连续可微偏导数
二元函数连续可微偏导之间的关系解读

一、引言对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。
对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。
下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。
二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系1.可微与连续的关系假设函数f(x,y在点(x0,y0处可微,那么在该点连续,但反之不成立(同一元函数。
证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y-f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0,所以lim(△x,△y→(0,0f(x0+△x,y0+△y=f(x0,y0,故f(x,y在点(x0,y0处连续。
反之不成立。
例1.f(x,y=x2yx2+y2,x2+y2≠00,x2+y2=$在点(0,0处连续,但在该点不可微。
2.偏导数存在与可微的关系由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,那么f(x,y在点(x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。
3.偏导数连续与可微的关系由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,那么f(x,y 在点(x0,y0处可微;但反之不成立,例2.f(x,y=(x2+y2sin1x2+y2,x2+y2≠00,x2+y2=%’’’&’’(0在点(0,0处可微,但偏导数在点(0,0不连续。
4.连续与偏导数存在之间的关系二元函数连续与偏导数存在之间没有必然的联系。
例3f(x,y=x2+y2(圆锥在点(0,0连续但在该点不存在偏导数。
更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。
例4.f(x,yxyx2+y2,x2+y2≠00,x2+y2=$在点(0,0不连续,但f y(0,0=lim△y→∞0-0=0,f y(0,0=lim△y→∞0-0△y=0。
多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系一、前言多元函数是数学中的重要概念,它在物理、经济学、工程学等众多领域都有广泛的应用。
而多元函数偏导数连续和可微的关系是多元函数研究中的一个重要问题,本文将详细介绍这个问题。
二、多元函数偏导数的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数的定义。
对于一个二元函数$f(x,y)$,它在点$(x_0,y_0)$处对$x$求偏导数,记为$\frac{\partial f}{\partial x}(x_0,y_0)$,表示当$y$固定在$y_0$时,$f(x,y)$对$x$的变化率。
同理,它在点$(x_0,y_0)$处对$y$求偏导数,记为$\frac{\partial f}{\partial y}(x_0,y_0)$,表示当$x$固定在$x_0$时,$f(x,y)$对$y$的变化率。
对于一个$n(n\geqslant3)$元函数$f(x_1,x_2,\cdots,x_n)$,它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数,记为$\frac{\partial f}{\partial x_i}(x_{10},x_{20},\cdots,x_{n0})$,表示当$x_j(j\neq i)$固定在$x_{j0}(j\neq i)$时,$f(x_1,x_2,\cdots,x_n)$对$x_i$的变化率。
三、多元函数偏导数连续的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数连续的定义。
对于一个$n(n\geqslant2)$元函数$f(x_1,x_2,\cdots,x_n)$,如果它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数存在且连续,那么称$f(x_1,x_2,\cdots,x_n)$在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数连续。
可微偏导连续之间的关系

可微偏导连续之间的关系以可微偏导连续之间的关系为标题,可以从以下几个方面展开论述。
我们需要了解可微偏导的概念。
可微偏导是指一个多元函数在某一点处的偏导数存在且连续。
在数学中,我们常常使用偏导数来描述函数在某一点处的变化率。
而可微偏导的连续性则表明函数在该点附近的所有偏导数都存在且保持一定的关系,这为我们研究函数的性质提供了很大的便利。
可微偏导连续之间的关系可以通过数学表达式来描述。
假设一个函数f(x,y)是定义在一个开区域D上的二元函数,若函数f在D上的所有偏导数都存在且连续,那么我们可以得到以下结论:可微偏导连续。
这个结论是数学分析中的一个重要定理,也是我们研究函数性质的基础。
接下来,我们来探讨可微偏导连续之间的实际意义。
可微偏导连续的条件保证了函数在某一点处的变化率是连续的,这在实际问题中具有很重要的意义。
例如,在经济学中,我们常常使用边际效用来描述某种商品对消费者满足程度的变化。
而可微偏导连续的条件则保证了边际效用的变化是连续的,使得我们能够更好地研究消费者的行为。
可微偏导连续还与极值问题有着密切的关系。
在求解极值问题时,我们往往需要通过求取函数的偏导数来确定极值点。
而可微偏导连续的条件可以保证函数在极值点附近的局部性质,从而为我们找到极值点提供了依据。
这在优化问题中具有很大的应用价值。
我们还可以将可微偏导连续与其他数学概念进行关联。
例如,可微偏导连续与连续函数之间存在一定的关系。
连续函数是指函数在定义域上的每一个点都满足极限存在的条件。
而可微偏导连续的条件则保证了函数在某一点处的偏导数的极限存在。
因此,可微偏导连续的函数在定义域上一定是连续的。
这种关联可以帮助我们更好地理解函数的性质。
可微偏导连续之间存在着紧密的关系。
可微偏导连续的条件保证了函数在某一点处的变化率连续,具有实际意义,并且与极值问题、连续函数等数学概念有着密切的关联。
通过研究可微偏导连续之间的关系,我们可以更深入地理解和应用数学分析中的相关概念,为问题的求解提供更有效的方法和思路。
二元函数连续偏导可微之间的关系

二元函数连续偏导可微之间的关系二元函数是指一个有两个自变量的函数。
在数学中,连续偏导数和可微性是二元函数重要的性质。
本文将探讨二元函数的连续偏导数和可微性之间的关系。
我们来了解连续偏导数和可微性的定义。
对于一个二元函数f(x, y),如果它的偏导数在定义域内存在且连续,那么我们称f(x, y)在该定义域内具有连续偏导数。
而如果一个二元函数在某一点的偏导数存在且连续,且其在该点的全微分存在,那么我们称该函数在该点可微。
连续偏导数和可微性之间有着密切的联系。
事实上,对于一个具有连续偏导数的二元函数,在该点可微是一个充分条件,但不是必要条件。
也就是说,如果一个二元函数在某一点可微,那么它在该点的偏导数一定是连续的。
然而,如果一个二元函数的偏导数在某一点连续,不一定能保证这个函数在该点可微。
具体来说,我们可以通过一个例子来说明这个关系。
考虑二元函数f(x, y) = |xy| / √(x^2 + y^2),当(x, y) ≠ (0, 0)时,f(x, y)的偏导数可以通过求导得到。
我们可以得到f对x的偏导数f_x = y^2 / (x^2 + y^2)^(3/2),f对y的偏导数f_y = x^2 / (x^2 + y^2)^(3/2)。
容易看出,f(x, y)在整个定义域内的偏导数都是连续的。
然而,当(x, y) = (0, 0)时,f(x, y)的偏导数f_x = f_y = 0。
虽然f(x, y)在该点的偏导数连续,但是f(x, y)在该点不可微。
因为我们可以通过计算f(x, y)在该点的全微分来证明全微分不存在。
连续偏导数和可微性之间的关系是:连续偏导数是可微性的充分条件,但不是必要条件。
这意味着一个二元函数的连续偏导数可以确保它在某一点可微,但一个二元函数的偏导数连续并不能保证它在某一点可微。
对于二元函数的研究,连续偏导数和可微性是非常重要的性质。
它们在数学中有广泛的应用,尤其在微积分和优化理论中。
多元函数可微与偏导数都存在、连续、极限存在的关系

多元函数可微与偏导数都存在、连续、极限
存在的关系
多元函数可微与偏导数都存在、连续、极限存在的关系
在高等数学中,我们熟悉的多元函数可微性是指函数在某一点处沿着任意方向的增量与对应的线性主部之比存在极限,而偏导数是指函数在某一点关于某一变量的导数,即在其他变量不变的情况下,该变量的导数存在极限。
那么多元函数可微与偏导数都存在、连续、极限存在之间存在着怎样的关系呢?
首先,多元函数在某一点处可微,则必然在该点处连续,并且在该点处偏导数存在,反之亦然。
这可以从定义出发进行证明。
其次,多元函数在某一点处连续,则必然在该点处偏导数都存在,但不一定可微。
这是因为连续性只能保证存在单向导数,而可微性需要同时满足双向导数都存在且相等。
第三,偏导数在某一点处存在,但不一定连续。
例如函数
$f(x,y)=\begin{cases}\frac{xy^2}{x^2+y^4},&(x,y)\neq(0,0) \\0,&(x,y)=(0,0)\end{cases}$在$(0,0)$处$x$和$y$的偏导数都存在,但不连续。
综上所述,多元函数可微与偏导数都存在、连续、极限存在之间存在着一定的关系,但彼此之间并不完全等价。
在实际问题中,我们
需要根据具体情况选择适合的理论工具来研究多元函数的性质,以解决相应的问题。
多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系引言在数学中,我们常常需要研究多元函数的性质和特点。
其中,多元函数的偏导数是一个重要的概念,它在数学分析以及应用数学中有着广泛的应用。
本文将探讨多元函数偏导数的连续性和可微性之间的关系。
多元函数的偏导数定义考虑一个二元函数f(x,y),其中x和y是自变量,f是因变量。
我们可以将x或y视为定值,而将另一个变量作为独立变量进行求导。
这样得到的导数就称为偏导数。
具体而言,函数f(x,y)的对x的偏导数记作∂f∂x,表示在y固定的情况下,f对x的变化率。
同样地,函数f(x,y)的对y的偏导数记作∂f∂y,表示在x固定的情况下,f对y的变化率。
对于多元函数,我们可以类似地定义更多的偏导数。
例如,对于三元函数f(x,y,z),我们可以求得∂f∂x 、∂f∂y和∂f∂z。
连续性和可微性在研究多元函数的性质时,连续性和可微性是两个重要的概念。
下面我们将分别讨论偏导数的连续性和可微性。
偏导数的连续性定义首先,我们来定义多元函数偏导数的连续性。
偏导数连续的定义如下:若函数在某一点处的偏导数存在且连续,则称该函数在该点处的偏导数连续。
定理根据多元函数的连续性的定义,我们可以得到以下定理:如果在某区域内,函数的偏导数连续,那么函数在该区域内是连续的。
证明如下:假设函数在某一点处的偏导数连续,即∂f∂x 和∂f∂y在该点处连续。
那么根据偏导数的定义,我们有:∂f ∂x =limΔx→0f(x+Δx,y)−f(x,y)Δx∂f ∂y =limΔy→0f(x,y+Δy)−f(x,y)Δy由于偏导数连续,我们可以将极限与连续性交换,即:∂f∂x=f x(x,y)∂f∂y=f y(x,y)由此可见,在函数的偏导数连续的情况下,函数在该点处是连续的。
因此,我们可以得出结论:函数的偏导数连续是函数连续的充分条件。
偏导数的可微性定义接下来我们来定义多元函数偏导数的可微性。
偏导数可微的定义如下:如果函数在某一点的所有偏导数都存在且连续,那么函数在该点处可微。
二元函数的连续偏导可微

二元函数的连续性、偏导及可微之间的联系二元函数连续性、偏导数存在性、及可微的定义 1.二元函数的连续性定义 设f 为定义在D 上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点) ,对于任给的正数ε,总存在相应的正数δ,只要()0;P P D δ∈⋂,就有()()0f P f P ε-<, 则称f 在P 点连续2.二元函数的偏导数定义 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆ 时,相应地函数有增量x z ∆=0000(,)(,)f x x y f x y +∆-如果 00000(,)(,)limx f x x y f x y x∆→+∆-∆存在,则称此极限为函数z (,)f x y =在点000(,)P x y 处对x 的偏导数,记作00(,)x f x y 或()00,x y fx ∂∂对y 的偏导数同理 3.二元函数的可微性定义 设函数(,)z f x y =在点()000,P x y 的某邻域()0U P 内有定义,对于()0U P 中的点()00,(,)P x y f x x y y =+∆+∆,若函数f 在0P 处的全增量z ∆可表示为:()()0000(,),z f x x y y f x y A x B y o ρ∆=+∆+∆-=∆+∆+, (1)其中AB 是仅与点P 0有关的常数,ρ=,()o ρ是较高阶的无穷小量,则称函数f 在点P 0可微.并称(1)中A x B y ∆+∆为f 在点P 0的全微分,记作000(,)P dz df x y A x B y ==∆+∆说明:1)A 、B 是与x ∆y ∆无关的常数,但与0P 可能有关;2) dz 是z ∆的线性主部0lim0z dzρρ→∆-=二元函数连续性、偏导数存在性、及可微的联系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微的联系. 一、二元函数连续性与偏导存在性间的关系偏导存在不一定连续,反之连续不一定有偏导存在 1)函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例1.证明函数(,)f xy =(0,0)连续偏导数不存在.证明:∵(,)(0,0)(,)lim (,)lim0(0,0)x y x y f x y f →→===,故函数(,)f x y =(0,0)连续.由偏导数定义:001,(0,0)(0,0)(0,0)limlim 1,x x x x f x f f x x ∆→∆→∆>⎧+∆-===⎨-∆<∆⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.2)函数(,)f x y 在点000(,)P x y 偏导存在,但不一定连续.例 2.证明函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 : 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→∆→+∆-==∆=∆ 同理可求得(0,0)0y f =∵22(,)(0,0)(,)(0,0)lim (,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 二、二元函数的可微性与偏导间的关系1.可微性与偏导存在性1) 可微则偏导存在(可微的必要条件1)若二元函数(,)f x y 在其定义域内一点000(,)P x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,2)偏导存在,不一定可微.例3证明函数22220(,)0,0x y f x y x y +≠=+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→+∆--===∆∆同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦应是较ρ=2200lim lim f df x y x y ρρρ→→∆-∆∆=∆+∆ 当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)lim lim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.例4. 22220(,)0,x y f x y x y +≠=+=⎪⎩在(0,0)处两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦为此考察极限limf dfρρρ→→∆-=当动点(,)x y 沿直线y =趋于时,则(,)(0,0)(,)limlim x y y mxx y →=→==0≠因此f 在原点不可微例5. 证明函数2222222,0(,)0,0x y x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.(0,0)(0,0)0,x y df f dx f dy =+= 222(,)(0,0)x yf f x y f x y ∆∆∆=∆∆-=∆+∆从而()222230,(0,0)222limlimlim0()()x y x y f dfx y x y x y x y ρρρρ→→∆∆→∆∆∆-∆∆∆+∆==≠=∆+∆取因此f 在原点不可微注:本题还可以说明连续不一定可微例6.证明函数2222322222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪=⎨+⎪+=⎩在(0,0)连续,且两个偏导数都存在但不可微.证明(1)∵223222()x y x y ≤+∴0,4,εδεδε∀>∃=<<∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2)又00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而222220limlim ()()f dfx y x y x y ρρρ→→∆-∆∆=∆=∆∆+∆取不存在 故 f 在原点不可微注:本题还可以说明连续不一定可微2. 偏导连续与可微1)偏导连续,一定可微.(可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)P x y 的某邻域内存在,且x f 与y f 在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 可微.注2 偏导连续是函数可微的充分而非必要条件.2)可微,偏导不一定连续例7.证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有222222121(,)2sincos x x f x y x x y x y x y =-+++222222121(,)2sin cos y y f x y y x y x y x y =-+++ (1)当y=x 时,极限2200111lim (,)lim(2sin cos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x→→-===200(0,)(0,0)1(0,0)lim lim sin 0y y y f y f f y y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ∆=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例8. 证明函数()2222220(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有(,)2x f x y x =(,)2y f x y y = (1)当y=x时,极限00lim (,)lim(2x x x f x x x →→=不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)∵00(,0)(0,0)(0,0)limlim 0x x x f x f f x x→→-===00(0,)(0,0)(0,0)lim lim 0y y y f y f f y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=(,)(0,0)(,)f f x y f f x y ∆=-=从而201cos1limlimlim cos0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例9.证明函数2222221sin ,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有22222222121(,)sin cos ()x x y f x y y x y x y x y =-+++22222222121(,)sin cos ()y xy f x y x x y x y x y =-+++(1)当y=x 时,极限2200111lim (,)lim(sin cos )222x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 00(,0)(0,0)(0,0)limlim00x x x f x f f x→→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=221(,)(0,0)sinf f x y f x y x y ∆=∆∆-=∆∆∆+∆从而()22,1limlimx y f dfx y ρρ→∆∆→∆-=∆+∆=0即函数(,)f x y 在点(0,0)可微.三、二元函数的连续性与可微性间的关系 1)可微,一定连续(可微的必要条件2)二元函数(,)f x y 在000(,)P x y 可微,则必然连续,反之不然.2)连续,不一定可微例10.证明函数3222222,0(,)0,0x x y f x y x yx y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵322222,x x x x x y x y=⋅≤++ ∴0,,,x y x εδεδδε∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)(0,0)limlim 1x x x f x f xf xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0),x y df f x f y x =∆+∆=∆(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而20limf dfρρρ→→∆-=不存在即函数(,)f x y 在点(0,0)不可微. 注:本题也可以说明偏导存在但不一定可微.例11.证明函数222222sin(),0(,)0,0x y xy x y x y f x y x y +⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵22sin(),222x y x y x y x y xy xy x y xy ++++≤⋅=≤+∴0,,,2x yx y εδεδδε+∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而0limf dfρρρ→→∆-=取y k x ∆=∆则23320022221sin (1)limlim (1)(1)x f dfk kx k k xk k ρρ→∆→∆-++=⋅=++ 不存在 故函数(,)f x y 在点(0,0)不可微.注:本题也可以说明偏导存在但不一定可微. 例12 .证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明:(1)∵00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.例13.证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在(0,0)连续 ,但不可微.证明:(1)∵2222222222x y xyx y x y x y++≤=++ ∴00lim (,)0(0,0)x y f x y f →→== 故函数(,)f x y 在点(0,0)连续.(2)不可微见例4综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:偏导连续可微连续 偏导存在补充1.确定α的值,使得函数()222222221sin ,0(,)0,0x y x y x y f x y x y α⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微.2.设函数2222(,)sin 0(,)0,0g x y x y f x y x y ⎧+≠⎪=⎨⎪+=⎩, 证明:(1)若(0,0)0g =,g 在点(0,0)处可微,且(0,0)0dg =,则 f 在点(0,0)处可微,且(0,0)0df =.(2)若g 在点(0,0)处可导,且f 在点(0,0)处可微,则(0,0)0df =.3.确定正整数α的值,使得函数()22220(,)0,0x y x y f x y x y α⎧++≠⎪=⎨⎪+=⎩在点(0,0)处(1)连续,(2)偏导存在,(3)存在一阶连续偏导.4.设函数222222,0()(,)00,0px x y x y f x y p x y ⎧+≠⎪+=>⎨⎪+=⎩,试讨论它在(0,0)点处的连续性.。
叙述二元函数偏导,可微,连续的关系

叙述二元函数偏导,可微,连续的关系二元函数是指一个含有两个自变量的函数,例如f(x,y),其中x和y是独立变量,而f(x,y)是它们的函数值。
在数学上,二元函数的偏导数、连续性和可微性是重要的性质,它们直接影响到函数的性质和应用。
一、二元函数的偏导数偏导数是指多元函数中对某一变量求导数时,将其他变量看做常数而求出的导数。
对于二元函数f(x,y),其偏导数可以分为两种类型:偏导数和混合偏导数。
1. 偏导数:偏导数常用∂来表示,表示函数f(x,y)对x或y中的其中一个变量求导的结果。
例如,f(x,y)对x 求导得到的偏导数为:∂f(x,y)/∂x = lim(Δx→0) [f(x+Δx,y) - f(x,y)] / Δx同理,f(x,y)对y求导得到的偏导数为:∂f(x,y)/∂y = lim(Δy→0) [f(x,y+Δy) - f(x,y)] / Δy2. 混合偏导数:混合偏导数是指对一个二元函数f(x,y)的某个变量求偏导数之后,再对其余变量求偏导数,也就是先后求导数的结果。
例如,对f(x,y)先对x求偏导之后再对y求偏导的结果为:∂²f(x,y) / (∂x ∂y)同理,对f(x,y)先对y求偏导之后再对x求偏导的结果为:∂²f(x,y) / (∂y ∂x)如果∂²f(x,y) / (∂x ∂y) = ∂²f(x,y) / (∂y ∂x),则称混合偏导数存在且相等。
二、二元函数的可微性可微性是指一个函数在某个点可导且导数存在,则称该函数在该点可微。
对于二元函数f(x,y),其可微与单变量函数类似,需要同时满足以下两个条件:1. 偏导数存在:即f(x,y)对x、y的偏导数都存在;2. 偏导数连续:即f(x,y)对x、y的偏导数都是连续函数。
如果一个函数在某一点可微,则在该点的局部变化可以近似于一个线性变化,其近似表达式为:Δf(x,y) = ∂f(x,y)/∂x Δx + ∂f(x,y)/∂y Δy其中Δx 和Δy 分别表示自变量 x 和 y 的微小变化量,Δf(x,y) 表示函数在 (x,y) 点处的局部变化量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续可微偏导数
在数学领域,连续可微偏导数是指一个函数具有在其定义域内连续且可微的所有偏导数。
这意味着函数在其定义域内的每个点处都具有偏导数,并且这些偏导数在整个定义域内都是连续的。
假设有一个函数 f(x₁, x₂, ..., xn),定义域为一个 n 维欧几里德空间。
如果对于每个变量 xi,其中 i=1, 2, ..., n,都存在该变量的偏导函数∂f/∂xi,且这些偏导函数在整个定义域内都连续存在,那么函数 f(x₁, x₂, ..., xn)就被称为具有连续可微的偏导数。
连续可微偏导数在数学和科学研究中具有广泛的应用。
它们用于计算物理量之间的关系,例如速度、加速度和力之间的关系。
连续可微偏导数也可以用于求解各种优化问题,例如最小化或最大化函数在给定约束条件下的值。
需要注意的是,在具体的问题中,具有连续可微偏导数的函数可能存在一些附加的条件,例如函数的定义域必须是一个开集,或者函数必须满足某些约束方程。
由于这些条件的存在,连续可微偏导数可能并非所有函数都具备,而只是针对满足特定条件的函数。