开关电器典型灭弧装置的工作原理

合集下载

第三章灭弧原理及主要开关电器x

第三章灭弧原理及主要开关电器x

提高灭弧效率的方法包 括优化开关电器的结构 设计、采用新型灭弧材 料和加强电场控制等
定义:一种能够接通、承载和分断正常电路条件下的电流,也能在规定的非正常 电路条件下接通、承载一定时间和分断电流的开关电器。
作用:主要用于控制和保护线路、电动机等电气设备,防止短路和过载电流对设 备造成损坏。
工作原理:断路器内部装有触头,当电路发生短路或过载时,触头会断开,切断 电流,从而保护电路和设备。
狭缝灭弧装置:利用狭缝对电弧的冷却和去游离作用,使电弧迅速熄灭。
适用性:根据使用环境和需求选择合适的开关电器
可靠性:确保开关电器能够稳定、可靠地工作
经济性:在满足使用和安全要求的前提下,选择性价比高的开关电器
安全性:选择符合安全标准的开关电器,确保使用过程中不会发生电击、火灾等安全事 故
熄灭
快速切断电流: 通过快速切断 电源来迅速熄
灭电弧
触头在分断过程中产生电弧 电弧在介质中传播,产生热量 触头附近的介质被加热,产生高压气体 高压气体将电弧吹离触头,使电弧熄灭
灭弧效率与开关电 器的性能密切相关
灭弧效率的提高有 助于减小电弧对开 关电器的损害
灭弧效率的评估指 标包括灭弧时间、 灭弧能量和电弧电 压等
主要特点:具有控制容 量大、可频繁操作、寿 命长等优点,但也有噪 音大、体积大等缺点。
应用场合:广泛应 用于电动机的控制 和保护,以及其他 各种电气控制系统。
熔断器是一种用于电路保护的开关电器 当电流超过规定值时,熔断器会因发热而熔断 熔断器具有短路保护功能,可以快速切断故障电路 熔断器的选择应考虑电路的额定电流和短路电流
灭弧原理:断路器在分断电路时会产生电弧,为了熄灭电弧,断路器内部装有灭 弧室或灭弧装置,通过拉长电弧并增加介质强度来熄灭电弧。

灭弧原理及主要开关电器

灭弧原理及主要开关电器
第三节交流电弧熄灭的基本方法
交流电弧电流在每一个半周内都通过零值,此时电弧的自然暂时熄灭,与电弧间 隙的去游离程度无关。此后,由于电流反向,电弧又重新点燃。电弧能否熄灭,决定 于电弧电流过零时,弧隙的介质强度恢复速度和恢复电压上升速度的竞争。 加强弧隙的去游离或减小弧隙电压的恢复速度,都可以促使电弧熄灭。
在几千伏或几万伏的高压断路器中灭弧,近阴极效应是无足轻重的。 有决定意 义的是电弧间隙即弧柱中的去游离过程,同时降低恢复电压上升的速度、幅度,抑制 恢复电压可能产生的高频振荡。
广泛采用的灭弧方法:
1.利用灭弧介质 电弧中的去游离程度,在很大程度上取决于电弧周围介质的特性,如介质的传热
能力、介电强度、热游温度和热容量。这些参数的数值越大,则去游离作用越强,电 弧就越容易熄灭。
空气的灭弧性能是各类气体中最差的,氢的灭弧能力是空气的7.5倍。用变压器 油作灭弧介质,使绝缘油在电弧的高温作用下分解出氢气和其他气体来灭弧。六氟化 硫(SF6)气体的灭弧能力比空气约强100倍。真空的介质强度比空气约大15倍。
采用不同灭弧介质可以制成不同类型的断路器,如空气断路器、油断路器、SF6 断路器、真空断路器等。由于空气灭弧性能差,而变压器油灭弧性能是依赖电弧电流 产生的高温分解出氢气灭弧,有易燃易爆危险。因此,当前高压断路器主要采用真空 介质及SF6气体介质,尤其是SF6气体具有无毒、不可燃、绝缘性能高和灭弧能力远 超过一般介质的特点,因而SF6断路器几乎独占了110kV及以上电压等级的断路器份 额。 2.采用特殊金属材料作灭弧触头
采用熔点高、导热系数和热容量大的耐高温金属作触头材料,可以减少热电子发 射和电弧中的金属蒸气,抑制弧隙介质的游离作用。同时,触头材料还要求有较高的 抗电弧、抗熔焊能力。常用的触头材料有铜、钨合金和银、钨合金等。

开关电器典型灭弧装置的工作原理

开关电器典型灭弧装置的工作原理

开关电器典型灭弧装置的工作原理开关电器作为现代电力系统中不可或缺的设备,在电力传输、配电和控制等方面扮演着重要的角色。

然而,在开关电器操作过程中,由于电流突然中断导致的电弧现象给电气设备和人身安全带来了巨大威胁。

为了解决这一问题,开关电器通常配备典型的灭弧装置,本文将介绍几种常见的灭弧装置及其工作原理。

一、消弧室消弧室是一种常见的灭弧装置,其结构特点在于采用开合时间大于或等于交流电流的零电压时长的方式实现电流零交流时消弧。

消弧室通常由两个可移动式电极、一定形状的可移动式活动触头和一定的灭弧介质组成。

当开关电器需要切断电流时,电极分开,触头与电极之间产生电弧。

随后,活动触头以合适的速度向电极移动,当电流通过零时,电极再次接近,最终将电弧排除在灭弧室中,从而实现消弧的目的。

二、磁增强器磁增强器是一种常用的灭弧装置,其原理基于磁场的作用。

磁增强器由线圈和磁芯组成,线圈连接在控制回路中。

当开关电器需要断开电流时,线圈中的电流流过,产生磁场。

磁场的作用使得电弧的移动受到约束,由于磁场的强大作用,电弧失去能量,电流被迫中断。

磁增强器通过这种方式有效地灭弧,确保了设备的安全和可靠性。

三、灭弧腔灭弧腔是一种常见的灭弧装置,其工作原理基于高速喷射气流。

灭弧腔通常由喷口、喷嘴和气体压力调节装置组成。

当开关电器需要切断电流时,喷射装置快速喷射高压气流,形成高速气流。

电弧在高速气流的作用下,受到气流的冷却和扩散,导致电弧能量不断减弱,最终熄灭。

灭弧腔通过喷射气流的方式实现灭弧,有效地保护了开关电器和附近设备的安全。

四、真空灭弧室真空灭弧室是一种高效的灭弧装置,其工作原理基于在真空环境中切断电流。

真空灭弧室由真空室、固定触头和活动触头以及灭弧介质组成。

当开关电器需要中断电流时,固定触头和活动触头分离并产生电弧。

在真空环境中,电弧的扩散速度受到限制,由于缺乏物质传递热量,电弧能量迅速耗散,最终中断电流。

真空灭弧室通过创造真空环境实现高效的灭弧效果,广泛应用于高压开关设备中。

简述开关电器中常用的灭弧方法

简述开关电器中常用的灭弧方法

简述开关电器中常用的灭弧方法三相电路中,由于各种用电器的不同,产生的最大不平衡电流可能是额定电流的几倍,而过电流又是引起火灾的主要原因之一。

在发生过电流时,由于开关触头的作用,电流便以较小的电流I(相量和为对于每个发生过电流的回路来说,只要在灭弧罩上有足够的动触头,而静触头的作用只是防止过大的电流直接通过触头,并保证其他灭弧介质(如间隙)在允许的时间内放电,或者将已经产生的电弧熄灭即可。

常用的灭弧方法有:间隙灭弧、水灭弧和气体灭弧等三种。

(1)间隙灭弧利用空间场所使正常工作时不带电的金属材料(一般采用空气),按电弧的走向形成一个气体间隙的灭弧方法称为间隙灭弧。

①自间隙法;②外间隙法;③自持放电法。

(2)水灭弧用水来熄灭电弧的灭弧方法叫做水灭弧。

在交流电弧的弧柱长度与弧柱截面积之比小于1.2的情况下,可以将电弧稳定地停留在空气间隙内,在长间隙的底部造成很高的气压,促使弧柱中的电子作快速运动,再从阴极表面逸出时与氧分子发生碰撞而发热。

在这种发热和发光的反复作用下,空气被电离成正离子和电子,弧柱被冷却,可防止电弧重燃。

因此,这种灭弧方法适用于短路电流的断路器以及高压电器的电弧熄灭。

对于中小容量电动机的过负荷电流或短路电流,可采用间隙水灭弧。

(3)气体灭弧在空气不足的条件下,靠气体本身的压力形成电弧的熄灭过程。

此方法可分为两种类型,即机械吹扫和电磁吹扫。

气体吹扫适用于电动机的启动和运行过程中的电弧灭弧,在断路器灭弧室或操作机构中采用压缩空气或二氧化碳进行吹扫。

电磁吹扫用于三相弧垂的控制,也可用于真空断路器和少油断路器的电弧熄灭。

实践表明,由于电弧与绝缘的直接作用而产生的热损耗是发生电弧熄灭时的主要热损耗。

所以提高电弧的热损耗速率,对防止电弧重燃是十分重要的。

下面是某些常用的灭弧装置的特点:①电弧熄灭电压高,是用于空载电动机转子灭弧时的灭弧装置。

②电弧熄灭后,能迅速恢复操作电压,防止因电弧再次引燃而引起电气火灾。

开关电器灭弧原理

开关电器灭弧原理

开关电器灭弧原理开关电器主要用于控制电力系统中的电流,常用于开断电路中的负载电流。

在开关操作时,由于电流的存在,容易产生电弧,电弧会造成电器设备的损坏和短路等严重后果。

为了有效地避免电弧的产生和减小其对电器设备的危害,开关电器要具备灭弧功能。

灭弧原理主要包括了以下几个方面:1.快速分离快速分离是灭弧过程中的重要步骤,通过迅速分离开关触点,使得电弧路径拉长并被截断,从而有效地控制和消除电弧。

2.电磁吹弧电磁吹弧是一种常用的灭弧原理,通过电磁力将电弧移动到一个特定的区域,使其失去能量进而熄灭。

电磁吹弧装置一般由电磁线圈和吹气装置组成,电磁线圈产生磁场,吹气装置将气流送到电弧区域,通过电磁力和气流的共同作用,将电弧吹灭。

3.喷雾灭弧喷雾灭弧原理是利用高压喷射的液体或气体来吹灭电弧。

当电弧产生时,喷雾装置会将喷雾剂喷射到电弧区域,喷雾剂会瞬间蒸发,生成高压气体或液体冷却电弧,使其熄灭。

4.空气灭弧空气灭弧原理是利用高速流动的空气将电弧吹灭。

当开关触点分离时,电弧产生,同时启动空气灭弧装置,通过高速流动的空气将电弧吹灭。

5.液体灭弧液体灭弧原理是利用液体对电弧进行冷却和吸收能量,使其失去运动能量而熄灭。

液体灭弧主要使用矿油或硅油等绝缘材料进行灭弧。

6.气体灭弧气体灭弧原理是利用高纯度的惰性气体对电弧进行灭弧。

当电弧产生时,气体灭弧装置将惰性气体喷入电弧区域,气体会吸收电弧能量并抑制电弧继续燃烧,从而实现灭弧。

综上所述,灭弧原理主要包括快速分离、电磁吹弧、喷雾灭弧、空气灭弧、液体灭弧和气体灭弧等。

不同的灭弧原理适用于不同的开关电器和工作环境,通过选择合适的灭弧原理可以有效地控制和消除电弧,确保电器设备的安全运行。

开关电器典型灭弧装置的工作原理

开关电器典型灭弧装置的工作原理

开关电器典型灭弧装置的工作原理开关电器是现代电力系统中常见的重要设备,用于控制和保护电路的正常运行。

然而,当开关电器断开电路时,由于电流的存在,会产生电弧。

电弧是一种高温、高能量的放电现象,可能导致开关电器和周围设备的损坏,甚至引发火灾。

为了解决这一问题,开关电器通常配备了灭弧装置,用于有效地灭除电弧。

本文将介绍几种典型的灭弧装置,并详细阐述它们的工作原理。

1.磁场励磁式灭弧装置磁场励磁式灭弧装置是早期开关电器常用的一种灭弧装置。

其工作原理基于利用磁场力使电弧受到扰动和削弱,最终断开电路。

该装置由励磁线圈和灭弧室组成。

当电流突然改变时,励磁线圈产生瞬时磁场,使电弧受到力的作用被迫向上或向下偏离电弧通道,产生较大的接触电阻。

随着电弧接触电阻的增加,电流逐渐减小,直到达到灭弧的程度,电弧熄灭,断开电路。

2.气体灭弧装置气体灭弧装置是当前开关电器中常用的一种灭弧装置。

常见的气体灭弧装置有二氧化硫灭弧室和空气灭弧室等。

其工作原理都是基于将电弧引导到灭弧室中,通过气体的快速喷射和冷却来灭除电弧。

当电弧产生时,灭弧室内的气流会迅速形成一个狭窄的通道,将电弧束约束在其中。

气体喷射的速度和方向可以使电弧冷却和消散,从而使电弧的能量逐渐减小,最终使电弧熄灭。

3.油膜灭弧装置油膜灭弧装置是一种利用油膜扩散和冷却电弧的灭弧装置。

常见的油膜灭弧装置有油膜式断路器等。

其工作原理是通过在电弧通道上形成一层均匀的油膜,使电弧受到冷却和扩散。

电弧通道中的电流和电弧能量会将润滑油加热并将其蒸发,蒸汽进一步冷却和吸收电弧能量,使电弧迅速衰减。

油膜的扩散和吸热过程使电弧通道的电阻迅速增加,从而阻止了电流的进一步流动,实现了灭弧的效果。

4.固体灭弧装置固体灭弧装置是一种利用特殊的材料来抑制电弧的灭弧装置。

常见的固体灭弧装置有石英灭弧室和陶瓷灭弧室等。

其工作原理是电弧通过灭弧室时,固体材料产生的热量和气体使电弧温度骤然升高,从而使电弧失去能量。

开关电器典型灭弧装置的工作原理[专业知识]

开关电器典型灭弧装置的工作原理[专业知识]

图5-5a表示一单纵缝灭弧装 置的原理结构。图中,1为用耐弧 绝缘材料制成的灭弧室壁,2为磁 吹线圈的钢夹板,3为电弧。
通常上部缝宽小于熄灭电弧 的直径。
行业相关
19
§5-1 开关电器典型灭弧装置的工作原理
行业相关
20
§5-1 开关电器典型灭弧装置的工作原理
由图5-6可见,当电流增大(横坐标向右)时,纵缝灭 弧装置中电弧的“伏—安特性”随电弧电流增加而下降的 程度比自由燃弧时的“伏—安特性”下降程度要缓得多, 特别当电流很大时,E可以认为是常数。
随着缝宽的减小和电弧横向运动速度的提高,电弧的 “伏—安特性”也将升高,这表明灭弧能力也随之增强。
采用多纵缝可以减小电弧进入上部窄缝的阻力,在驱 动电弧运动的电磁力给定时,可以采用比单纵缝灭弧室更 小的缝隙。这使灭弧空壁对电弧的冷却和消电离作用更强。
(10) 利用石英砂等固体颗粒介质,限制电弧直径的扩展 和加强冷却。
行业相关
9
§5-1 开关电器典型灭弧装置的工作原理
一、简单开断
在大气中利用机械方式
拉长电弧进行灭弧的原理与
图例。
(1)原理:电弧放长后,
图5-2 刀开关中的电弧拉长情况
电弧电压就增大,其静态伏 1— 闸刀 2—静触头 3—电弧
-安特性向上移动。
2.磁吹灭弧装置; 4.绝缘栅片灭弧装置; 6.固体产气灭弧装置,
行业相关
5
概述
7.石英砂灭弧装置; 8.变压器油灭弧装置; 9.压缩空气灭弧装置; 10.SF6灭弧装置; 11.真空灭弧装置。 此外,为了增加灭弧装置的开断能力,通常可以采用 下列辅助方法: 1.在弧隙两瑞并联电阻; 2. 附加同步开断装置; 3.附加晶闸管装置。

开关电弧的基本知识与各种灭弧方法的原理断路器

开关电弧的基本知识与各种灭弧方法的原理断路器

开关电弧的基本学问与各种灭弧方法的原理 - 断路器断路器切断通有电流的回路时,只要电源电压大于10~20V,电流大于80~100mA,在动、静触头分开瞬间,触头间隙就会消灭电弧。

此时,触头虽然已分开,但是电路中的电流还在连续流通,只有熄灭电弧,电路才真正断开。

本节介绍开关电弧的基本学问与各种灭弧方法的原理。

电弧的产生和维持是触头间隙的绝缘介质的中性质点(分子和原子)被游离的结果,游离是指中性质点转化为带电质点。

电弧的形成过程就是气态介质或液态介质高温气化后的气态介质向等离子体态的转化过程。

因此,电弧是一种游离气体的放电现象。

强电场放射是触头间隙最初产生电子的主要缘由。

在触头刚分开的瞬间,间隙很小,间隙的电场强度很大,阴极表面的电子被电场力拉出而进入触头间隙成为自由电子。

电弧的产生是碰撞游离所致。

阴极表面放射的电子和触头间隙原有的少数电子在强电场作用下,加速向阳极移动,并积累动能,当具有足够大动能的电子与介质的中性质点相碰撞时,产生正离子与新的自由电子,这种现象不断发生的结果,使触头间隙中的电子与正离子大量增加,它们定向移动形成电流,介质强度急剧下降,间隙被击穿,电流急剧增大,消灭光效应和热效应而形成电弧。

热游离维持电弧的燃烧。

电弧形成后,弧隙温度剧增,可达6000℃~在中性质点发生游离的同时,还存在着使带电质点不断削减的去游离。

去游离的主要形式是复合与集中。

复合是异性带电质点彼此的中和。

复合速率与下列因素有关:1)带电质点浓度越大,复合机率越高。

当电弧电流肯定时,弧截面越小或介质压力越大,带电质点浓度也越大,复合就强。

故断路器接受小直径的灭弧室,可以提高弧隙带电质点的浓度,增加灭弧性能;2)电弧温度越低,带电质点运动速度越慢,复合就简洁。

故加强电弧冷却,能促进复合。

在沟通电弧中,当电流接近零时,弧隙温度骤降,此时复合特殊猛烈;3)弧隙电场强度小,带电质点运动速度慢,复合的可能性就增大。

所以提高断路器的开断速度,对复合有利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电器典型灭弧装置的工作原理
开关电器典型灭弧装置主要包括灭弧室、灭弧冲击器、灭弧剂和触头
等组成。

当高压开关进行断电操作时,由于断开电源电流的存在,会在断
口中产生电弧。

电弧是一种具有高温、高能量的气体导体,它的存在会导
致电弧残压和电弧残流产生,严重影响开关电器的正常运行。

因此,通过
灭弧装置来迅速灭除电弧是很重要的。

灭弧室是灭弧装置的关键组成部分,它是一个密闭的空间,其内的气
体是由开关电器冷却系统提供的。

当电弧被引起时,其能量迅速传递到灭
弧室中。

灭弧室内的气体经过一个精确设计的通道,使气体得以迅速冷却
和扩散,在瞬间将电弧的温度降低到无法维持的程度,从而将电弧熄灭。

灭弧冲击器是灭弧室的核心部分,它通过产生机械冲击来灭除电弧。

灭弧冲击器的工作原理主要有两种方式:压缩气体方式和磁场作用方式。

压缩气体方式中,灭弧冲击器利用高压气体或压缩空气来产生机械冲击,将电弧的能量转化为机械能。

具体而言,当电弧被引起时,压缩气体
或气体爆炸会产生冲击波,使电弧受到冲击而熄灭。

这种方式具有动作迅速、可靠性高的特点。

磁场作用方式中,灭弧冲击器利用电磁场的作用来灭除电弧。

具体而言,当电弧被引起时,灭弧冲击器中的线圈会产生磁场,在磁力的作用下,电弧受到磁力的挤压,电弧道被迅速拉长,电弧温度急剧降低,进而熄灭。

这种方式具有无须压缩气体的优点,但需要较大的电流来产生足够强的磁场。

除了灭弧冲击器,灭弧装置中的灭弧剂也起到重要作用。

灭弧剂是一
种特殊的介质,能够吸收电弧的能量,并将其转化为其他形式的能量,如
光能、声能和热能等。

常用的灭弧剂有光弧熄灭剂、喷雾熄弧剂等。

灭弧
剂的作用是在灭弧过程中将电弧的能量迅速消耗掉,从而使电弧迅速熄灭,确保高压开关电器正常断路。

除了上述灭弧装置的主要组成部分外,还有一些辅助设备,如触头等。

触头主要用于控制开关电器的通断操作,通常是由导电材料制成,具有较
好的导电性能和机械强度。

通过以上介绍可知,开关电器典型灭弧装置的工作原理是通过将电弧
能量迅速转化为其他形式的能量,达到灭除电弧的目的。

通过合理设计灭
弧室、灭弧冲击器和灭弧剂等组成部分,使电弧能量在瞬间得到迅速消耗,从而将电弧熄灭,确保高压开关电器的正常运行。

相关文档
最新文档