,故22140a b -+=, 即7=+b a ,在Rt PQC 中,()()222222116PQ PC r a b =-=-+--()()()2222261628242216a a a a a =-++-=++=++,当2a =-时,2PQ 最小为16,PQ 最小为4. 故选:A .2.(2022·广东·深圳外国语学校高三阶段练习)已知双曲线2222:1x y C a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,12F PF ∠的平分线与x 轴交于Q ,若214OQ OF =,则双曲线的离心率范围为( )A .()1,2B .()1,4C .)2D .)4【答案】B【解析】设双曲线的半焦距为()0c c >, 离心率为e , 由214OQ OF =,则154QF c =,234QF c =,因为PQ 是12F PF ∠的平分线, 所以12:5:3PF PF =, 又因为122PF PF a -=, 所以125,3PF a PF a ==,所以53222a a c a c +>⎧⎨<⎩,解得14c a <<,即14e <<,所以双曲线的离心率取值范围为(1,4). 故选:B3.(2022·湖北武汉·高三开学考试)已知椭圆Γ:22221(0)x y a b a b+=>>的两个焦点为1F ,2F ,过2F 的直线与Γ交于A ,B 两点.若223AF F B =,12AB AF =,则Γ的离心率为( )A .15BCD【答案】C【解析】设2F B m =,则23AF m =,124AB AF m ==. 由椭圆的定义可知1225BF BF a m +==,所以25m a =,所以265AF a =,145AF a =.在△ABF 1中,22222211118481555cos 8424255a a a AB AF BF A a a AB AF ⎛⎫⎛⎫⎛⎫+- ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭===⨯⨯. 所以在△AF 1F 2中,2221212122cos F F AF AF AF AF A =+-,即22224441425554a a a c ⎛⎫⎛⎫⎛⎫=+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭整理可得:22225c e a ==,所以e =故选:C4.(2022·湖北·宜昌市夷陵中学模拟预测)已知双曲线1C :()222210,0x y a b a b-=>>与抛物线2C :()220y px p =>有公共焦点F ,过F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线2C 相交于点B ,若点A 为线段FB 的中点,双曲线1C 的离心率为e ,则2e =( )A B C D 【答案】B【解析】根据题意,作图如下:因为双曲线1C 和抛物线2C 共焦点,故可得2224p a b +=,又(),0F c 到b y xa =的距离db ==,即AF b =,又A 为BF 中点,则2BF b =, 设点(),B x y ,则22p b x =+,解得22p x b =-;由2224p a b +=可得OA a =, 则由等面积可知:1122BF OA OF y ⨯⨯=⨯⨯,解得4ab y p =,则42,2p ab B b p ⎛⎫- ⎪⎝⎭, 则2,A A ab x b y p ==,又点A 在渐近线b y x a=上,即22b ab a p =,即22a pb =,又22244p a b =+,联立得42240a a b b --=,即222210b a a b -+=,解得22b a =故2221b e a =+. 故选:B.5.(2022·江苏·南京市雨花台中学模拟预测)直线10x y -+=经过椭圆()222210x y a b a b +=>>的左焦点F ,交椭圆于A 、B 两点,交y 轴于C 点,若2FC AC =,则该椭圆的离心率是( )A B C .2 D 1【答案】A【解析】由题意可知,点(),0F c -在直线10x y -+=上,即10c -=,可得1c =, 直线10x y -+=交y 轴于点()0,1C ,设点(),A m n ,()1,1FC =,(),1AC m n =--, 由2FC AC =可得()21211m n -=⎧⎨-=⎩,解得1212m n ⎧=-⎪⎪⎨⎪=⎪⎩,椭圆()222210x y a b a b +=>>的右焦点为()1,0E,则AE =又AF =2a AE AF ∴=+=,因此,该椭圆的离心率为4228c e a ====. 故选:A.6.(2022·湖南·长沙市明德中学高三开学考试)己知双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点分别为1F 、2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为( ) A .2 BC1D1【答案】A【解析】如下图示,因为1F A AB =,120F B F B ⋅=,O 是12F F 中点, 所以A 是1F B 中点且12F B F B ⊥,则1OA F B ⊥,1OF OBc ,因为直线OA 是双曲线22221x y a b-=的渐近线,所以OA b k a=-,1F B a k b =,直线1F B 的方程为()ay x c b =+,联立()ay x c b b y x a⎧=+⎪⎪⎨⎪=⎪⎩,解得22222,a c abc B b a b a ⎛⎫ ⎪--⎝⎭,则()()4222222222222||a c a b c OB c b a b a =+=--,整理得223b a =, 因为222c a b -=,所以224a c =,2ce a==. 故选:A7.(2022·湖北·应城市第一高级中学高三开学考试)已知(),0F c (其中0c >)是双曲线()222210,0x y a b a b-=>>的焦点.圆22220x y cx b +-+=与双曲线的一条渐近线l 交于A B 、两点.已知l 的倾斜角为30︒.则tan AFB ∠=( ) A.B.C.-D.-【答案】C【解析】如图所示:22220x y cx b +-+=,化为()22222x c y c b a -+=-=, 因为渐近线l 的倾斜角为30︒,所以tan 30ba==圆心(),0F c 到直线b y x a =的距离为:d b =, 又AF BF a ==,所以11cos 22b AFB AFB a ∠==∠=则1tan 2AFB ∠=所以212tan 2tan 111tan 2AFBAFB AFB ∠∠===---∠ 故选:C二、多选题8.(2022·广东·广州市真光中学高三开学考试)已知抛物线()2:20C y px p =>的焦点为F ,抛物线C 上的点()1,M m 到点F 的距离是2,P 是抛物线C 的准线与x 轴的交点,A ,B 是抛物线C 上两个不同的动点,O 为坐标原点,则( ) A.m =B .若直线AB 过点F ,则3OA OB ⋅=- C .若直线AB 过点F ,则PA FAPB FB = D .若直线AB 过点P ,则2AF BF PF +>【答案】BCD 【解析】由题意得122p+=,则2p =,故抛物线C 的方程为24y x =, 将()1,M m 代入抛物线的方程,得24m =,解得2m =±, 所以A 不正确;设()11,A x y ,()22,B x y ,易知直线AB 的斜率不为零,当直线AB 过点()1,0F 时, 可设直线AB 的方程为1x ty =+,与抛物线方程联立,得241y xx ty ⎧=⎨=+⎩,化简得:2440y ty --=,则124y y =-,124y y t +=,所以221212116y y x x ==,所以1212143OA OB x x y y ⋅=+=-=-,所以B 正确;易知()1,0P -,则由选项B 得121211PA PB y yk k x x +=+++ ()()()()()()()()()122112211212122222880111111y ty y ty ty y y y t tx x x x x x +++++-+====++++++,所以直线PF 平分APB ∠,所以PA FAPB FB=, 选项C 正确;因为直线AB 过点()1,0P -,且斜率不为零,所以设直线AB 的方程为1x ty =-,与抛物线方程联立, 易得124y y ,所以121=x x .因为1>0x ,20x >,且12x x ≠,所以121124AF BF x x +=+++>=,又2PF =,所以2AF BF PF +>,所以D 正确. 故选:BCD .9.(2022·广东·鹤山市鹤华中学高三开学考试)已知椭圆C :221169x y +=的左,右焦点为F 1,F 2,点P 为椭圆C 上的动点(P 不在x 轴上),则( ) A .椭圆C 的焦点在x 轴上 B .△PF 1F 2的周长为C .|PF 1|的取值范围为[94,4)D .tan△F 1PF 2的最大值为【答案】ABD【解析】对于A ,由椭圆的方程可知,椭圆焦点在x 轴上,故A 正确;对于B,因为c =12PF F △的周长为228a c +=+,故B 正确;对于C ,因为P 不在x 轴上,所以1a c PF a c -<<+,所以1PF的取值范围为(4,故C 不正确;对于D ,设椭圆的上顶点为B ,则121202F PF F BF π∠∠<,所以12tan F PF ∠的最大值为12tan F BF ∠.设2OBF ∠α=,则tan α=,且122F BF ∠α=,而22tan tan21tan ααα==-所以12tan F PF ∠的最大值为故D 正确. 故选:ABD.10.(2022·广东广州·高三开学考试)已知抛物线22y px =上的四点()2,2A ,B ,C ,P ,直线AB ,AC 是圆()22:21M x y -+=的两条切线,直线PQ 、PR 与圆M 分别切于点Q 、R ,则下列说法正确的有( )A .当劣弧QR 的弧长最短时,1cos 3QPR ∠=-B .当劣弧QR 的弧长最短时,1cos 3QPR ∠=C .直线BC 的方程为210x y ++=D .直线BC 的方程为3640x y ++=【答案】BD【解析】由已知得抛物线22y px =过点()2,2A ,即2222p =⨯,所以1p =, 即抛物线为22y x =, 对于AB 选项,如图所示,设点200,2y P y ⎛⎫⎪⎝⎭当劣弧QR 的弧长最短时,QMR ∠最小,又QMR QOR π∠+∠=,所以QPR ∠最大,即cos QPR ∠最小,又222cos cos 212sin 12MQ QPR QPM QPM PM∠=∠=-∠=-⋅,又圆()22:21M x y -+=,所以圆心()2,0M ,半径1r QM ==,22cos 1QPR PM∠=-,又()222222000122324y PM y y ⎛⎫=-+=-+ ⎪⎝⎭, 所以当202y =时,2PM 取最小值为3,此时cos QPR ∠最小为21133-=, 所以A 选项错误,B 选项正确;对于CD 选项,设过点A 作圆M 切线的方程为()22y k x -=-,即220kx y k --+=,所以1d r ===,解得k =则直线AB的方程为:)22y x --,即2y =-, 直线AC的方程为:)22y x -=-,即2y =+, 联立直线AB与抛物线222y y x ⎧-⎪⎨=⎪⎩,得240y y =,故24B y -,2B y,823B ⎛⎫ ⎪ ⎪⎝⎭,同理可得823C ⎛⎫- ⎪ ⎪⎝⎭,所以2212BCk ⎫⎛⎫-⎪ ⎪==-⎝⎭⎝⎭,直线BC的方程为18223y x ⎡⎤⎫⎛-=--⎢⎥⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,即3640x y ++=,所以C 选项错误,D 选项正确; 故选:BD.11.已知双曲线()2222:10x y C a b a b-=>>的左,右顶点分别为1A ,2A ,点P ,Q 是双曲线C 上关于原点对称的两点(异于顶点),直线1PA ,2PA ,1QA 的斜率分别为1PA k ,2PA k ,1QA k ,若1234PA PA k k ⋅=,则下列说法正确的是( ) A .双曲线C 的渐近线方程为34y x B .双曲线CC .11PA QA k k ⋅为定值D .12tan A PA ∠的取值范围为()0,∞+【答案】BCD【解析】设(),P x y ,则22221x y b a ⎛⎫=- ⎪⎝⎭,因为()1,0A a -,()2,0A a ,故1222222222221PA PA x b a y y y b k k x a x a x a x a a⎛⎫- ⎪⎝⎭⋅=⋅===+---,依题意有2234b a =,所以b a =所以双曲线C的渐近线方程为b y x a =±=,离心率e ==,故选项A 错误,选项B 正确; 因为点P ,Q 关于原点对称,所以四边形12A PA Q 为平行四边形,即有12A Q A P k k =, 所以111234A P A Q A P A P k k k k ⋅=⋅=,故C 正确; 设1PA 的倾斜角为α,2PA 的倾斜角为β,由题意可得3tan tan 4αβ⋅=, 则12A PA αβ∠=-,根据对称性不妨设P 在x 轴上方,则,则12A PA βα∠=-,则()()212212tan tan 443tan tan 1tan tan 774PA PA PA PA A PA k k k k βαβααβ⎛⎫-∠=-==-=-⎪ ⎪+⋅⎝⎭, 因为P 在x轴上方,则2PA k >20PA k <<, 函数()34f x x x =-在⎛⎫ ⎪ ⎪⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增, 所以()12tan 0,A PA ∠∈+∞,故D 正确. 故选:BCD.12.(2022·广东·中山一中高三阶段练习)下列命题中正确的是( ) A .双曲线221x y -=与直线20x y +-=有且只有一个公共点 B .平面内满足)(20PA PB a a -=>的动点P 的轨迹为双曲线 C .若方程22141x y t t +=--表示焦点在y 轴上的双曲线,则4t >D .过给定圆上一定点A 作圆的动弦AB ,则弦AB 的中点P 的轨迹为椭圆 【答案】AC【解析】对于A ,解方程组22120x y x y ⎧-=⎨+-=⎩,得唯一解5434x y ⎧=⎪⎪⎨⎪=⎪⎩,所以曲线221x y -=与直线20x y +-=有且只有一个公共点,所以A 对;对于B ,当||2AB a =时,满足||||||2PA PB a -=的动点P 的轨迹为两条射线,不是双曲线,所以B 错;对于C ,若方程22141x y t t +=--表示焦点在y 轴上的双曲线,40t -<且104t t ->⇔>,所以C 对;对于D ,举反例,不妨设圆的方程为222x y R +=,定点(,0)A R ,动点(,)P x y ,则(2,20)B x R y --在圆上,222(2)(20)x R y R -+-=在,222()()22R Rx y -+=,点P 轨迹是圆,而不是椭圆,所以D 错.故选:AC .13.(2022·湖南·长沙一中高三开学考试)已知11(,)A x y ,22(,)B x y 是圆O :221x y +=上两点,则下列结论正确的是( ) A .若1AB =,则3AOB π∠=B .若点O 到直线AB 的距离为12,则AB =C .若2AOB π∠=,则112211x y x y +-++-的最大值为D .若2AOB π∠=,则112211x y x y +-++-的最大值为4【答案】AD【解析】对于A ,若1AB =,则可知点O 到AB 3AOB π∠=,故A 正确;对于B ,若点O 到直线AB 的距离为12,则可知2AB ,从而得AB B 错误;对于C ,D ()()1122,,,A x y B x y 两点到直线10x y +-=的距离之和,又AOB 90∠=,所以三角形AOB 是等腰直角三角形,设M 是AB 的中点,则OM AB ⊥,且2OM OA ==M 在以O 点为圆心,半径为2的圆上,,A B 两点到直线10x y +-=的距离之和为AB 的中点M 到直线10x y +-=的距离的两倍.点()0,0O 到直线10x y +-==,所以点M 到直线10x y +-=+=因此112211x y x y +-++-的最大值为4.从而可知C 错误,D 正确.. 故选:AD.14.(2022·湖南·长沙一中高三开学考试)已知椭圆C :2212x y a +=(2a >P (1,1)的直线与椭圆C 交于A ,B 两点,且满足AP PB λ=.动点Q 满足AQ QB λ=-,则下列结论正确的是( ) A .3a =B .动点Q 的轨迹方程为2360x y +-=C .线段OQ (OD .线段OQ (O【答案】ABD【解析】对于A :由椭圆22:1(2)2x y C a a +=>,所以3a =,故A 正确;对于B :设()()()()()11221122,,,,,,1,1,1,1,A x y B x y Q m n AP x y PB x y ∴=--=--1122(,),(,)AQ m x n y QB x m y n =--=--,由,AP PB AQ QB λλ==-,得()()()121212121,11,1,,x x x x x x m m x x m λλλλλλ⎧+=+-=-⎧⎪∴⎨⎨-=--=--⎪⎩⎩两式相乘得()2222121x x m λλ-=-,同理可得()()22222222221122121,1323232x y x y m n y y n λλλλ⎛⎫⎛⎫-=-∴+-+=-+ ⎪ ⎪⎝⎭⎝⎭,由题意知0λ>且1λ≠,否则与AQ QB λ=-矛盾,1,32m n ∴+=∴动点Q 的轨迹方程为132yx +=,即直线2360x y +-=,故B 正确;对于C 、D :所以线段OQ 长度的最小值即为原点到直线的距离,OQ ∴min故C 错误,D 正确. 故选:ABD.15.(2022·湖北·高三开学考试)已知双曲线22:124y C x -=的左、右焦点分别是1F ,2F ,点P 是双曲线C 右支上的一点,且12PF PF ⊥,则下列结论正确的是( )A .双曲线C 的渐近线方程为y =±B .12PF F 内切圆的半径为2C .1212PF PF +=D .点P 到x 轴的距离为245【答案】ABD【解析】由双曲线C 的方程22124y x -=,得1a =,b =5c =,所以双曲线C 的渐近线方程为y =±,A 正确;因为12PF PF ⊥,122PF PF -=,12210F F c ==,所以2212122100PF PF F F +==,22212121212224PF PF PF PF F F PF PF +-=-=,解得1248PF PF =,故1214PF PF +==,C 错误;12PF F △内切圆的半径为121222PF PF F F +-=, B 正确;设点P 到x 轴的距离为d ,由12PF F △的面积为12242PF PF =,可得12242F F d =,解得245d =. 故选:ABD .16.(2022·湖北·襄阳五中高三阶段练习)已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 且斜率大于0的直线交抛物线C 于,A B 两点(其中A 在B 的上方),O 为坐标原点,过线段AB 的中点M 且与x 轴平行的直线依次交直线,,OA OB l 于点,,P Q N .则( )A .若2AF FB =,则直线AB 的斜率为B .PM NQ =C .若,P Q 是线段MN 的三等分点,则直线AB 的斜率为D .若,P Q 不是线段MN 的三等分点,则一定有PQ OQ >【答案】ABC 【解析】抛物线焦点为()1,0F ,设直线AB 方程为()1y k x =-,0k >,()()1122,,,A x y B x y ,由2(1)4y k x y x=-⎧⎨=⎩得()2222240k x k x k -++=, 由韦达定理可知,212224k x x k ++=,121=x x ,因为2AF FB =,则可得2AF FB =, 且()111,AF x y =--,()221,FB x y =-, 所以12122x x -=-,即21230x x +-=, 且121=x x ,12x x > 解得12212x x =⎧⎪⎨=⎪⎩,得1225422x x k+==+,所以k =±0k >所以k =A 正确, 又因为122212M x x x k+==+,()21M M y k x k =-=,故直线MN 方程为2y x=, 又因为,,O P A 共线,所以11P P x y x y =,21111111222P P x y x y y x y ky ky k====,同理可得22Q y x k=, 12222M P Q y y y x x k k k ++===,222211M N P Q x x x x k k+=+-==+, 所以,M P Q N x x x x -=-,即PM NQ =,故B 正确. 若,P Q 是线段MN 的三等分点,则13PQ MN =, 12221212112233y y k k k -⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, ()212413k y y k+-=,又1242M y y y k+==,, ()()()22121212121114y y k x x k x x x x =--=--+=-,12y y ∴-=()2413k k +,解得k =()0k >,故C 正确.由()2222240k x k x k -++=,得1,2x =即2x =()221y k x =-=,22Q y x k ==2Q M y y k ==,所以OQ ==122y y PQ k -==所以()222245241k k OQ PQ k+-+-=()413k +=,当k >OQ PQ >,故D 错误.故选:ABC.17.(2022·湖北·高三阶段练习)[多选题]已知抛物线212x y =的焦点为F ,()11,M x y ,()22,N x y 是抛物线上两点,则下列结论正确的是( ) A .点F 的坐标为1,08⎛⎫⎪⎝⎭B .若直线MN 过点F ,则12116x x =-C .若MF NF λ=,则MN 的最小值为12D .若32MF NF +=,则线段MN 的中点P 到x 轴的距离为58【答案】BCD【解析】易知点F 的坐标为10,8⎛⎫⎪⎝⎭,选项A 错误;根据抛物线的性质知,MN 过焦点F 时,212116x x p =-=-,选项B 正确; 若MF NF λ=,则MN 过点F ,则MN 的最小值即抛物线通径的长, 为2p ,即12,选项C 正确,抛物线212x y =的焦点为10,8⎛⎫⎪⎝⎭,准线方程为18y =-,过点M ,N ,P 分别作准线的垂线MM ',NN ',PP '垂足分别为M ',N ',P ',所以MM MF '=,NN NF =. 所以32MM NN MF NF '+=+=', 所以线段324MM NN PP +''==', 所以线段MN 的中点P 到x 轴的距离为13158488PP '-=-=,选项D 正确.故选:BCD18.(2022·湖北·高三阶段练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,1F 、2F 分别为椭圆的左、右焦点,点A 在椭圆上,直线22:0l bx ay a b +--=,则( )A .直线l 与蒙日圆相切B .C 的蒙日圆的方程为2222x y a +=C .记点A 到直线l 的距离为d ,则2d AF -的最小值为(3bD .若矩形MNGH 的四条边均与C 相切,则矩形MNGH 的面积的最大值为28b 【答案】AC【解析】当两切线分别与两坐标轴垂直时,两切线的方程分别为x a =±、y b =±, 所以,点(),a b ±±在蒙日圆上,故蒙日圆的方程为2222x y a b +=+,因为2c e a ===,可得222a b =.对于A 选项,蒙日圆圆心到直线l 的距离为22d =所以,直线l 与蒙日圆相切,A 对;对于B 选项,C 的蒙日圆的方程为2222232x a b y a ==++,B 错;对于C 选项,由椭圆的定义可得122AF AF a +==,则21AF AF =-,所以,21d F d AF A =--+,因为c b ==,直线l 的方程为30x b -=,点()1,0F b -到直线l 的距离为d '=,所以,(213d A b d AF d F '=+-=-≥-,当且仅当1AF l ⊥时,等号成立,C 对;对于D 选项,若矩形MNGH 的四条边均与C 相切,则矩形MNGH 的四个顶点都在蒙日圆上,所以,()222212MN MH b +==,所以,矩形MNGH 的面积为22262MN MHS MN MH b +=⋅≤=,D 错.故选:AC.19.(2022·湖北·宜城市第二高级中学高三开学考试)双曲线2222:1(,0)x y C a b a b-=>的虚轴长为2,12,F F 为其左右焦点,,,P Q R 是双曲线上的三点,过P 作C 的切线交其渐近线于,A B 两点.已知12PF F △的内心I 到y 轴的距离为1.下列说法正确的是( ) A .2ABF 外心M 的轨迹是一条直线B .当a 变化时,AOB 外心的轨迹方程为22222(1)4a x a y ++=C .当P 变化时,存在,Q R 使得PQR 的垂心在C 的渐近线上D .若,,X Y Z 分别是,,PQ QR PR 中点,则XYZ 的外接圆过定点 【答案】AD【解析】因为已知12PF F △的内心I 到y 轴的距离为1,双曲线2222:1(,0)x yC a b a b-=>的虚轴长为2,所以12PF F △的内心I 横坐标01200012221x a PF PF x c c x x a =⇒=-=+--===|||||()|||,,双曲线方程:221x y -=,())12,F F ,渐近线y x =±.设()()()()()0011223344,,,,,,,,,P x y A x y B x y Q x y R x y . 当点()00,P x y 在双曲线()222210,0x y a b a b-=>>上时:设直线y kx m =+与双曲线()222210,0x ya b a b-=>>交两点()()1122,,,x y x y ''''2222220b x a y a b y kx m⎧--=⎨=+⎩ 22222222()2()0b a k x a kmx a m b ⇒---+= ()222224222222222222212222212122220Δ44()()4()0222b a k k m a b a k a m b a b b a k m a km x x b a k b m y y k x x m b a k ''''''⎧-≠⎪=+-+=-+>⎪⎪⎨+=-⎪⎪⎪+=++=-⎩当直线与双曲线相切时2222Δ00b a k m =⇔-+=,此时切点()00,Q x y 满足:22212020222012022022b x x a km a km x y m mx b y y b m b y k m m y a ''''⎧⎧+=-===-⎪⎪⎪⎪-⇒⎨⎨+⎪⎪===-=⎪⎪-⎩⎩ 切线22000222001x b x x y y b y kx m y x y a y a a=+⇔=-⇔-= 设直线y kx m =+与渐近线22220x y a b-=交两点()()3344,,,A x y B x y '''''' 22220b x a y y kx m⎧-=⎨=+⎩ 2222222()20b a k x a kmx a m ⇒---= 23412022234120222a km x x x x x b a k y y y y y''''''''⎧+==+=⎪-⎨⎪+=+=⎩ 切点()00,Q x y 正是线段AB 的中点, △2020ABb x k a y =;线段AB 中垂线是()200020a y y y x xb x -=--. 中垂线与y 轴交于点,且TA TB =.20022002001a b x x y yx bx ay a bb ab y x y a bx ay ⎧⎧=-=⎪⎪-⎪⎪⇒⇒⎨⎨⎪⎪==⎪⎪⎩-⎩可设220000,a b ab A bx ay bx ay ⎛⎫⎪--⎝⎭一方面,()22200AF ab k a b c bx ay =--;另一方面,线段2AF 中点是220000,22222a b c ab W bx ay bx ay ⎛⎫+ ⎪--⎝⎭ ()()220422200000223200002222222WTy c ab ab c bx y ay bx ay bk a b c a b cb bx ay bx ay ----==+-+-()()()()()2422242222000000222324220000002222AF WTab c bx y ay a b c abx y a y ab k k a b c bx ay a b cb bx ay a b c bx ay ----⋅=⋅=--+--- 考虑到()()22422242200000220a b c abx y a y a b c bx ay ⎡⎤⎡⎤--+--=⎣⎦⎣⎦△2221AF WT k k AF WT TA TF ⋅=-⇔⊥⇔=2TA TB TF ==,点T 确系2ABF 之外心M !其轨迹是直线0x =.选项A 正确!依(1)设2200000000,;,a a a a A B x ay x ay x ay x ay ⎛⎫⎛⎫- ⎪ ⎪--++⎝⎭⎝⎭线段OA OB 、中点是2200000000,,22222222a a a ax ay x ay x ay x ay ⎛⎫⎛⎫- ⎪ ⎪--++⎝⎭⎝⎭、线段OA 中垂线是200002222a a y a x x ay x ay ⎛⎫-=-- ⎪--⎝⎭,即20012a x ay y x a +-=⎛⎫+ ⎪⎝⎭ 线段OB 中垂线是200002222a a y a x x ay x ay ⎛⎫+=- ⎪++⎝⎭,即20012a x ay y x a ++=⎛⎫- ⎪⎝⎭ △()()2200001122a a x ay x ay y y x x a a ++⋅=+-⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭ ()2222220022214a x a y a y x a +=-=⎛⎫- ⎪⎝⎭,即OAB 外心的轨迹方程为()22222214a y x a a+-=.故选项B 错!(3)对PQR 来讲,若垂心在渐近线上可设坐标是(),u u ,进而0343403434u y y y x xu x x x y y -+-=-=--+- 化简得()()()()()()()()030304400404033044334433x y y x x y x y x x y y x x y y u x y x y x y x y ++++-+==++++-+()()()()()()()()()()()()030304400303344304043443443344003300x y y x x y x y x y y x x y x y x y y x x y x y u x y x y x y x y x y x y +++++++++===+++++++++()()()()()()()()()()()()404030300303434334340404443300443300x x y y x x y y x x y y x x y y x x y y x x y y u x y x y x y x y x y x y +-++-++-+===+-++-++-+()()()()()()()()044034430404344304043300330033x y x y x y x y x y y x x y x y x y y x u x y x y x y x y x y +-+++++===+-+++++△0440********334400x y x y x y x y x y x y u x y x y x y +++===+++把044033033044x y x y x y u x y x y x y u +⎧+=⎪⎪⎨+⎪+=⎪⎩代入()()()()404030304433x x y y x x y y u x y x y +-+=+-+并化简得:()()()0033440x y x y x y ⎡⎤----=⎣⎦考虑到()00,P x y 不在渐近线上得()000x y -≠,故3344x y x y -=-△34341QR y y k x x -==-,这不可能!垂心不能在y x =上,同理不能在y x =-上,选项C 错误; (4)设()0303343440400,0,,,,,,222222x x y y x x y y x x y y O X Y Z ++++++⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23434234342040420404tan tan 1QR PR QR PRQR PR k k ZXY R k k x x x x b k a y y y y x xx x b k a y y y y -⎧∠=∠=⎪+⋅⎪⎪++⎪=⋅=⎨++⎪⎪++⎪=*=++⎪⎩()()()()()()()()34043404043434043404340434043404tan 1x x x x x x y y x x y y y y y y ZXY x x x x y y y y x x x x y y y y ++-++-++++∠==++++++++⋅++()()()()()()()()34040434********3404340434043404tan 11OY OZ OY OZy y y y x x y y x x y y k k x x x x ZOY y y y y k k y y y y x x x x x x x x ++-++-++-++∠===+++⋅++++++⋅++tan tan 0,,,ZXY ZOY ZXY ZOY O Z X Y π∠+∠=⇔∠+∠=⇔共圆!XYZ 的外接圆过定点原点,选项D 对. 故选:AD20.(2022·江苏·南京市雨花台中学模拟预测)阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :2yx 上两个不同点,A B 横坐标分别为1x ,2x ,以,A B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( ) A .若AB 过抛物线的焦点,则P 点一定在抛物线的准线上 B .若阿基米德三角形PABC .若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D .一般情况下,阿基米德三角形PAB 的面积212||4x x S -=【答案】ABC【解析】由题意可知:直线AB 一定存在斜率, 所以设直线AB 的方程为:y kx m =+,由题意可知:点221122(,),(,)A x x B x x ,不妨设120x x <<,由2'2y x y x ,所以直线切线,PA PB 的方程分别为:221112222(),2()y x x x x y x x x x -=--=-,两方程联立得:211122222()2()y x x x x y x x x x ⎧-=-⎨-=-⎩, 解得:12122x x x y x x +⎧=⎪⎨⎪=⎩,所以P 点坐标为:1212(,)2x x x x +, 直线AB 的方程与抛物线方程联立得:2121220,y kx mx kx m x x k x x m y x=+⎧⇒--=⇒+==-⎨=⎩. A :抛物线C :2yx 的焦点坐标为1(0,)4,准线方程为 14y =-,因为AB 过抛物线的焦点,所以14m =,而1214x x m =-=-, 显然P 点一定在抛物线的准线上,故本选项说法正确; B :因为阿基米德三角形PAB 为正三角形,所以有||||PA PB =,因为 12x x ≠,所以化简得:12x x =-,此时221111(,),(,)A x x B x x -, P 点坐标为:21(0,)x -, 因为阿基米德三角形PAB 为正三角形,所以有||||PA AB =,112x x -⇒= 因此正三角形PAB所以正三角形PAB的面积为11sin 6022︒==故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA PB ⊥时, 所以1212121222121122122114PA PBx x x xx x k kx x x x x x x x ++--⋅=-⇒⋅=-⇒=---, 直线AB 的方程为:14y kx =+所以P 点坐标为:1(,)24k -,点 P 到直线AB 的距离为:=||AB ==,因为12121,4x x k x x +==-,所以21AB k ==+,因此直角PAB的面积为:2111(1)224k ⨯+=, 当且仅当0k =时,取等号,显然其面积有最小值14,故本说法正确;D :因为1212,x x k x x m +==-,所以1||AB x x ===-,点P 到直线AB 的距离为:212== 所以阿基米德三角形PAB的面积32121211224x x S x x -=⋅-=, 故本选项说法不正确. 故选:ABC21.(2022·湖南·长沙市明德中学高三开学考试)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线2:2(0)C y px p =>,O 为坐标原点,一条平行于x 轴的光线1l 从点(5,2)M 射入,经过C 上的点A 反射后,再经C 上另一点B 反射后,沿直线2l 射出,经过点N .下列说法正确的是( ) A .若2p =,则||4AB = B .若2p =,则MB 平分ABN ∠ C .若4p =,则||8AB =D .若4p =,延长AO 交直线2x =-于点D ,则D ,B ,N 三点共线【答案】ABD【解析】若2p =,则抛物线2:4C y x =,(1,2)A ,C 的焦点为(1,0)F ,直线AF 的方程为:1x =,可得(1,2)B -,||4AB =,选项A 正确;2p =时,因为||514||AM AB =-==,所以AMB ABM ∠=∠,又AMBN ,所以∠∠=AMB MBN ,所以MB 平分ABN ∠,选项B 正确;若4p =,则抛物线2:8C y x =,1(2A ,2),C 的焦点为(2,0)F ,直线AF 的方程为4(2)3y x =--,联立抛物线方程求解可得8(8,)B -,所以25||2AB =,选项C 不正确; 若4p =,则抛物线2:8C y x =,1(2A ,2),延长AO 交直线2x =-于点D ,则(2,8)D --,由C 选项可知8(8,)B -,所以D ,B ,N 三点共线,故D 正确.故选:ABD .三、填空题22.(2022·广东·广州市真光中学高三开学考试)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆上存在一点P 使得122π3F PF ∠=,则该椭圆离心率的取值范围是________.【答案】 【解析】由椭圆的定义可知:122PF PF a +=, 在△12PF F 中,由余弦定理得:()2222221122121121121222221124222os 221c F P F P F P F P F F F P F P F F b F P F P F PF F P F P F P F P F P F P +-⋅-+--⋅∠====-⋅⋅⋅,所以2214F P F P b ⋅=,又()1212224F P F P F P F P a +⋅≤=,即224b a ≤,当且仅当21F P F P =时等号成立,故22244a c a -≤,所以2234a c ≤,234e ≥,解得:e ∈.故答案为: 23.已知C :222220x y x y +---=,直线l :220x y ++=,M 为直线l 上的动点,过点M 作C 的切线MA ,MB ,切点为A ,B ,当四边形MACB 的面积取最小值时,直线AB 的方程为 ____. 【答案】210x y ++=【解析】C :222220x y x y +---=的标准方程为22(1)(1)4x y -+-=,则圆心()11C ,,半径2r =. 因为四边形MACB的面积2?2CAMS SCA AM AM ====要使四边形MACB 面积最小,则需CM 最小,此时CM 与直线l 垂直, 直线CM 的方程为()121y x -=-,即21y x =-,联立21220y x x y =-⎧⎨++=⎩,解得()0,1M -.则CM则以CM 为直径的圆的方程为221524x y ⎛⎫-+= ⎪⎝⎭,与C 的方程作差可得直线AB 的方程为210x y ++=.故答案为:210x y ++=.24.(2022·广东·高三开学考试)已知双曲线22:143x y C -=,1F 、2F 是双曲线C 的左、右焦点,M 是双曲线C 右支上一点,l 是12F MF ∠的平分线,过2F 作l 的垂线,垂足为P ,则点P 的轨迹方程为_______. 【答案】224(0)x y x +=>【解析】延长2F P ,交1F M 于Q ,因为2PMF PMQ ∠=∠,2MPF MPQ ∠=∠,MP MP =,所以2MPF MPQ ≌△△,所以2MF MQ =,所以1112QF MF MQ MF MF =-=-,因为M 是双曲线C 右支上一点,所以124QF a ==, 又因为P 是2QF 的中点,O 是12F F 的中点,所以1122PO QF ==, 所以P 的轨迹是以O 为圆心,半径为2的圆的一部分, 所以点P 的轨迹方程为224(0)x y x +=>. 故答案为:224(0)x y x +=>.25.已知F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,过点F 的直线l 与双曲线C 的一条渐近线垂直,垂足为A ,且直线l 与双曲线C 的左支交于点B ,若3FA AB =,则双曲线C 的渐近线的方程为______. 【答案】43y x =±【解析】设C 的左焦点为1F ,连接1F B ,过1F 作1F D FB ⊥于D ,易知:1//F D OA ,在曲线C 中,易知:FA b =,则2DB b =,则D 为线段FB 的中点.又4FB b =,1422FB b a c =-=,即2c a b +=,得4()c a c a +=-,则53c a =, 又222c a b =+,得43b a =,渐近线方程为43y x =±.故答案为:43y x =±26.(2022·湖北·宜城市第二高级中学高三开学考试)如图,经过坐标原点O 且互相垂直的两条直线AC 和BD 与圆2242200x y x y +-+-=相交于A ,C ,B ,D 四点,M 为弦AB 的中点,有下列结论:①弦AC 长度的最小值为②线段BO 长度的最大值为10 ③点M 的轨迹是一个圆;④四边形ABCD 面积的取值范围为⎡⎤⎣⎦.其中所有正确结论的序号为______. 【答案】①③④【解析】由题设22(2)(1)25x y -++=,则圆心(2,1)-,半径=5r ,由圆的性质知:当圆心与直线AC AC 长度的最小,此时||2AC ==①正确;BO 长度最大,则圆心与,B O 共线且在它们中间,此时||5BO r =②错误; 若,,,M H G F 分别是,,,AB BC CD AD 的中点,则////MF HG BD 且||||||2BD MF HG ==,////MH FG AC 且||||||2AC MH FG ==, 又AC BD ⊥,易知:MHGF 为矩形,而22222||||||||||4BD AC FH MF MH +=+=,若圆心(2,1)-到直线,AC BD 的距离12,d d ∈且22125d d +=,所以222212||||2255044BD AC d d +++=⨯=,则22||||454BD AC +=,故||FH =所以M 在以||FH =,HF MG 交点为圆心的圆上,③正确;由上分析:||AC =||BD =1||||2ABCD S AC BD =,所以ABCD S ==令22215[0,5]t d d ==-∈,则ABCD S ==当52t =,即12d d ==时,max ()45ABCD S =;当0=t 或5,即120,d d ==或120d d =时,min ()ABCD S =所以ABCD S ∈,④正确; 故答案为:①③④27.(2022·湖北·宜城市第二高级中学高三开学考试)阿波罗尼奥斯在其著作《圆锥曲线论》中提出:过椭圆()222210x y a b a b+=>>上任意一点()00,P x y 的切线方程为00221x x y y a b +=.若已知△ABC 内接于椭圆E :()222210x y a b a b +=>>,且坐标原点O 为△ABC 的重心,过A ,B ,C 分别作椭圆E 的切线,切线分别相交于点D ,E ,F ,则DEFABCS S =______. 【答案】4【解析】若11(,)A x y 、22(,)B x y 、33(,)C x y ,则,,AB BC AC 的中点1212(,)22x x y y G ++、2323(,)22x x y y H ++、1313(,)22x x y y I ++, 由O 为△ABC 的重心,则OG OC k k =、OH OA k k =、OI OB k k =, 所以312123y y y x x x +=+、231231y y y x x x +=+、132132y y yx x x +=+,可得133132232112x y x y x y x y x y x y -=-=-, 由题设,过,,A B C 切线分别为11221x x y ya b +=、22221x x y y a b +=、33221x x y y a b +=, 所以22122121122112()()(,)a y y b x x D x y x y x y x y ----,22311313311331()()(,)a y y b x x E x y x y x y x y ----,22233232233223()()(,)a y y b x x F x y x y x y x y ----, 所以222312312211213313223()()()0a y y a y y a y y x y x y x y x y x y x y ---++=---,同理222133221211213313223()()()0b x x b x x b x x x y x y x y x y x y x y ---++=---,即△DEF 重心也为O ,又2211221x y a b +=、2222221x y a b +=、2233221x y a b+=,可得22321212221213()()b x y y b x x x x a y y a y -+=-=--+、22313122231312()()y y b x x b x x x a y y a y -+=-=--+、22323212232321()()y y b x x b x x x a y y a y -+=-=--+, 所以22233212222133()()()()ODOC a y y b x x b k k a y y a b x x -=-=-⨯-==-,同理可得OE OB k k =、OF OA k k =,所以,,D O C 、,,E O B 、,,F O A 共线, 综上,,,C B A 分别是,,EF DF DE 的中点,则4DEF ABCSS=28.(2022·湖北·襄阳五中高三阶段练习)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12F F 、,过1F 作圆222:O x y a +=的切线l 切圆O 于点B 并与双曲线的右支交于点C ,若2BC CF =,则双曲线的离心率为___________.【解析】因为2BC CF =,122CF CF a -=, 所以12BF a =,又1,OB a OF c ==, △222245c a a a =+=,即ce a==29.(2022·山东·模拟预测)已知双曲线2222Ω:1(0,0)x y a b a b-=>>的左右焦点分别为12,,F F P 为Ω上一点,M 为12PF F △的内心,直线PM 与x 轴正半轴交于点H ,2||3aOH =,且213PF PF =,则Ω的渐近线方程为________.【答案】y x = 【解析】因为PH 经过12PF F △的内心,根据内角平分线定理可知:11222324333e 23233ac F H PF c a a HF PF c a c ++===⇒=⇒=--,所以Ω的渐近线方程为:y x =.故答案为:y =四、双空题30.(2022·广东惠州·高三阶段练习)已知抛物线方程28y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:()F P Q PFd =.已知点(P -,则()d P =___________;设点()(),02P t t ->,若()40d P PF k -->恒成立,则k 的取值范围为___________.【答案】4 (),4-∞【解析】如下图所示,过点Q 作抛物线准线的垂线QE ,垂足为点E ,设PFO θ∠=,则θ为锐角,设抛物线28y x =的准线与x 轴的交点为M ,则4MF =, 由抛物线的定义可知QF QE =,4cos cos MF PF θθ==,cos QE QF PQ PF QF θ==-, 所以,1cos cos PFQF θθ+=,当点P 的坐标为(-时,12PF ==,则1cos 3MF PF θ==, 此时()1cos 4cos PFd F P Q θθ+===;当点()(),02P t t ->时,若()40d P PF k -->恒成立,则()4k d P PF <-,()()41cos 444cos cos d P PF θθθ+-=-=,4k ∴<. 故答案为:4;(),4-∞.31.(2022·湖北·高三开学考试)已知抛物线()2:20C y px p =>的准线l 与x 轴的交点为H ,抛物线C 的焦点为F ,过点H 的直线与抛物线C 交于()()1122,,,A x y B x y 两点,4BF AF =,则21x x =________;若AB 的中点到准线l 的距离为254,则p =_________. 【答案】 16 4【解析】由题可知,02p H ⎛⎫- ⎪⎝⎭,设直线:2p AB x ty =-,代入抛物线方程可得, 2220y pty p -+=,则212y y p =, 因为4BF AF =,所以214y y =,又221212,22y y x x p p ==, △2222112162y x p y x p==,22221212121644y y p x x x p ===, △12,28p x x p ==, 又AB 的中点到准线l 的距离为254, △1225224x x p ++=,即12252x x p ++=, △25282p p p ++=,即4p =. 故答案为:16;4.32.(2022·湖南·的椭圆为“黄金椭圆”.已知椭圆22:1(100)10x y E m m +=>>是“黄金椭圆”,则m =___________,若“黄金椭圆”2222:1(0)x y C a b a b +=>>两个焦点分别为()1,0F c -、2(,0)(0)F c c >,P 为椭圆C 上的异于顶点的任意一点,点M 是12PF F △的内心,连接PM 并延长交12F F 于点N ,则||||PM MN =___________. 【答案】5【解析】由题,e ==,所以5m =.如图,连接12,MF MF ,设12PF F △内切圆半径为r , 则121212111222PF F PF r PF r F F r S ++=,即121(22)2PF F a c r S +=, 121211222MF F F F r S c r ==⋅⋅, △1212PF F MF F S PN a c c S MN +==, △c MN PN a c=+ △1c PM PN PN a c a c a ⎛⎫=-= ⎪++⎝⎭,△a PM a a c cMN ca c+====+故答案为:5.。

专题17 圆锥曲线全国卷高考真题填空题9道(解析版)-2021年高考数学圆锥曲线中必考知识专练

专题17 圆锥曲线全国卷高考真题填空题9道(解析版)-2021年高考数学圆锥曲线中必考知识专练

专题17:圆锥曲线全国卷高考真题填空题9道(解析版)一、填空题1,2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为____________________.【答案】2214x y -=【详解】依题意,设所求的双曲线的方程为224x y λ-=.点M 为该双曲线上的点,16124λ∴=-=.∴该双曲线的方程为:2244x y -=,即2214x y -=.故本题正确答案是2214x y -=.2,2019年全国统一高考数学试卷(文科)(新课标Ⅲ)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】( 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y ,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.3,2020年全国统一高考数学试卷(理科)(新课标Ⅰ)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2 【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可. 【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2. 【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题. 4,2018年全国卷Ⅲ理数高考试题已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.【答案】2 【分析】利用点差法得到AB 的斜率,结合抛物线定义可得结果. 【详解】详解:设()()1122A ,,B ,x y x y 则2112224{4y x y x ==所以22121244y y x x -=-所以1212124k y y x x y y -==-+取AB 中点()00M'x y ,,分别过点A,B 作准线x 1=-的垂线,垂足分别为A ,B'' 因为AMB 90∠︒=,()()'111MM '222AB AF BF AA BB ∴==+=+', 因为M’为AB 中点, 所以MM’平行于x 轴 因为M(-1,1)所以01y =,则122y y +=即k 2= 故答案为 2.【点睛】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设()()1122A ,,B ,x y x y ,利用点差法得到1212124k y y x x y y -==-+,取AB 中点()00M'x y ,,分别过点A,B 作准线x 1=-的垂线,垂足分别为A ,B'',由抛物线的性质得到()'1MM '2AA BB '=+,进而得到斜率. 5,2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=,则C 的离心率为__________.【答案】23【解析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=32b,∴22223||||4OA PA a b-=-设双曲线C的一条渐近线y=bax的倾斜角为θ,则tan θ=223||2||34APOPa b=-.又tan θ=ba,223234baa b=-,解得a2=3b2,∴22123113ba+=+=答案23点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,再根据222b c a=-和cea=转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).6,2017年全国普通高等学校招生统一考试理科数学(新课标2卷)已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =____________.【答案】6 【分析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点'F ,作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.7.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 【答案】22325()24x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程8,2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________. 【答案】[1,1]- 【解析】由题意知:直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,如图,过OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为∠OMN=45,所以sin 45OA OM =212OM ≤,解得2OM ,因为点M (0x ,1),所以2012OM x =+≤011x -≤≤,故0x 的取值范围是[1,1]-.考点:本小题主要考查考查直线与圆的位置关系,考查数形结合能力和逻辑思维能力,考查同学们分析问题和解决问题的能力,有一定的区分度.9,2019年全国统一高考数学试卷(理科)(新课标Ⅰ)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【分析】通过向量关系得到1F A AB =和1OA F A ⊥,得到1AOB AOF ∠=∠,结合双曲线的渐近线可得21,BOF AOF ∠=∠02160,BOF AOF BOA ∠=∠=∠=从而由0tan 603ba==可求离心率. 【详解】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 603ba==所以该双曲线的离心率为221()1(3)2c be a a==+=+=. 【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.。

第三章 圆锥曲线的方程【压轴题专项训练】(解析版)

第三章 圆锥曲线的方程【压轴题专项训练】(解析版)

第三章圆锥曲线的方程【压轴题专项训练】一、单选题1.已知点P (-1,0),设不垂直于x 轴的直线l 与抛物线y 2=2x 交于不同的两点A 、B ,若x 轴是∠APB 的角平分线,则直线l 一定过点A .(12,0)B .(1,0)C .(2,0)D .(-2,0)【答案】B 【分析】根据抛物线的对称性,分析得出直线过的顶点应该在x 轴上,再设出直线的方程,与抛物线方程联立,设出两交点的坐标,根据角分线的特征,得到所以AP 、BP 的斜率互为相反数,利用斜率坐标公式,结合韦达定理得到参数所满足的条件,最后求得结果.【详解】根据题意,直线的斜率不等于零,并且直线过的定点应该在x 轴上,设直线的方程为x ty m =+,与抛物线方程联立,消元得2220y ty m --=,设1122(,),(,)A x y B x y ,因为x 轴是∠APB 的角平分线,所以AP 、BP 的斜率互为相反数,所以1212011y yx x +=++,结合根与系数之间的关系,整理得出12122(1)()0ty y m y y +++=,即2(2)220t m tm t -++=,2(1)0t m -=,解得1m =,所以过定点(1,0),故选B.【点睛】该题考查的是有关直线过定点问题,涉及到的知识点有直线与抛物线的位置关系,韦达定理,角平分线的性质,两点斜率坐标公式,思路清晰是正确解题的关键.2.已知1F ,2F 分别为椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 是椭圆上位于第二象限内的点,延长1PF 交椭圆于点Q ,若2PF PQ ⊥,且2PF PQ =,则椭圆的离心率为A-B 1C D .2【答案】A 【分析】由题意可得2PQF 为等腰直角三角形,设|PF 2|=t ,运用椭圆的定义可得|PF 1|=2a ﹣t ,再由等腰直角三角形的性质和勾股定理,计算可得离心率.【详解】解:PF 2⊥PQ 且|PF 2|=|PQ |,可得△PQF 2为等腰直角三角形,设|PF2|=t ,则|QF 2|,由椭圆的定义可得|PF 1|=2a ﹣t,24t a=则t =2(2a ,在直角三角形PF 1F 2中,可得t 2+(2a ﹣t )2=4c 2,4(6﹣)a 2+(12﹣a 2=4c 2,化为c 2=(9﹣a 2,可得e =ca-.故选A.【点睛】本题考查椭圆的定义、方程和性质,主要是离心率的求法,考查等腰直角三角形的性质和勾股定理,以及运算求解能力.3.已知12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 2|>|PF 1|,椭圆的离心率为1e ,双曲线的离心率为2e ,112||||PF F F =,则2133e e +的最小值为()A .4B .6C.D .8【答案】D 【分析】由题意可得112||||2PF F F c ==,再设椭圆和双曲线得方程,再利用椭圆和双曲线的定义和离心率可得2133e e +的表达式,化简后再用均值不等式即可求解.【详解】由题意得:112||||2PF F F c ==,设椭圆方程为221122111(0)x y a b a b +=>>,双曲线方程为222222221(0,0)x y a b a b -=>>,又∵121212||||2,||||2PF PF a PF PF a +=-=.∴2122||+22,||22PF c a PF c a =-=,∴122a a c -=,则22112122393333e a a a c c e a c ca ++=+=2222229(2)3633c a a c a c ca c a ++==++2236683a cc a =++≥+=,当且仅当2233a c c a =,即23e =时等号成立.则2133e e +的最小值为8.故选:D 【点睛】考查椭圆和双曲的定义,焦半径公式以及离心率,其中将2133e e +化为22911(18)(218)833a c c a ++≥=为解题关键,注意取等号.4.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为()AB .3C .6D【答案】C 【分析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+,再利用均值不等式得到答案.【详解】设椭圆长轴12a ,双曲线实轴22a ,由题意可知:1222F F F P c ==,又1211222,2F P F P a F P F P a +=-=,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c ce c a ca ++=+=,()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++.,22222a cc a +≥=,当且仅当2222a c c a =时取等号,21e 2e 2∴+的最小值为6,故选:C .【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+是解题的关键,意在考查学生的计算能力.5.已知点A 是抛物线()2:20C x py p =>的对称轴与准线的交点,点F 为抛物线的焦点,过A 作抛物线的一条切线,切点为P,且满足PA =C 的方程为()A .28x y =B .24x y =C .22x y=D .2x y=【答案】C 【分析】本题首先可根据题意得出点0,2p A ⎛⎫- ⎪⎝⎭,然后设切线方程为2p y kx =-、切点为(),P P P x y ,通过联立抛物线与切线方程解得1k =±,最后对1k =、1k =-两种情况分别进行讨论,通过PA =.【详解】由题意可知,抛物线准线方程为2py =-,点0,2p A ⎛⎫- ⎪⎝⎭,切线斜率k 一定存在,设过点A 与抛物线相切的直线方程为2py kx =-,切点(),P P P x y ,联立抛物线与切线方程222p y kx x py⎧=-⎪⎨⎪=⎩,转化得2220x pkx p -+=,222440p k p ∆=-=,解得1k =±,当1k =时,直线方程为2py x =-,2220x px p -+=,解得P x p =,则22P P p p y x =-=,因为PA =2222PP p x y ⎛⎫++= ⎪⎝⎭,解得1p =;当1k =-时,同理得1p =,综上所述,抛物线方程为22x y =,故选:C.【点睛】本题考查抛物线方程的求法,考查直线与抛物线相切的相关问题的求解,考查判别式的灵活应用,考查两点间距离公式,考查转化与化归思想,考查计算能力,是中档题.6.已知点E 是抛物线2:2(0)C y px p =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上.在EFP ∆中,若sin sin EFP FEP μ∠=⋅∠,则μ的最大值为()ABCD【答案】C 【分析】利用抛物线的几何性质,求得,E F 的坐标.利用抛物线的定义以及正弦定理,将题目所给等式转化为1cos PEFμ=∠的形式.根据余弦函数的单调性可以求得μ的最大值.【详解】由题意得,准线:2p l x =-,,02p E ⎛⎫- ⎪⎝⎭,,02p F ⎛⎫⎪⎝⎭,过P 作PH l ⊥,垂足为H ,则由抛物线定义可知PH PF =,于是sin sin EFP PEFEP PFμ∠==∠11cos cos PE PH EPH PEF ===∠∠,cos y x =在()0,π上为减函数,∴当PEF ∠取到最大值时(此时直线PE 与抛物线相切),计算可得直线PE 的斜率为1,从而45PEF ∠=︒,max μ∴,故选C.【点睛】本小题主要考查抛物线的几何性质,考查直线和抛物线的位置关系,还考查了正弦定理.属于中档题.7.抛物线22(0)y px p =>的焦点为F ,准线为l ,A 、B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是A .23B .1C .32D .16【答案】B【详解】设|AF|=a ,|BF|=b ,连接AF 、BF ,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ 中,2|MN|=|AQ|+|BP|=a+b .由余弦定理得,|AB|2=a 2+b 2﹣2abcos60°=a 2+b 2﹣ab ,配方得,|AB|2=(a+b )2﹣3ab ,又∵ab≤2(2a b +∴(a+b )2﹣3ab≥(a+b )2﹣34(a+b )2=14(a+b )2得到|AB|≥12(a+b ).∴||MN AB≤1,即||MN AB的最大值为1.故选B .点睛:本题难点在寻找解题的思路,作为一个最值的问题,这里首先要联想到函数的思想,先求出|MN|,|AB|,再利用基本不等式解答.8.设抛物线22y x =的焦点为F,过点0)M 的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,||2BF =,则BCF △与ACF 的面积之比BCF ACFS S等于A .45B .23C .47D .12【答案】A【详解】如图过B 作准线12l x =-:的垂线,垂足分别为11A B ,,BCF ACFBC S SAC=,又11,B BC A AC ∽11BC BB ACAA =,,由拋物线定义112BB BF AA AFAF ==.由12BF BB ==知32B B x y ,==02AB y x ∴-=-:把22y x =代入上式,求得22A A y x ==,,15 2AF AA ∴==.故24552BCF ACFBF SSAF===.故选A .9.已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14【答案】D 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率.详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP得,222tan sin cos PAF PAF PAF ∠=∴∠∠=由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,π54sin()3c a c e a c PAF =∴==+-∠,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为AB .105C.3D.5【答案】D【详解】分析:由题意可知:可设A (-c ,2b a),C (x ,y ),由S △ABC =3S △BCF2,可得222=AF F C ,根据向量的坐标运算求得x=2c ,y=22b a-,代入椭圆方程,根据离心率公式即可求得椭圆的离心率.详解:设椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0),由x=-c ,代入椭圆方程可得by x a=±可设A (﹣c ,),C (x ,y ),由,可得222=AF F C ,即有2(2,)2(,)b c x c y a -=-),即2c=2x-2c ,可得:x=2c ,22b y a=-代入椭圆得:,根据离心率公式可知:16e 2+1-e 2=4,解得0<e<1,则D 点睛:本题考查椭圆的标准方程及简单几何性质,考查向量的坐标运算,考查计算能力,属于中档题.二、多选题11.已知椭圆22:143x y C +=的左、右焦点分别为F 、E ,直线x m =()11m -<<与椭圆相交于点A 、B ,则()A .椭圆C 的离心率为2B .存在m ,使FAB 为直角三角形C .存在m ,使FAB 的周长最大D .当0m =时,四边形FBEA 面积最大【答案】BD 【分析】直接求出椭圆的离心率判断A ;利用椭圆的对称性及角AFB 的范围判断B ;利用椭圆定义及数学转化分析FAB ∆的周长判断C ;由四边形面积公式分析D 正确.【详解】解:如图所示:对于A ,由椭圆方程可得,2a =,b =1c =,椭圆C 的离心率为12e =,故A 错误;对于B ,当0m =时,可以得出3AFE π∠=,若取1m =时,得3tan 1tan44AFE π∠=<=,根据椭圆的对称性,存在m 使FAB 为直角三角形,故B 正确;对于C ,由椭圆的定义得,FAB 的周长||||||AB AF BF =++||(2||)(2||)4||||||AB a AE a BE a AB AE BE =+-+-=+--,||||||AE BE AB + ,||||||0AB AE BE ∴-- ,当AB 过点E 时取等号,||||||4||||||4AB AF BF a AB AE BE a ∴++=+-- ,即直线x m =过椭圆的右焦点E 时,FAB 的周长最大,此时直线AB 的方程为1x m c ===,但是11m -<<,∴不存在m ,使FAB 的周长最大,故C 错误;对于D ,||FE 一定,根据椭圆的对称性可知,当0m =时,||AB 最大,四边形FBEA 面积最大,故D 正确.故选:BD .【点睛】本题考查椭圆的几何性质,考查数形结合的解题思想,考查分析问题与求解问题的能力.12.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为1F ,点A 坐标为()0,1,点P 双曲线左支上的动点,且1APF △的周长不小于14,则双曲线C 的离心率可能为()AB .2C D .3【答案】ABC 【分析】1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9,2||||2PA PF a ++的最小值不小于9,分析出当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +,可得a 的范围,从而可得答案.【详解】由右焦点为1F ,点A 的坐标为(0,1),1||5AF ==,1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9又2F 为双曲线的左焦点,可得12||||2PF PF a =+,1||||PA PF +=2||||2PA PF a ++,当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +所以529a +≥,即2a ≥,因为c =可得c e a=.故选:ABC .【点睛】求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围13.已知O 为坐标原点,()1,2M ,P 是抛物线C :22y px =上的一点,F 为其焦点,若F 与双曲线2213x y -=的右焦点重合,则下列说法正确的有()A .若6PF =,则点P 的横坐标为4BC .若POF 外接圆与抛物线C 的准线相切,则该圆面积为9πD .PMF △周长的最小值为3【答案】ACD 【分析】先求出4p =,选项A 求出点P 的横坐标为042PF x p-==,判断选项A 正确;选项B 求出抛物线的准线被双曲线所截得的线段长度为22b a ==B 错误;选项C 先判断POF 外接圆的圆心的横坐标为1,再判断POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,最后求出半径和外接圆面积,判断选项C 正确;选项D 直接求出PMF △的周长为3C ≥+D 正确.【详解】解:因为双曲线的方程为2213x y -=,所以23a =,21b =,则2c ==,因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以=22p ,即4p =,选项A :若6PF =,则点P 的横坐标为042PF x p-==,所以选项A 正确;选项B :因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以抛物线的准线被双曲线所截得的线段长度为223b a =,所以选项B 错误;选项C :因为(0,0)O 、(2,0)F ,所以POF 外接圆的圆心的横坐标为1,又因为POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,所以圆心在抛物线上且到准线的距离为3,所以3r =,所以该外接圆面积为29S r ππ==,所以选项C 正确;选项D :因为PMF △的周长为()2232P P M pC PF PM MF x PM x PM x =++=++=+++=选项D 正确.故选:ACD 【点睛】本题考查抛物线的定义的几何意义,双曲线的通径长,14.已知抛物线212x y =的焦点为F ,()11,M x y ,()22,N x y 是抛物线上两点,则下列结论正确的是()A .点F 的坐标为1,08⎛⎫⎪⎝⎭B .若直线MN 过点F ,则12116x x =-C .若MF NF λ=,则MN 的最小值为12D .若32MF NF +=,则线段MN 的中点P 到x 轴的距离为58【答案】BCD 【分析】由抛物线标准方程写出焦点坐标判断A ,根据焦点弦性质判断B ,由向量共线与焦点弦性质判断C ,利用抛物线定义把抛物线上的点到焦点的距离转化为到准线的距离,结合中点坐标公式判断D .【详解】解:易知点F 的坐标为10,8⎛⎫⎪⎝⎭,选项A 错误;根据抛物线的性质知,MN 过焦点F 时,212116x x p =-=-,选项B 正确;若MF NF λ=,则MN 过点F ,则MN 的最小值即抛物线通经的长,为2p ,即12,选项C 正确,抛物线212x y =的焦点为10,8⎛⎫⎪⎝⎭,准线方程为18y =-,过点M ,N ,P 分别做准线的垂直线MM ',NN ',PP ',垂足分别为M ',N ',P ',所以MM MF '=,NN NF '=.所以32MM NN MF NF ''+=+=,所以线段34MM NN PP ''+'==所以线段MN 的中点P 到x 轴的距离为13158488PP '-=-=,选项D 正确.故选:BCD .【点睛】本题考查抛物线的定义与标准方程,考查抛物线的焦点弦性质,对抛物线22y px =,AB 是抛物线的过焦点的弦,1122(,),(,)A x y B x y ,则212y y p =-,2124p x x =,12AB x x p =++,AB最小时,AB 是抛物线的通径.三、填空题15.过抛物线C :y 2=4x 的焦点F 的动直线交C 于A ,B 两点,线段AB 的中点为N ,点P (12,4).当|NA |+|NP |的值最小时,点N 的横坐标为____.【答案】9【分析】根据椭圆定义问题可转化为|MN |+|NP |的最小值问题,数形结合可得M ,N ,P 三点共线时有最小值.【详解】分别过点A ,B ,N 作准线的垂线,垂足为A 1,B 1,M ,如图所示,由抛物线的定义知,|AA 1|=|AF |,|BB 1|=|BF |,∴|AB |=|AF |+|BF |=|AA 1|+|BB 1|=2|MN |,∴|NA |+|NP |=12|AB |+|NP |=|MN |+|NP |,故原问题可转化为|MN |+|NP |的最小值问题,当M ,N ,P 三点共线时,|MN |+|NP |取得最小值,此时y N =y P =4,设A (x 1,y 1),B (x 2,y 2),则21122244y x y x ⎧=⎨=⎩,两式相减得,1212y y x x --=124y y +=42N y =41242=⨯,即直线AB 的斜率为12,又直线AB 经过点F (1,0),∴直线AB 的方程为y =12(x ﹣1),把4N y =代入,得14(1)2N x =-解得N x =9,∴当|NA |+|NP |的值最小时,点N 的横坐标为9.故答案为:916.已知抛物线C :()220y px p =>的焦点为F ,过点Fl 交C 于A ,B两点,以线段AB 为直径的圆交y 轴于M ,N 两点,设线段AB 的中点为Q ,若点F 到C 的准线的距离为3,则sin QMN ∠的值为______.【答案】58【分析】由题意得3p =,可得抛物线的方程和直线AB 的方程,联立直线AB 方程和抛物线方程,运用韦达定理和中点坐标公式可得AB 的中点Q 的坐标和弦长AB ,可得圆Q 的半径,在QMN 中,由锐角三角函数的定义可得所求值【详解】解:抛物线C :()220y px p =>的焦点为(,0)2p F ,准线方程为2p x =-,由题意得3p =,则抛物线方程为236,(,0)2y x F =,则直线AB的方程为3)2y x =-,由23)26y x y x⎧=-⎪⎨⎪=⎩,得22731504x x -+=,设,A B 的横坐标分别为12,x x ,则125x x +=,所以AB 的中点Q 的坐标为5(2,12538AB x x p =++=+=,则圆Q 的半径为4,在QMN 中,552sin 48QMN ∠==,故答案为:58【点睛】关键点点睛:此题考查抛物线的定义、方程和性质,以及直线与抛物线的位置关系,解题的关键是联立直线方程和抛物线的方程,运用韦达定理和中点坐标公式进行转化,考查方程思想和计算能力,属于中档题17.已知双曲线E :22221(0,0)x y a b a b-=>>的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M ,N 两点(点F 1位于点M 与点N 之间),且13MN F N =,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e 为__.【分析】由对称性得ON ⊥MN ,由点到直线距离公式得1F N ,然后由勾股定理求得,,a b c 的关系得出离心率.【详解】解:双曲线E :22221(0,0)x y a b a b -=>>的渐近线方程为b y x a=±,∵|ON |=OP |,且F 1P ⊥OM ,可得△PF 1O ≌△NF 1O ,ON ⊥MN ,双曲线的一条渐近线方程为bx ﹣ay =0,则|F 1N |=|F 1P |b .∵13MN F N =,∴|MN |=3b ,|MF 1|=2b ,由勾股定理可得,|ON |=|OP |a =,|PM |,又|MN |2+|ON |2=|OM |2,∴(3b )2+a 2=(a )2,整理可得a ,即3c 2=4a 2,∴3c e a ==.18.已知椭圆C :2222x y a b+=1(a >b >0)的焦距为4,直线l :y =2x 与椭圆C 相交于点A 、B ,点P 是椭圆C 上异于点A 、B 的动点,直线PA 、PB 的斜率分别为k 1、k 2,且k 1•k 2=59-,则椭圆C 的标准方程是__.【答案】2295x y +=1【分析】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),代入作差法表示出k 1•k 2=59-,与224a b -=联立,即可求出椭圆的标准方程.【详解】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),则2200221x y a b+=,2211221x y a b +=,两式作差得22220101220x x y y a b --+=.因为直线PA ,PB 的斜率都存在,所以2201x x -≠0.所以22b a=﹣22012201y y x x --=﹣01010101y y y y x x x x --⨯+-=﹣k 1•k 2=59,则22590a b -=,又因为焦距为4,则224a b -=,联立两式可得229,5a b ==所以该椭圆的方程为:2295x y +=1故答案为:2295x y +=1四、解答题19.已知椭圆2222:1(0)x y C a b a b+->>的左、右焦点分别是F 1、F 2,上、右顶点分别是A 、B ,满足∠F 1AF 2=120°,||AB =.(1)求椭圆C 的标准方程;(2)与圆x 2+y 2=1相切的直线l 交椭圆C 于P 、Q 两点,求|PQ |的最大值及此时直线l 的斜率.【答案】(1)22:14x C y +=;(2)|PQ |max =2;直线l的斜率为2k =±.【分析】(1)由焦点12AF F △得出,,a b c 的关系,解得,,a b c 得椭圆标准方程;(2)设直线方程为x =ty +m ,由直线与圆相切得,t m 关系,直线方程代入椭圆方程,计算出0∆>,设设P (x 1,y 1),Q (x 2,y 2),由韦达定理得1212,y y y y +,求得12y y -,得弦长PQ ,=n换元后用基本不等式得最值及直线斜率.【详解】解:(1)因为2tan ∠=cOAF b,||AB =,得tan 60cb︒==,又a 2=b 2+c 2,所以=c ,a 2=4b 2,5b 2=5,解得b =1,a =2,椭圆的标准方程为22:14x C y +=;(2)由题意知直线l 不能平行于x 轴,所以设为x =ty +m ,由已知得(0,0)到x ﹣ty ﹣m =0的距离为11=,所以m 2=t 2+1,联立直线和椭圆得(ty +m )2+4y 2=4,即(t 2+4)y 2+2tmy +m 2﹣4=0,得△=(2tm )2﹣4(t 2+4)(m 2﹣4)=﹣4(4m 2﹣4t 2﹣16)=16(t 2﹣m 2+4)=16×3,设P (x 1,y 1),Q (x 2,y 2),则|y 2﹣y 1|==,||PQ =y 2﹣y 1|=n ,则n ≥1,2||233PQ n n n==≤++,当3=n n,即n =|PQ |max =2,此时t =l 的斜率为1=t 20.已知双曲线E :2222x y a b -=1(a >0,b >0)的右焦点为F ,离心率e =2,直线l :x =2a c与E 的一条渐近线交于Q ,与x 轴交于P ,且|FQ |(1)求E 的方程;(2)过F 的直线交E 的右支于A ,B 两点,求证:PF 平分∠APB .【答案】(1)2213y x -=;(2)证明见解析.【分析】(1)先将直线l 的方程与渐近线方程联立求出点Q 的坐标,求出PF 的长,从而可求出|FQ |,再由|FQ |b 的值,再结合离心率可求出a 的值,从而可求出E 的方程;(2)设过点F 得直线方程为:x =my +2,设A (x 1,y 1),B (x 2,y 2),直线方程与双曲线方程联立方程组,消去x ,再利用根与系数的关系,然后表示出k P A ,k PB ,相加化简,若等于零,可得PF 平分∠APB 【详解】解:(1)不妨设直线l :x =2a c与E 的一条渐近线b y x a =交于Q ,则由2a x cb y xa ⎧=⎪⎪⎨⎪=⎪⎩得y Q =ab c ,又PF =c ﹣2a c =2b c,∴|FQ |2=(ab c )2+(2b c)2=b 2=3,∴b ,又离心率e =2,∴2224a b a +=,∴a =1.∴E 的方程为:2213y x -=.(2)设过点F 得直线方程为:x =my +2,A (x 1,y 1),B (x 2,y 2).联立22233x my x y =+⎧⎨-=⎩,可得(3m 2﹣1)y 2+12my +9=0,则1221231my y m -+=-,122931y y m =-,∵过F 的直线交E 的右支于A ,B 两点,∴y 1y 2<0,可得﹣3<m<3,又P (12,0),∴k P A +k PB =12121122y y x x +--=12211233()()2211()()22y my y my x x +++--,∴122133(()22y my y my +++=2my 1y 2+123()2y y +=2293122031231mm m m -⋅+⨯=--∴k P A +k PB =0,∴PF 平分∠APB .21.已知0a b >>,曲线Γ由曲线()22122:10x y C y a b +=≥和曲线22222:1(0)x y C y a b-=<组成,其中曲线1C 的右焦点为()12,0F ,曲线2C 的左焦点()26,0F -.(1)求,a b 的值;(2)若直线l 过点2F 交曲线1C 于点,A B ,求1ABF 面积的最大值.【答案】(1)4a b ⎧=⎪⎨=⎪⎩(2【分析】(1)根据椭圆和双曲线的焦点即可列出式子求解;(2)设出直线l 的方程,与椭圆联立,利用韦达定理可表示出三角形的面积,即可求出最值.【详解】解:(1)由题意:12(2,0),(6,0)F F -,2222364a b a b ⎧+=∴⎨-=⎩,解得222016a b ⎧=⎨=⎩即4a b ⎧=⎪⎨=⎪⎩(2)由(1)知,曲线221:1(0)2016x y C y +=≥,点2(6,0)F -,设直线l 的方程为:6(0)x my m =->,联立22612016x my x y =-⎧⎪⎨+=⎪⎩得:()225448640m y my +-+=,22(48)464(54)0m m ∴∆=-⨯⨯+>,又0m >,1m ∴>,设()()1122,,,A x y B x y ,1224854m y y m ∴+=+,1226454y y m =+,12y y ∴=-,1ABF ∴面积21222111165118225454S F F y y m m =-=⨯⨯=++,令0t =>,221m t ∴=+,94S t t∴=+,当且仅当32t =,即2m =时等号成立,所以1ABF【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.22.已知抛物线()220C y px p =>:的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若,A B 是C 上的两个动点,且,A B 两点的横坐标之和为8.(ⅰ)设线段AB 的中垂线为l ,证明:l 恒过定点.(ⅱ)设(ⅰ)中定点为D ,当AB 取最大值时,且P ,D 位于直线AB 两侧时,求四边形PADB 的面积.【答案】(1)24y x =;(2)(ⅰ)证明见解析;(ⅱ).【分析】(1)根据题意得0t >,22242pp t pt⎧+=⨯⎪⎨⎪=⎩,进而解方程即可得答案;(2)(ⅰ)设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,进而分12x x =和12x x ≠两种情况求解直线l 方程,以证明直线过定点;(ⅱ)直线AB 与抛物线24y x =联立方程消去x ,根据韦达定理与弦长公式求得||10AB ≤当且仅当26n =时等号成立,进而得直线:220AB x ±-=,再讨论P ,D 位于直线AB 两侧时得:220AB x -=,进而根据点到直线的距离求解点,P D 到直线AB 的距离以求解四边形的面积.【详解】解:(1)由抛物线的性质得0t >,所以根据抛物线的定义得:22242pp t pt⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()()1122,,,A x y B x y ,且128x x +=.(ⅰ)证明:设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,当12x x =时,0l y =:;当12x x ≠时,2121222121214()42AB y y y y k x x y y y y n--====--+,则2l nk =-,:(4)2n l y n x -=--,令0y =,得6x =,故直线过定点()6,0综上,l 恒过定点()6,0.(ⅱ)由(ⅰ)知直线2:(4)AB y n x n-=-,即()42n x y n =-+,所以直线AB 与抛物线24y x =联立方程消去x ,整理得2222160y ny n -+-=,由0∆>,得21216,2n y y n +<=,212216y y n =-,2212416|||102n n AB y y ++-=-≤=,当且仅当26n =时等号成立,所以AB 的最大值为10,此时直线AB 的方程为:220AB x -=.对于直线220x -=,(2602)21(2)20⎡⎤⨯⨯-⨯⨯-->⎣⎦,所以点,P D 在同侧,不合题意,对于直线220x +-=,满足P ,D 位于直线AB 两侧,所以直线:220AB x +-=,点P 到直线AB 的距离1d =点D 到直线AB 的距离2d =所以()1212PADB S AB d d =⋅+=。

圆锥曲线(选填题)压轴题系列专题(一):圆锥曲线与“四心”问题(第4讲)(解析版)

圆锥曲线(选填题)压轴题系列专题(一):圆锥曲线与“四心”问题(第4讲)(解析版)

专题一:圆锥曲线与四心问题(内心、重心、垂心、外心)从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。

而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。

“四心”问题进入圆锥曲线,让我们更是耳目一新。

因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.专题目录:第1讲、圆锥曲线与内心问题第2讲、圆锥曲线与重心问题第3讲、圆锥曲线与垂心问题第4讲、圆锥曲线与外心问题第4讲、圆锥曲线与外心问题:三角形的外心:三角形三条垂直平分线的交点 知识储备:(1)、O 是ABC ∆的外心||||||OC OB OA ==⇔(或222OC OB OA ==);(2)、若点O 是ABC △的外心,则()()()OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅=0.(3)、若O 是ABC ∆的外心,则sin 2sin 2B sin 02A OA OB C OC ⋅+⋅+⋅=; (4)、多心组合:ABC ∆的外心O 、重心G 、垂心H 共线,即OG ∥OH 经典例题例1.(2019年成都七中半期16题)1F ,2F 分别为双曲线22221(,0)x y a b a b-=>的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为_______ .1 【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,122PF PF a -=,则()()2222212121224PF PF PF PF PF PF c a ⋅=+--=-,()()2222121212484PFPF PFPF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =,=,整理得24c a ⎛⎫=+ ⎪⎝⎭1e =. 【点睛】本小题主要考查双曲线的定义,考查向量数量积为零的意义,考查双曲线离心率的求法,考查方程的思想,考查运算求解能力,属于中档题.例2.(2018全国高中数学联赛(湖北预赛))已知点P 的双曲线()222210,0x y a b a b-=>>上,12F F 、为双曲线的两个焦点,且210PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为____.1- 【解析】由120PF PF ⋅=,知1290PPF ∠=︒.设12,PF m PF n ==, 又122F F c =,则可得()1,22R c r m n c ==+-, 2224m n c +=, ① 2m n a -=. ②设rk R=,则()122r kR kc m n c ===+-,即有()22m n k c +=+. ③由①②③可得()22222248k c a c ++=,所以()22222213122c a k c e -+==-=,解得1k =-.故12PF F ∆的内切圆半径r 与外接圆半径R1- 例3.(2020年河南省质量检测(二)改编)已知椭圆22143x y +=的左、右焦点分别为12,F F ,过2F 的直线l 交椭圆C 于,A B 两点,过A 作x 轴的垂线交椭圆C 与另一点Q (Q 不与,A B 重合).设ABQ ∆的外心为G ,则2ABGF 的值为 .【答案】4【解析】由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+, 代入椭圆方程得()2234690m y my ++-=. 设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m --+==++, 所以AB 的中点坐标为2243,3434m m m -⎛⎫⎪++⎝⎭,所以()212221213434m AB y m m +=-=-++. 因为G 是ABQ ∆的外心,所以G 是线段AB 的垂直平分线与线段AQ 的垂直平分线的交点,AB 的垂直平分线方程为22343434m y m x m m ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2134x m =+,即21,034G m ⎛⎫⎪+⎝⎭,所以222213313434m GF m m +=-=++,所以()22222121||1234433334m AB m m GF m ++===++,所以2||AB GF 值为4. 【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,属于难题.例4.(2020年湖北省宜昌市高三调研12题)设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( ) ABC .2D【答案】D【解析】由题,因为()0OD OI λλ=≠,所以O 、D 、I 三点共线,因为点D 为线段FP 的中点,∆POF 的外心为I ,所以DI PF ⊥,即OD PF ⊥, 设双曲线的左焦点为(),0F c '-,则点O 为线段F F '的中点,则在PFF '中,//PF OD ',即PF PF '⊥,所以PFF '是直角三角形,所以222F F F P PF ''=+,因为PF b =,由双曲线定义可得2PF PF a '-=,所以2PF a b '=+, 则()()22222c a b b =++,因为222c a b =+,整理可得2b a =,所以c =,则ce a==,故选:D 【点睛】本题考查求双曲线的离心率,考查双曲线的定义的应用.例5.(2019年衡水中学联考12题)已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为( )AB .3CD .5【答案】C【解析】不妨设点M 在第二象限,设(,)M m n ,2(,0)F c ,由D 为2MF 的中点,O 、I 、D 三点共线知直线OD 垂直平分2MF ,则:1OD y x a=,故有n a m c =--,且1122m c n a +⋅=⋅,解得21a m c-=,2n a c =, 将212,a a M c c ⎛⎫-⎪⎝⎭,即2222,a c a c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()2222222241aca a c c--=,化简可得225c a =,即e =当点M 在第三象限时,同理可得e =故选:C.【点睛】本题主要考查双曲线的标准方程,双曲线的简单性质的应用,运用平面几何的知识分析出直线OD 垂直平分2MF ,并用a c ,表示出点M 的坐标是解决此题的难点,属于中档题.例6.(2019云南省曲靖市二模16题)已知斜率为1的直线与抛物线24y x =交于,A B 两点,若OAB ∆的外心为(M O 为坐标原点),则当AB MO最大时,AB =____.【答案】.【解析】由题意知,MO 为OAB 外接圆的半径,在OAB 中,由正弦定理可知,2sin AB R AOB=∠(R 为OAB 外接圆的半径),当sin 1AOB ∠=,即90AOB ∠=︒时,AB MO取得最大值2.设()11,A x y ,()22,B x y ,易知10y ≠,20y ≠,则12120x x y y +=,得221212016y y y y ⋅+=,即12160y y +=.设直线AB 的方程为y x t =+,即x y t =-,代入24y x =得,2440y y t -+=,则124y y +=,124y y t =,所以4160t +=,解得4t =-.故12AB y y =-==.故答案为:【点睛】本题主要考查了正弦定理,直线与抛物线的关系,弦长公式,属于中档题.课后训练:变式1.P 为双曲线()2222:1,0x y C a b a b-=>上一点,12,F F 分别为C 的左、右焦点,212PF F F ⊥,若12PF F ∆外接圆半径与其内切圆半径之比为52,则C 的离心率为( ) AB .2CD .2或3【答案】D【解析】不妨设P 为右支上的点,则122PF PF a -=,设双曲线的半焦距为c ,则22b PF a=,212b PF a a =+,又12Rt PF F 外接圆半径为21122b PF a a=+. 12Rt PF F 内切圆的半径为222222-22b bc ac a a a r c a+---===, 因为12PF F ∆外接圆半径与其内切圆半径之比为52,故252=2b aac a +-, 故22560c ac a -+=,所以2c a =或3c a =,即2e =或3e =.故选:D.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.变式2.(2018上海市高三模拟)已知椭圆22116x y m +=和双曲线221412x y m-=-,其中012m <<,若两者图像在第二象限的交点为A ,椭圆的左右焦点分别为B 、C ,T 为△ABC 的外心,则•AT BC 的值为_____. 【答案】16.【解析】已知椭圆22116x y m +=和双曲线221412x y m-=-,焦距相等所以焦点相同,设(,0),(,0),B c C c c -=A 为两曲线在第二象限的交点,||||AB AC <,84AB AC AB AC ⎧+=⎪⎨-=-⎪⎩,||2AB =, 设000(,),42A x y x -<<-,220016m y m x =-,||AB ==0424c x ===+=,08x c ∴=-,因为O 为BC 中点,△ABC 的外心T 在y 轴上,0OT BC ⋅=,08()(,)(2,0•)16AT B OT OA BC OA BC y c cC =-⋅=-⋅=--⋅=【点睛】本题考查求椭圆与双曲线交点的坐标,考查向量数量积运算,考查计算求解能力,属于中档题.变式3. P 为双曲线()2222:10,0x y C a b a b-=>>右支上的一点,12,F F 分别为左、右焦点,212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的3倍,则双曲线C 的离心率为( )A.3 B.4 C.3或3 D.4或4-【答案】C【解析】212PF F F ⊥,∴点P 的坐标为2,b c a ⎛⎫ ⎪⎝⎭22b PF a =,则212b PF a a =+12PF F ∆的外接圆半径21122PF b r a a==+ 其内切圆半径222222b bc a a a r c a +--==- 12PF F ∆的外接圆半径是其内切圆半径的3倍,123r r ∴=,即()232b a c a a+=-化简可得22670c ac a --=即2670e e --=解得3e =±C【点睛】本题主要考查了计算双曲线的离心率,结合题意先计算出外接圆和内切圆的半径,然后结合数量关系求出结果,属于中档题.变式4.(2018年四川省棠湖中学三诊16题)已知点1(,0)F c -,2(,0)(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为__________. 【答案】4【解析】由G 是△PF 1F 2的外心,则G 在y 轴的正半轴上,120GF GF GP λ++=, 则1212()GP GF GF GO λλ=-+=-,则P ,G ,O 三点共线,即P 位于上顶点,则△PF 1F 2的面积S=12×b×2c=bc=8,由a 2=b 2+c 2≥2bc=16,则a ≥4,当且仅当时取等号, ∴a 的最小值为4,故答案为4.【点睛】(1)本题主要考查平面向量的共线定理和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析出1212()GP GF GF GO λλ=-+=-,得到P ,G ,O 三点共线,即P 位于上顶点.变式5.F 1,F 2分别为双曲线22221x y a b-=(a ,b >0)的左、右焦点,点P 在双曲线上,满足12PF PF ⋅=0,若△PF 1F 2的内切圆半径与外接圆半径之比为13,则该双曲线的离心率为_____.【答案】2【解析】120PF PF =,12PF PF ∴⊥.∴12PF F ∆的外接圆半径为1212F F c =,∴12PF F ∆的内切圆的半径为3c.设12PF F ∆的内切圆的圆心为M ,过M 作x 轴的垂线MN ,连接1MF ,2MF ,则3cMN =,设1NF m =,2NF n =,则2m n c +=,①不妨设P 在第一象限,由双曲线的定义可知122PF PF m na -=-=,② 由①②可得m a c =+,n c a =-,12PF PF ⊥,且1MF ,2MF 分别是12PF F ∠,21PF F ∠的角平分线,12214MF F MF F π∴∠+∠=,又121tan 33()MN c c MF F NF m a c ∠===+,2123()MN cMF F NF c a ∠==-, ∴2223()3()119()c c c a c a c c a ++-=--,化简可得2292a c =,故292e =,32e ∴=.故答案为:322.【点睛】本题考查了双曲线的性质,直线与圆的位置关系,属于中档题变式6. 数学家欧拉在1765年提出定理:三角形的外心、重心、垂心,依次在同一条直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称为三角形的欧拉线.已知ABC ∆的顶点)4,0(),0,2(B A ,若其欧拉线方程为02=+-y x ,则顶点C 的坐标是 .【答案】()4,0-【解析】设(),C m n ,由重心坐标公式得,ABC ∆的重心为24,33m n ++⎛⎫⎪⎝⎭, 代入欧拉线方程得:242033m n++-+=,整理得:40m n -+= ① AB 的中点为()1,2,40202AB k -==--,AB 的中垂线方程为()1212y x -=-,即230x y -+=. 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩..ABC ∴∆的外心为()1,1-.则()()22221131m n ∴++-=+,整理得:22228m n m n ++-= ②联立①②得:4,0m n =-=或0,4m n ==.当0,4m n ==时,B C 重合,舍去.∴顶点C 的坐标是()4,0-. 考点:1新概念问题;2三角形的外心,重心,垂心.。

圆锥曲线选择填空专练(有难度,附答案)

圆锥曲线选择填空专练(有难度,附答案)

.难题 本高二数学昵称:饶珂 学校:装 订 线题型:填空题考察围:圆锥曲线综合试题:在平面直角坐标系中,定义点之间的“直角距离”为。

若到点的“直角距离”相等,其中实数满足,则所有满足条件的点的轨迹的长度之和为答案:备注:题型:填空题考察围:圆锥曲线综合试题:如图,双曲线(>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得△,点落在OA上,则四边形OABC的面积是 .答案:2备注:题型:填空题考察围:圆锥曲线综合试题:设抛物线的焦点为,已知为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为.答案:备注:题型:填空题考察围:圆锥曲线综合试题:已知是椭圆和双曲线的公共顶点。

是双曲线上的动点,是椭圆上的动点(、都异于、),且满足,其中,设直线、、、的斜率分别记为, ,则答案:-5备注:题型:解答题考察围:圆锥曲线综合试题:设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点.(1)当时,求椭圆的方程.(2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程.(3)求所有正实数,使得的边长是连续正整数.答案:(1)的方程为.(2)的方程为或.(3)备注:题型:解答题考察围:圆锥曲线综合试题:如图,椭圆的中心为原点,长轴在轴上,离心率,又椭圆上的任一点到椭圆的两焦点的距离之和为.(1)求椭圆的标准方程;(2)若平行于轴的直线与椭圆相交于不同的两点、,过、两点作圆心为的圆,使椭圆上的其余点均在圆外.求的面积的最大值.答案:(1);(2).备注:题型:填空题考察围:双曲线的定义试题:以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦,为坐标原点,若则动点的轨迹为圆;③,则双曲线与的离心率相同;④已知两定点和一动点,若,则点的轨迹关于原点对称.其中真命题的序号为(写出所有真命题的序号).答案:②③④备注:题型:填空题考察围:双曲线的定义试题:已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值围是。

(完整版)圆锥曲线练习题含标准答案(最新整理)

(完整版)圆锥曲线练习题含标准答案(最新整理)

当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9

0 时,
x2
y2
1,
4
25,
20 ;
4

0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA , PB 的斜率倒数之和为3,则0y =( ) A. 1 B. 2 C. 3 D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x = 上,所以200,4y P y ⎛⎫ ⎪⎝⎭ ,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=--- ,化简,得01211214y k k ⎛⎫=+-= ⎪⎝⎭, 故选D.2.已知双曲线221221(0,0)x y C a b a b-=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F ,1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为0x ,则0000011,1,121p a x ex a x x a x a a ++=-+=-=- , 001111112cos 1132111a x a a a x a aθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C.3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()1 B.⎫⎪⎪⎝⎭C.⎛⎝⎭D. )1,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-,1e < 或1e >,又01e <<,11e << ,选D .4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为A.B. C. D. 2【答案】A【解析】由()2,0F c 到渐近线by x a =的距离为d b == ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,bOA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有62c e a ==,故选A. 5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( ) A. 2y x =+或2y x =-- B. 2y x =+ C. 22y x =+或22y x =-+ D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b -=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( ) A. [)2,+∞ B. (]1,2 C. (]1,3 D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2axc=,正好是双曲的右准线.由于AF= c a-,所以AF弦,圆心)2a cO c a⎛⎫+-⎪⎪⎝⎭,半径R c a=-圆上任取一点P, 30APF∠=,现在转化为圆与准线相交问题.所以()22a c ac ac+-≤-,解得2e≥.填A.7.中心为原点O的椭圆焦点在x轴上,A为该椭圆右顶点,P为椭圆上一点,090OPA∠=,则该椭圆的离心率e的取值范围是()A.1,12⎡⎫⎪⎢⎣⎭B.⎫⎪⎪⎝⎭C.12⎡⎢⎣⎭D.⎛⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x ya ba b+=>>,设P(x,y),点P在以OA为直径的圆上。

圆的方程:22222a ax y⎛⎫⎛⎫-+=⎪ ⎪⎝⎭⎝⎭,化简为220x ax y-+=,222222{1(0)x ax yx ya ba b-+=+=>>可得()2223220b a x a x a b-+-=。

则22,0,abx x ac=<<所双220,abac<<可得12e<<,选B.8.正三角形ABC的两个顶点,A B在抛物线22(0)x py p=>上,另一个顶点C是此抛物线焦点,则满足条件的三角形ABC的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】由题可知其焦点为0,2p F ⎛⎫ ⎪⎝⎭作倾斜角为60︒与倾斜角为120︒的直线,分别与抛物线22(0)x py p =>相交天两点,,,A B C D .如图,则,AFC BFD 均为正三角形.故本题答案选C .9.设F 为抛物线2:2(0)C y px p =>的焦点,曲线(0)ky k x=>与C 相交于点A ,直线FA 恰与曲线(0)ky k x =>相切于点A , FA 交C 的准线于点B ,则FA BA等于( ) A.14 B. 13 C. 23 D. 34【答案】B【解析】由22{y px k y x==解得332{2x pk y pk ==,又对k y x =, 2'k y x =-,所以3232232224FA pkk k k ppk p k ==--,化简得242k =,所以342p x pk ==,124342F AA Bp pFA x x p p AB x x --===-⎛⎫-- ⎪⎝⎭,故选B . 10.已知点P 在抛物线2y x =上,点Q 在圆()221412x y ⎛⎫++-= ⎪⎝⎭上,则PQ 的最小值为( )A.1-B. 1-C. 1D. 1 【答案】A【解析】设抛物线上点的坐标为()2,(0)P m m m >圆心1,42⎛⎫- ⎪⎝⎭与抛物线上的点的距离的平方:()222242114281624d m m m m m ⎛⎫=++-=+-+ ⎪⎝⎭令()4212816(0)4f m m m m m =+-+> , 则()()()2'412f m m m m =-++ ,由导函数与原函数的关系可得函数在区间()0,1 上单调递减,在区间()1,+∞ 上单调递增,函数的最小值为()11114f = , 由几何关系可得: PQ1=1.本题选择A 选项.11.已知椭圆M : 22221x y a b +=(0a b >>)的一个焦点为()1,0FF 的动直线交M 于A , B 两点,若x 轴上的点(),0P t 使得APO BPO ∠=∠总成立(O 为坐标原点),则t =( )A. 2-B. 2C.D. 【答案】B【解析】在椭圆中1c =,2c e a ==得a =1b =,故椭圆的方程为2212x y +=, 设()11,A x y , ()22,B x y ,由题意可知,当直线斜率不存在时, t 可以为任意实数,当直线斜率存在时,可设直线方程为()1y k x =-,联立方程组()221{12y k x x y =-+=,得()2222124220k x k x k +-+-=,∴2122412k x x k +=+, 21222212k x x k-⋅=+, 使得APO BPO ∠=∠总成立,即使得PF 为APB ∠的平分线,即有直线PA 和PB 的斜率之和为0,即有12120y yx t x t+=--,由111y k x =-(), ()221y k x =-,即有()()12122120x x t x x t -+++=,代入韦达定理,可得()22224441201212k k t t k k --++=++,化简可得2t =,故选B. 二、填空题12.已知抛物线2:4C y x =的焦点为F ,直线l 与抛物线C 相切于Q 点, P 是l 上一点(不与Q 重合),若以线段PQ 为直径的圆恰好经过F ,则PF 的最小值是__________. 【答案】2【解析】根据抛物线的对称性设(,Q m ,则QF k =,所以直线PF 的方程为)1y x =-,由24y x =,取y =,y '=,所以直线l 的方程是)y x m -=-,联立))1{y x y x m =--=-,解得点P 的横坐标1x =-,所以点P 在抛物线的准线上运动,当点P 的坐标是()1,0-时, PF 最小,最小值是2.13.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(),0F c ,点P 在双曲线C 的左支上,若直线FP 与圆222:39c b E x y ⎛⎫-+= ⎪⎝⎭相切于点M 且2PM MF =,则双曲线C 的离心率值为__________.【解析】设双曲线C 的左焦点为1F ,由圆心,03cE ⎛⎫ ⎪⎝⎭可知, 12F E EF =,又2PM MF =,可知1//EM PF ,且13PF EM b ==,由双曲线的定义得2PF a b =+, 1PF PF ⊥, 1F PFRt 中, ()()22222211222cF FF P FP c b a b b a e a=+⇒=++⇒=⇒==14.已知抛物线22(0)y px p =>的焦点为F ,过抛物线上点()02,P y 的切线为l ,过点P 作平行于x 轴的直线m ,过F 作平行于l 的直线交m 于M ,若5PM =,则p 的值为__________. 【答案】6【解析】设(P,由y,得'y =,则当2x = 时,'y =,所以过F 且与l平行的直线方程为2p y x ⎫=-⎪⎝⎭,代入(7,M ,得742p -= ,解得6p =,故答案为6 .B 组一、选择题1.两条抛物线21111:T y a x b x c =++, ()222221212:0,0,T y a x b x c a a a a =++≠≠≠,联立方程消去2x 项,得直线211221122121:a b a b a c a cl y x a a a a --=+--,称直线l 为两条抛物线1T 和2T 的根轴,若直线:m x t =分别与抛物线222y x x =-++, ()21542y x x =-+及其根轴交于三点12,,P P P ,则12PP PP =( )A. 2B. 12C. 2tD. 12t 【答案】A【解析】抛物线222y x x =-++, ()21542y x x =-+的根轴为2y x =-+,所以12PP PP = ()()()()222222232113254222tt t t tt t t t t-++--+-+==-+--+-+,故选A .2.已知12,F F 是椭圆和双曲线的公共焦点, P 是它们的一个公共点,且124F PF π∠=,则椭圆和双曲线的离心率乘积的最小值为() A.12 B. 2C. 1D. 【答案】B【解析】设椭圆的长半轴长为1a ,双曲线的实半轴常为12121222{2PF PF a a PF PF a +=⇒-= 1PF ⇒=()()()()22212,2121212121242cos4a a PF a a c a a a a a a a a π+=-⇒=++--+-⇒((22211221112224224c a a e e e e -=+⇒=+≥=⇒122e e ≥,故选B. 3.设点12,F F 分别为双曲线: 22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线左支上存在一点P ,满足112PF F F =,点1F 到直线2PF 的距离等于双曲线的实轴长,则该双曲线的离心率为( )A.B. 43C. 54D. 53【答案】D【解析】由题意知212PF F F =,可知12PF F 是等腰三角形, 1F 在直线2PF 的投影是中点,可得24P F b ==,由双曲线定义可得422b c a -=,则2a cb +=,又222c a b =+,知225230a ac c +-=,可得23250e e --=,解得()513e =或舍去.故本题答案选D . 4.已知椭圆M : 22221x y a b +=(0a b >>)的一个焦点为()1,0FF 的动直线交M 于A , B 两点,若x 轴上的点(),0P t 使得APO BPO ∠=∠总成立(O 为坐标原点),则t =( ) A. 2B.C. D. 2-【答案】A【解析】由题意可得椭圆方程为2212x y +=,很显然AB 斜率不存在时,t 可以为任意实数, 当直线的斜率存在时,设AB 的方程为()1y k x =-其中()()1122,,,A x y B x y ,联立直线与椭圆的方程可得: ()2222124220k x k x k +-+-=,则: 22121222422,,1212k k x x x x k k -+==++ 由APO BPO ∠=∠知直线PA 与PB 的斜率之和为0,则:12120y yx t x t+=--,整理得: ()()12122120x x t x x t -+++=,故: ()22224144201212k t k t k k +--+=++, 解得: 2t =. 本题选择A 选项.5.已知动点P 在椭圆2213627x y +=上,若点A 的坐标为()3,0,点M 满足1AM =, 0PM AM ⋅=,则PM 的最小值是( )A.2 B.3 C. 22 D. 3【答案】C【解析】0PM AM PM AM ⋅=∴⊥ ,2222211PMAP AMAM PMAP ∴=-=∴=-,1AM =∴点M 的轨迹为以为以点A 为圆心,1为半径的圆,221PMAP =-, AP 越小, PM 越小,结合图形知,当P 点为椭圆的右顶点时, AP取最小值633a c -=-=, PM ∴23122-=故选:C .6.如图,两个椭圆的方程分别为22221(0)x y a b a b +=>>和()()22221x y ma mb +=(0a b >>, 1m >),从大椭圆两个顶点分别向小椭圆引切线AC 、BD ,若AC 、BD 的斜率之积恒为1625-,则椭圆的离心率为( )A.35 B. 34 C. 45 D. 74【答案】A【解析】由题意知,外层椭圆方程为()()22221x y ma mb += ,设切线AC 的方程为()1y k x ma =-代入内层椭圆消去y 得: ()2222232242211120k a b x mk a x m k a a b +-+-=由0∆=化简得221221,1b k a m =⋅-同理得()222221,b k m a=⋅-所以44222124443,.1(),555b bc b k k e a a a a ⎛⎫=====-= ⎪⎝⎭选A.7.已知双曲线22221(0,0)x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c +=在y 轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5 B.51+ C. 51 D. 2【答案】D【解析】双曲线22221x y a b-=的渐近线方程为by x a =± ,据题意,可设直线PF 的斜率为b a ,则直线PF 的方程为: ()by x c a =+ ,解方程组()222{x y c b y x c a+==+ 得{0x c y =-= 或 22{2a b x c ab y c-==.则 P 点的坐标为 222,a b ab c c ⎛⎫- ⎪⎝⎭.又点P 在抛物线22y cx =上,得22222ab a b c c c -⎛⎫=⋅⎪⎝⎭.可化为 442a c =,可知22e =.故本题答案选D 8.在平面直角坐标系xOy 中,已知抛物线2:4C x y =,点P 是C 的准线 l 上的动点,过点P 作C 的两条切线,切点分别为,A B ,则AOB ∆面积的最小值为( )A.B. 2C. D. 4【答案】B【解析】设()()()01122,1,,,,P x A x y B x y -,因为2xy '=,则过点,A B 的切线()()22112212,4242x x x xy x x y x x -=--=-均过点()0,1P x -,则()()22112201021,14242x x x x x x x x --=---=-,即12,x x 是方程()20142x xx x --=-的两根,则120122,4x x x x x +==-,设直线AB 的方程为y kx b =+,联立24{x y y kx b==+,得2440x kx b --=,则1244x x b =-=-,即1b =,则2AOB S ∆==≥,即AOB ∆的面积的最小值为2;故选B.9.已知双曲线C : 22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,左、右顶点分别为A 、B ,虚轴的上、下端点分别为C 、D ,若线段BC 与双曲线的渐近线的交点为E ,且11BF E CF E ∠=∠,则双曲线的离心率为A.B.C.D. 【答案】C【解析】根据双曲线C 的性质可以得到, ()0,C b , (),0B a , ()1,0F c -,双曲线C 的渐近线方程b y x a =,直线BC 方程: by x b a=-+,联立{b y x b a b y x a =-+=得到2{2ax b y ==,即点,22a b E ⎛⎫ ⎪⎝⎭,所以E 是线段BC 的中点,又因为11BF E CF E ∠=∠,所以11FCF B =,而1F C =,1F B a c =+,故()222c b a c +=+,因为222a b c +=,所以22220a ac c +-=,因为c e a=,即2220e e --=,所以1e =,故选C10.已知O 为坐标原点, 12,F F 分别是双曲线2222:1x y C a b +=的左右焦点, A 为C 的左顶点, P 为C 上一点,且1PF x ⊥轴,过点A 的直线l 与线段1PF 交于点M ,与y 轴交于E 点.若直线2F M 与y 轴交点为N , 2OE ON =,则C 的离心率为( )A.13 B. 2 C. 23 D. 34【答案】B【解析】由1PF x ⊥轴可令(),M c t -,得()(),0,,0A a B a -.则AE tk a c=-,可得AE 的方程为()t y x a a c =+-,令0x =,知0,ta E a c ⎛⎫ ⎪-⎝⎭,又0,2t N ⎛⎫⎪⎝⎭且2OE ON =,可得22ta t a c =-,所以2c a =,即2ce a==.故本题答案选B . 11.过抛物线22(0)y px p =>焦点的直线l 与抛物线交于A 、B 两点,以AB 为直径的圆的方程为()()223216x y -+-=,则p =( )A. 2B. 1C. 2或4D. 4 【答案】A【解析】过抛物线22(0)y px p =>焦点的直线l 与抛物线交于,A B 两点,以AB 为直径的圆的方程为()()223216x y -+-=,可得弦长的坐标横坐标为3,圆的半径为4可得弦长为8,设直线与抛物线的交横坐标为12,x x 则12126,8x x x x p +=++=,可得2p =,故选A.二、填空题12.已知过点()2,0A -的直线与2x =相交于点C ,过点()2,0B 的直线与2x =-相交于点D ,若直线CD 与圆224x y +=相切,则直线AC 与BD 的交点M 的轨迹方程为__________.【答案】()22104x y y +=≠ 【解析】设直线AC ,BD 的斜率分别为12,k k ,则直线AC ,BD 的方程分别为:()()122,2y k x y k x =+=- ,据此可得: ()()122,4,2,4C k D k -- ,则: ()12124422CD k k k k k +==+-- ,直线CD 的方程为: ()()11242y k k k x -=+- , 整理可得: ()()121220k k x y k k +-+-= 直线与圆相切,则:()()12212221k k k k -=-+ ,据此可得: 1214k k =-, 由于: ()()122,2y k x y k x =+=-,两式相乘可得: ()222121414y k k x x =-=-+ 即直线AC 与BD 的交点M 的轨迹方程为()22104x y y +=≠.C 组一、选择题1.已知,,A B C 是双曲线22221(0,0)x y a b a b-=>>上的三个点, AB 经过原点O , AC 经过右焦点F ,若BF AC ⊥且2BF CF =,则该双曲线的离心率是( )A.53 B. 293 C. 292D. 94【答案】B【解析】做出如图因为 AB 经过原点O , AC 经过右焦点F ,BF AC ⊥可得'AFBF 为矩形,设AF=a,则'=224AF BF m a FC m a =+⇒=+根据双曲线定义可知'26CF m a=+,在'Rt ACF 得()2222222224''34(2)(26),'''3aAC AF CF m a m a m a m AFF AF AF FF +=⇒+++=+⇒=⇒+=在中得222104294333a a c e ⎛⎫⎛⎫+=⇒= ⎪ ⎪⎝⎭⎝⎭2.已知圆C : ()()22311x y -+-=和两点()0A t -,, ()0(0)B t t >,,若圆C 上存在点P ,使得·0PA PB =,则t 的最小值为( ) A. 3 B. 2 C.3 D. 1【答案】D【解析】由题意可得点P 的轨迹方程是以AB 位直径的圆,当两圆外切时有:()22min min 3111t t +=+⇒=,即t 的最小值为1. 本题选择D 选项.3.已知抛物线2:(0)C y mx x =>的焦点为F ,点()0,3A -.若射线FA 与抛物线C 相交于点M ,与其准线相交于点D ,且:1:2FM MD =,则点M 的纵坐标为( )A. 13-B. 33-C. 23-D. 233- 【答案】D【解析】根据题意画图如下:由12MF MD =,可得13,3,424MN DN OA m m MD MN OF=====,1,DAAF=所以31::::122DA AM MF =,可得42,4,3EF DF MF ===, 041,3MF x =+=得013x =,代入2y 4x =,得0233y =-。

相关文档
最新文档