如何从图形上理解偏导数存在不能保证多元函数的连续性

合集下载

多元函数与偏导数

多元函数与偏导数

多元函数与偏导数多元函数是数学中的一个重要概念,它是自变量具有多个分量的函数。

偏导数则是多元函数中的一种导数,用于衡量函数在各个分量上的变化率。

本文将探讨多元函数的基本概念、性质以及偏导数的定义、计算方法和应用。

1. 多元函数的基本概念多元函数是自变量具有多个分量的函数,一般形式为 f(x₁, x₂, ..., xₙ),其中x₁, x₂, ..., xₙ分别代表自变量的各个分量。

多元函数中的每个自变量都存在定义域和值域。

与一元函数类似,多元函数也具有图像和性质,如连续性、可微性等。

2. 偏导数的定义偏导数是多元函数中关于某一个自变量的导数。

在多元函数中,除了变化一个自变量外,其他自变量均视作常数。

对于二元函数 f(x, y)来说,偏导数可记作∂f/∂x 或 f₁,表示对 x 分量的偏导数;∂f/∂y 或 f₂,表示对 y 分量的偏导数。

对于n 元函数类似地,可分别计算各个分量的偏导数。

3. 偏导数的计算方法(1)对于一元函数来说,其导数的计算可以借助于极限的方法,即求取函数值在某一点的极限。

同样,对于多元函数的偏导数,也可以通过极限的方式求得。

(2)对于高阶偏导数,可以先计算一阶偏导数,然后再次应用偏导数定义计算二阶偏导数,以此类推。

(3)对于具有特定形式的多元函数,如幂函数、指数函数、三角函数等,可以根据函数特性直接计算偏导数。

4. 偏导数的性质(1)对称性:对于二阶连续可导的函数,偏导数的求导次序不影响结果,即∂²f/∂x∂y = ∂²f/∂y∂x。

(2)混合偏导数的存在性:如果 f(x, y) 在某一点处的混合偏导数∂²f/∂x∂y 与∂²f/∂y∂x 在该点处连续,那么它们相等,即∂²f/∂x∂y = ∂²f/∂y∂x。

(3)偏导数与连续性的关系:若多元函数在某一点处连续可导,那么其各个分量的偏导数存在且连续。

5. 偏导数的应用(1)极值问题:多元函数中的极值点可以通过求解偏导数为零的点得到。

多元函数的连续性,偏导数存在及可微性之间的关系

多元函数的连续性,偏导数存在及可微性之间的关系

1.引 言
△“一[_ ,二(o,o,o)ax+ (o,o,O)Ay+ (o,o,o)△胡= 1/√ + (△ )。,故
多 元 函数 微分学 是数学 专业学 习 中的一个重点 和难点 ,它涉及 的 内容实 际上是微 积分学在 多元 函数 中的体现 ,其 中有关 多元 函数 的连
{△ 一 (o,o,o)Az. (o,o,O)Ay (0,o,o)△ ])=√2/2 ̄0。
(2)△ 一 ,y)e ̄c-L , )△ ,当√(△z)。+(ay) 一。时是无穷
!im。 L(xo+ ,yo+ay,f2)=L(Xo,yo,zo),
小 量 。
所以 , (z0,yo, 0)+铂=L(Xo+△_z, o+△ ,f2),
3.函数 可微性进一步拓展 1984年 Henle在二元情况下利用 向量 的方法证 明了下列 定理
续性,偏 导数存 在及 可微性 之间 的关 系是学 生在学 习中容 易发生概 念 模糊和难 以把握 的一个 重要 知识点。
当前 ,多元 函数 的连续性 ,偏导数存 在及可微 性之 间的关系研究 方
面 已经 取得 了很大 的成果,它 们三者 之间 的关 系 已经得 到 了普 遍 的说 明,但是,在 国内的许多教 材中只是对它们 三者 的定义作 了说明,而对 它 们 之间 的关 系很少提 及或没 有提到,在 一些学 术性论 文 中也 只是对二 元 函数 的连续性 ,偏 导数存 在及可微性 的关系做 了具体 的说明,因此在
理 得 :

f(xo+A:c,Yo+△ ,Zo)-f(xo+ ,Yo,zo)= ( o+Ax,f】,Zo)Ay,
其 中 f】在 。和 + 之间 ,由 ,y,2)在点 Mo关 于 z,Y的

讨论多元函数连续、偏导数存在、可微之间的关系

讨论多元函数连续、偏导数存在、可微之间的关系

讨论多元函数连续、偏导数存在、可微之间的关系祁丽梅学院数学与统计学院, 024000摘要:本文先是对二元函数连续性、偏导数存在及可微之间的关系就具体实例进行了讨论,然后推广到多元函数由此来总结有关多元函数微分学中关于上述三个概念之间的关系,并通过二元函数具体的实例详细加以证明。

关键词:二元函数;多元函数;连续;偏导数;存在;可微一、引言多元函数微分学是数学学习中的重要容,是微积分学在多元函数中的具体体现,多元函数的连续性,偏导数存在及可微性之间的关系是学生在数学学习中易发生的概念模糊和难以把握的重要知识点。

尽管它与一元函数的微分学有许多共同点,但它们之间也同样有一些差异,这些差异是由“多元”这一特殊性引起的。

二、二元函数连续、偏导数存在、可微之间的关系1、若二元函数f 在其定义域某点可微,则二元函数f 在该点偏导数存在,反过来则不一定成立。

可微的必要条件:若二元函数在()000,y x p 可微,则二元函数()y x f z ,=在()000,y x p 存在两个偏导数,且全微分y B x A dz ∆+∆=中的A 与B 分别是()00,y x f A x '=与()00,y x f B y '=其中y x ∆∆,为变量y x ,的改变量,则dy y dx x =∆=∆,,于是 二元函数的全微分为()()dy y x f dx y x f dz y x 0000,,'+'=类似的n 元函数()n x x x f u ,,,21 =在点()n x x x Q ,,,21 的全微分为nndx x fdx x f dx x f dx x f du ∂∂++∂∂+∂∂+∂∂=222211我们知道一元函数的可微与可导是等价的,但通过上述情况可以知道二元函数可微一定存在两个偏导数,反之二元函数存在两个偏导数却不一定可微。

例1函数()xy y x f =,在原点()0,0存在两个偏导数,由偏导数定义有()()()00lim 0,00,lim0,000=∆=∆-∆='→∆→∆x xf x f f x x x ()()()00lim 0,0,0lim0,000=∆=∆-∆='→∆→∆yy f y f f y y y 两个偏导数都存在,但()xy y x f =,在原点()0,0不可微证明:假设它在原点可微()()00,00,0=∆'+∆'=y f x f df y x()()y x f y x f f ∆⋅∆=-∆+∆+=∆0,00,0()()22y x ∆+∆=ρ特别地,取y x ∆=∆有x x y x f ∆=∆=∆⋅∆=∆2()()()x x y x ∆=∆=∆+∆=22222ρ于是0212limlim≠=∆∆=-∆→∆→xx dff x ρρ 即dx f -∆比ρ不是高阶无穷小()0→ρ。

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系一、前言多元函数是数学中的重要概念,它在物理、经济学、工程学等众多领域都有广泛的应用。

而多元函数偏导数连续和可微的关系是多元函数研究中的一个重要问题,本文将详细介绍这个问题。

二、多元函数偏导数的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数的定义。

对于一个二元函数$f(x,y)$,它在点$(x_0,y_0)$处对$x$求偏导数,记为$\frac{\partial f}{\partial x}(x_0,y_0)$,表示当$y$固定在$y_0$时,$f(x,y)$对$x$的变化率。

同理,它在点$(x_0,y_0)$处对$y$求偏导数,记为$\frac{\partial f}{\partial y}(x_0,y_0)$,表示当$x$固定在$x_0$时,$f(x,y)$对$y$的变化率。

对于一个$n(n\geqslant3)$元函数$f(x_1,x_2,\cdots,x_n)$,它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数,记为$\frac{\partial f}{\partial x_i}(x_{10},x_{20},\cdots,x_{n0})$,表示当$x_j(j\neq i)$固定在$x_{j0}(j\neq i)$时,$f(x_1,x_2,\cdots,x_n)$对$x_i$的变化率。

三、多元函数偏导数连续的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数连续的定义。

对于一个$n(n\geqslant2)$元函数$f(x_1,x_2,\cdots,x_n)$,如果它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数存在且连续,那么称$f(x_1,x_2,\cdots,x_n)$在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数连续。

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系引言在数学中,我们常常需要研究多元函数的性质和特点。

其中,多元函数的偏导数是一个重要的概念,它在数学分析以及应用数学中有着广泛的应用。

本文将探讨多元函数偏导数的连续性和可微性之间的关系。

多元函数的偏导数定义考虑一个二元函数f(x,y),其中x和y是自变量,f是因变量。

我们可以将x或y视为定值,而将另一个变量作为独立变量进行求导。

这样得到的导数就称为偏导数。

具体而言,函数f(x,y)的对x的偏导数记作∂f∂x,表示在y固定的情况下,f对x的变化率。

同样地,函数f(x,y)的对y的偏导数记作∂f∂y,表示在x固定的情况下,f对y的变化率。

对于多元函数,我们可以类似地定义更多的偏导数。

例如,对于三元函数f(x,y,z),我们可以求得∂f∂x 、∂f∂y和∂f∂z。

连续性和可微性在研究多元函数的性质时,连续性和可微性是两个重要的概念。

下面我们将分别讨论偏导数的连续性和可微性。

偏导数的连续性定义首先,我们来定义多元函数偏导数的连续性。

偏导数连续的定义如下:若函数在某一点处的偏导数存在且连续,则称该函数在该点处的偏导数连续。

定理根据多元函数的连续性的定义,我们可以得到以下定理:如果在某区域内,函数的偏导数连续,那么函数在该区域内是连续的。

证明如下:假设函数在某一点处的偏导数连续,即∂f∂x 和∂f∂y在该点处连续。

那么根据偏导数的定义,我们有:∂f ∂x =limΔx→0f(x+Δx,y)−f(x,y)Δx∂f ∂y =limΔy→0f(x,y+Δy)−f(x,y)Δy由于偏导数连续,我们可以将极限与连续性交换,即:∂f∂x=f x(x,y)∂f∂y=f y(x,y)由此可见,在函数的偏导数连续的情况下,函数在该点处是连续的。

因此,我们可以得出结论:函数的偏导数连续是函数连续的充分条件。

偏导数的可微性定义接下来我们来定义多元函数偏导数的可微性。

偏导数可微的定义如下:如果函数在某一点的所有偏导数都存在且连续,那么函数在该点处可微。

多元函数与偏导数相关问题的分析与探讨

多元函数与偏导数相关问题的分析与探讨

多元函数与偏导数相关问题的分析与探讨【多元函数与偏导数相关问题的分析与探讨】在数学分析中,多元函数与偏导数是一种重要的研究领域。

多元函数指的是具有多个自变量的函数,而偏导数是多元函数对某一自变量的导数。

本文将从多元函数的概念、偏导数的定义与特性、偏导数的应用以及偏导数的几何意义等方面进行分析与探讨。

1. 多元函数的概念多元函数是指具有多个自变量的函数,常用符号表示为f(x1, x2, ..., xn)。

多元函数的定义域为自变量的取值范围。

与一元函数不同,多元函数可以在多个变量的维度上进行变化,因此其研究相对复杂。

2. 偏导数的定义与特性偏导数是多元函数对某一自变量的导数。

对于多元函数f(x1, x2, ..., xn),关于变量xi的偏导数表示为∂f/∂xi。

偏导数的定义为在其他变量保持不变的情况下,对该变量求导。

偏导数具有以下特性:- 可导性:如果多元函数在某一点的偏导数存在且连续,那么该点是可导的;- 混合偏导数:对于具有连续的偏导数的多元函数,偏导数的求导次序可以调换,即混合偏导数相等;- 逐次求导:对于连续的多元函数,可以逐次求导,得到高阶偏导数。

3. 偏导数的应用偏导数在实际问题中有广泛的应用,尤其在物理学、经济学和工程学领域中。

一些常见的应用包括:- 最优化问题:通过对多元函数的偏导数进行求解,可以确定函数的驻点和最值点;- 偏导数方程:在求解偏导数方程时,可以利用偏导数的定义和特性进行变量的解耦和求解;- 偏导数的增减性:通过偏导数的正负判断函数的单调性,进而对函数的趋势和性质进行分析。

4. 偏导数的几何意义偏导数在几何上具有重要的意义。

对于多元函数而言,偏导数表示了在某一点上函数在各个坐标轴方向上的变化率。

通过偏导数可以判断函数表面在某一方向上的陡峭程度、曲率和凸凹性等。

特别地,对于二元函数而言,偏导数可以表示函数曲面在x和y方向上的切线斜率。

例如,当偏导数∂f/∂x和∂f/∂y都为零时,该点可能是函数的驻点或者函数曲面的拐点。

二元函数连续性、偏导数存在性及可微性的讨论

二元函数连续性、偏导数存在性及可微性的讨论

编号:Xxxxxxxx学校本科毕业论文二元函数连续性、偏导数存在性及可微性的讨论院系:数学科学系姓名:XXXX学号:XXX专业:XXXX年级:2008级指导教师:XXX职称:讲师完成日期:2012年5月摘要二元函数微分学是高等数学的重点之一,理清其基本概念之间的相互关系对于认识二元函数的性质有重要的意义,只有这样才能弄清楚二元函数连续、偏导数及可微之间的关系,才能更好地加以利用.本论文将重点对它们之间的关系加以总结和探讨,并给以证明和应用举例.本论文正文主要介绍了二元函数连续性、偏导数存在性及可微性的基本知识.对它们分别进行了总结证明和进一步讨论,还总结二元函数连续性、偏导数存在性及可微性的简单关系,并举出的例子加以论证支撑.关键词:二元函数;连续;偏导数;可微AbstractBinary Function Differential Calculus is one of the priorities of the higher mathematics, to clarify the basic concepts of the relationship between the significance for understanding the nature of the binary function, the only way to figure out the binary function continuous partial derivatives and differentiability the relationship between, in order to better take advantage of this paper will focus on the relationships between them to be summarized and discussed, and give proof of application example.In this thesis, the text introduces binary function continuity, partial derivatives of the Existence and differentiability of basic knowledge. Them a summary of the proof and further discussion, and also summarizes the continuity of the binary function, the partial derivatives exist and micro of simple relations, citing the examples to demonstrate support.Key words:Dual function; Continuously; Partial derivative; Differentiable目录摘要IABSTRACT II引言21 二元函数的连续、偏导数及可微三个概念的定义31.1二元函数的连续性31.2二元函数的可微性31.3二元函数的偏导数42 二元函数三个概念的结论总结及证明52.1二元函数连续性的结论总结及证明52.2二元函数可微性的结论总结及证明72.3二元函数偏导数存在性的结论总结113 二元函数三个概念之间关系的总结123.1二元函数连续性与偏导数存在性的关系及例证123.1.1 二元函数连续,但偏导不一定存在的举例证明123.1.2 二元函数偏导存在,但不一定连续的举例证明123.2二元函数可微性与偏导数存在性的关系及例证133.2.1 可微与偏导存在关系的举例证明133.2.2 偏导连续与可微关系的举例证明154 二元函数连续性、偏导数存在性及可微性关系的概图22结束语 23参考文献 24致谢 25引言二元函数微分学是一元函数微分学的推广,因此它保留了一元函数微分学的许多性质.但由于自变量由一个增加到两个,从而产生了某些本质上的新的内容.如一元函数微分学中,函数在某点可导,则它在这点可微,反之亦然.但在二元函数微分学中,函数在某点偏导数存在,推不出它在这点可微.又如,一元函数微分学中,函数在某点可导,则它在这点必连续.但在二元函数微分学中,函数在某点的偏导数都存在,却推不出它在这点连续.同时二元函数微分学是高等数学教学中的一个重难点,它涉及的内容实际上是微积分学内容在二元函数中的体现,其中有关二元函数的连续性、偏导数存在性及可微性之间的关系是学生在学习中容易发生概念模糊和难以把握的一个重要知识点.当前,二元函数的连续性、偏导数存在性及可微性之间的关系研究方面已经取得了一定的成果,但是,在国内的许多教材中只是对它们三者的定义作了说明,而对它们之间的关系很少提及或没有提到,在一般的教材中对于该部分内容的介绍比较粗略浅显,在一些学术性论文中也只是对二元函数的连续性、偏导数存在性及可微性的个别关系做了具体的说明,因此在让学生学习这方面的知识时能达到对这方面知识可以做到全面的掌握让是当前教学中的一大难题.本文具体就二元函数的连续性、偏导数存在性及可微性之间的关系通过实例作深入的探讨,就二元函数连续性、偏导数及可微性在教材相关内容的基础上进行进一步的探讨、研究,对教材内容做一些适当的补充和扩展,为后继课程的学习奠定基础.然后总结有关二元函数微分学中这关于二元函数连续性、偏导数存在性及可微性这三个概念之间的关系,并对二元函数具体的实例详细加以证明,建立他们之间的关系图.这样对有效理解和掌握多元函数微积分学知识将起到重要作用.1 二元函数的连续、偏导数及可微性概念二元函数的连续、偏导数及可微的概念都是用极限定义的,不同的概念对应不同的极限.考虑函数()y x f ,在点),(00y x 的情形,它们分别为: 1.1 二元函数的连续性定义1 设f 为定义在点集2D R ⊂上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点).对于任给的正数ε,总存在相应的正数δ,只要0(;)P U P D δ∈ ,就有 0()(),f P f P ε-<则称f 关于集合D 在点0P 连续,在不致误解的情况下,也称f 在点0P 连续.若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数. 由上述定义知道:若0P 是D 的孤立点,则0P 必定是f 关于D 的连续点;若0P 是D 的聚点,则f 关于D 在0P 连续等价于()()00lim P f P f DP P P =∈→1.2 二元函数的可微性与一元函数一样,在二元函数微分学中,主要讨论二元函数的可微性及其应用,我们首先建立二元函数可微性概念.定义 2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,对于()0P U 中的点()()y y x x y x P ∆+∆+=00,,,若函数f 在点0P 处的全增量z ∆可表示为:()()()ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z ,,00,其中A ,B 是仅与点0P 有关的常数,22y x ∆+∆=ρ,()ρο是较ρ高阶的无穷小量,则称函数f 在点0P 处可微,并称上式中关于x ∆,y ∆的线性函数A xB y ∆+∆为函数f 在点0P 的全微分,记作y B x A y x df dz P ∆+∆==),(|000 .由上可知dz 是z ∆的线性主部,特别当x ∆,y ∆充分小时,全微分dz 可作为全增量z ∆的近似值,即()())()(,,0000y y B x x A y x f y x f -+-+≈在使用上,有时也把()()()ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z ,,00写成如下形式y x y B x A z ∆+∆+∆+∆=∆βα,这里()()()()0lim lim 0,0,0,0,==→∆∆→∆∆βαy x y x1.3 二元函数的偏导数由一元函数微分学知道:若()x f 在点0x 可微,则函数增量()()()x x A x f x x f ∆++∆=-∆+ο00,其中()0x f A '=.同样,若二元函数f 在点),(00y x 可微,则f 在),(00y x 处的全增量可由()()()ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z 0000,,表示.现在讨论其中A 、B 的值与函数f 的关系.为此,在式子y x y B x A z ∆+∆+∆+∆=∆βα中令)0(0≠∆=∆x y ,这时得到z ∆关于x 的偏增量z x ∆,且有x x A z x ∆+∆=∆α或者α+=∆∆A xzx 现让0→∆x ,由上式得A 的一个极限表示式()()xy x f y x x f x z A x x x ∆-∆+=∆∆=→∆→∆000000,,lim lim,容易看出,上式右边的极限正是关于x 的一元函数()0,y x f 在0x x =处的导数.类似地,令)0(0≠∆=∆y x , 由yx y B x A z ∆+∆+∆+∆=∆βα又得到()()yy x f y y x f yz B y y x ∆-∆+=∆∆=→∆→∆00000,,l i mlim ,它是关于y 的一元函数()y x f ,0在0y y =处的导数.综上所述,可知函数()y x f z ,=在点),(00y x 处对x 的偏导数,实际上就是把y 固定在0y 看成常数后,一元函数()0,y x f z =在点0x 处的导数,同样,把x 固定在0x ,让y 有增量y ∆,如果极限存在,那么此极限称为函数()y x f z ,=在),(00y x 点处对y 的偏导数.记作()00,y x f y .因此,二元函数当固定其中一个自变量时,它对另一个自变量的导数称为偏导数,可定义如下:定义3 设函数()y x f z ,=,(,)x y D ∈.若00(,)x y D ∈,且()0,y x f 在0x 的某一邻域内有定义,则当极限()()()xy x f y x x f x y x f x x x ∆-∆+=∆∆→∆→∆00000000,,lim ,lim存在时,称这个极限为函数f 在点()00,y x 关于x 的偏导数,记作()00,y x f x 或),(00|y x x f∂∂ 注意 1 这里符号x ∂∂,y ∂∂专用于偏导数算符,与一元函数的导数符号dxd 相仿,但又有差别.注意 2 在上述定义中,f 在点()00,y x 存在关于x (或y )的偏导数,f 至少在{}δ<-=00,|),(x x y y y x (或{}δ<-=00,|),(y y x x y x )上必须有定义.若函数()y x f z ,=在区域D 上每一点()y x ,都存在对x (或对y )的偏导数,则得到函数()y x f z ,=在区域D 上对x (或对y )的偏导数(也简称偏导数),记作()y x f x ,或x y x f ∂∂),((()y x f y ,或yy x f ∂∂),(),也可简单地写作x f ,x z 或x f ∂∂(y f ,y z 或yf∂∂). 2 二元函数三个概念的进一步研究2.1 二元函数连续性的进一步研究一元函数若在某点存在左导数和右导数,则这个一元函数必在这点连续,但对于二元函数()y x f ,来说,即使它在某点()000,y x P 既存在关于x 的偏导数()00,y x f x ,又存在关于y 的偏导数()00,y x f y ,()y x f ,也未必在点()000,y x P 连续.不过,我们却有如下定理:定理1 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f ,0作为y 的一元函数在点y =0y 连续,()y x f x ,在()0P U 内有界,则()y x f ,在点()000,y x P 连续.证明 任取()y y x x ∆+∆+00,∈()0P U , 则()()0000,,y x f y y x x f -∆+∆+()()()()00000000,,,,f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- (1) 由于()y x f x ,在()0P U 存在,故对于取定的y y ∆+0, ()y y x f ∆+0,作为x 的一元函数在以0x 和0x +x ∆为端点的闭区间上可导,从而据一元函数微分学中的拉格朗日中值定理,存在θ∈(0 ,1) ,使()()()x y y x x f y y x f y y x x f x ∆∆+∆+=∆+-∆+∆+000000,,,θ将它代入(1) 式, 得()()0000,,y x f y y x x f -∆+∆+()()()000000,,,x f x x y y x f x y y f x y θ=+∆+∆∆++∆- (2)由于()∈∆+∆+y y x x 00,θ()0P U ,故()y y x x f x ∆+∆+00,θ有界,因而当()()0,0,→∆∆y x 时, 有00(,)0f x x y y x +∆+∆⋅∆→.又据定理的条件知,()y x f ,0在y =0y 连续,故当()()0,0,→∆∆y x 时, 又有0000(,)(,)0f x y y f x y +∆-→.所以, 由(2) 知, 有[]000000lim (,)(,)0x y f x x y y f x y ∆→∆→+∆+∆-=.这说明()y x f ,在点()000,y x P 连续.推论 1 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f ,0作为y 的一元函数在点0y y =连续,()y x f x ,在点()000,y x P 连续,则()y x f ,在点()000,y x P 连续.证明 由于()y x f x ,在点()000,y x P 连续,故()y x f x ,必在点()000,y x P 的某邻域内有界,因而据定理1 ,()y x f ,在点()000,y x P 连续.推论 2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义. 若()y x f x ,在()0P U 有界, ()00,y x f y 存在,则()y x f , 在点()000,y x P 连续.证明 由于()00,y x f y 存在,故()y x f ,0作为y 的一元函数在点y =0y 连续,从而据定理1可得 ,()y x f ,在点()000,y x P 连续.推论 3 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f x ,在点()000,y x P 连续, ()00,y x f y 存在,则()y x f ,在点()000,y x P 连续.证明 由于()y x f x ,在点()000,y x P 连续,故()y x f x ,必在点()000,y x P 的某邻域内有界. 又由于()00,y x f y 存在,故()y x f ,0作为y 的一元函数在点0y y =连续,因而据定理1可得出 ,()y x f ,在点()000,y x P 连续.同理可证如下的定理2及其推论.定理 2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 有定义,()y x f y ,在()0P U 内有界,()0,y x f 作为x 的一元函数在点x =0x 连续,则()y x f ,在()000,y x P连续.推论 1 设函数()y x f z ,=在点()000,y x P 的某邻域内()0P U 有定义, ()y x f y ,在点()000,y x P 连续, ()0,y x f 作为x 的一元函数在点0x x =连续,则()y x f ,在点()000,y x P 连续.推论 2 设函数()y x f z ,=在点()000,y x P 的某邻域内()0P U 有定义,()y x f y ,在()0P U 内有界, ()00,y x f x 存在,则()y x f ,在点()000,y x P 连续.推论 3 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 有定义, ()y x f y , 在点()000,y x P 连续, ()00,y x f x 存在,则()y x f ,在点()000,y x P 连续.2.2 二元函数可微性的进一步研究众所周知,一元函数中,可微性与可导是一回事,但在二元函数中情况就不同了.定理 3 函数(,)f x y 在点00(,)P x y 可微的充分必要条件是(,)f x y 在点00(,)P x y 的俩个偏导数都存在,且对0ε∀>,0δ∃>,当0000(,)(,)(,)(,)f x y f x y f x y f x y ε--+≤00()x x y y -+-.证明 必要性 已知函数(,)f x y 在点00(,)P x y 可微,故00(,)x f x y 与00(,)y f x y 存在,且00000000(,)(,)(,)()(,)()()x y z f x y f x y f x y x x f x y y y ορ∆=-=-+-+, 其中00()()x x y y ρ=-+-. 即0000(,)(,)(,)(,)f x y f x y f x y f x y --+[]000000(,)()(,)(,)x f x y x x f x y f x y =---+ []00000000(,)(,)()(,)(,)()y y f x y f x y y y f x y f x y ορ+---+于是,当00(,)(,)x y x y ≠时,有000000(,)(,)(,)(,)f x y f x y f x y f x y x x y y --+-+-000000(,)(,)(,)x f x y f x y f x y x x x x ρ--⋅--≤000000(,)(,)(,)()y f x y f x y f x y y y y y ορρρ--⋅--++000000(,)(,)(,)x f x y f x y f x y x x -≤--000000(,)(,)()(,)0(0)y f x y f x y f x y y y ορρρ-+-+→→-从而当0ρ→(即00(,)(,)x y x y →)时,000000(,)(,)(,)(,)0f x y f x y f x y f x y x x y y --+→-+-即0ε∀>,0δ∃>,当0x x δ-<与0y y δ-<且00(,)(,)x y x y ≠时,有000000(,)(,)(,)(,)f x y f x y f x y f x y x x y y ε--+<-+-所以,0ε∀>,0δ∃>,当0x x δ-<与0y y δ-<且00(,)(,)x y x y ≠时,有0000(,)(,)(,)(,)f x y f x y f x y f x y ε--+≤ 00()x x y y -+-.充分性 已知函数(,)f x y 在点00(,)P x y 两个偏导数存在,0ε∀>,0δ∃>,当0x x δ-<与0y y δ-<且00(,)(,)x y x y ≠时,有000000(,)(,)(,)(,)()f x y f x y f x y f x y x x y y ε--+≤-+-令00()()x x y y ρ=-+-,则当0ρ→时,有0000(,)(,)(,)(,)0f x y f x y f x y f x y ρ--+→于是当00(,)(,)x y x y ≠时,有000000(,)()(,)()x y y z f x y x x f x y f y y ∆--+-[]000000000(,)(,)(,)(,)(,)(,)()f x y f x y f x y f x y f x y f x y x x x x ⎡⎤---++-⎢⎥-⎣⎦0000000(,)(,)(,)()y f x y f x y f x y y y y y ⎡⎤-+--⎢⎥-⎣⎦从而有000000(,)()(,)()x y y z f x y x x f x y f y y ρ∆--+-=0000(,)(,)(,)(,)f x y f x y f x y f x y ρ--++0000000(,)(,)(,)()x f x y f x y x x f x y x x ρ⎡⎤---+⎢⎥-⎣⎦ 0000000(,)(,)(,)()0(0)x f x y f x y y y f x y x x ρρ⎡⎤---→→⎢⎥-⎣⎦ 所以,函数(,)f x y 在点00(,)P x y 可微.证毕.定理 4 若函数()y x f z ,=在()00,y x 点处,()y x f x ,连续()00,y x f y 存在(或()00,y x f x 存在,()y x f y ,连续),则函数()y x f z ,=在()00,y x 处可微.由此定理的条件仍有对一个偏导数(二元)连续性的要求.因而用来判断函数的可微性仍有较大的局限性.例如:对于函数2221sin (,)0,x x y f x y ⎧⎪+=⎨⎪⎩002222=+≠+y x y x , ())0(1cos )(21sin 2,2222222322≠+++-+=y x yx y x x y x x y x f x 有 ())0(1cos )(2,22222222≠+++-=y x yx y x y x y x f y ())0(1cos 21sin20,22≠-=x xx x x x f x 从而())0(21cos 21,2≠-=x xx x x f y 由于)0,(lim 0x f x x →和),(lim 0x x f y x →都不存在,因而),(y x f x 和),(y x f y 在点)0,0(都不连续.关于),(y x f 在点)0,0(的可微性,无论是根据教材中所介绍的定理,还是根据上述定理都不能给出肯定的结论.本文给出另一个可微的充分条件,它完全放弃对两个偏导数(二元)连续性的要求,因而对某些函数可微性的判定有独到的作用.为了叙述方便,引入如下概念.定义 如果对于函数),(y x f z =存在0>η,使得当η<∆y 时,),(00y y x f x ∆+存在,且当0→∆x 时,变量000000(,)(,)(,)(0),(,)0(0),x f x x y y f x y y f x y y x x y xx α+∆+∆-+∆⎧-+∆∆≠⎪∆∆=∆⎨⎪∆=⎩ 关于y ∆一直趋向于0,即对任意的0>ε,存在0>δ,当δ<∆<x 0时,对任意y ∆(y η∆<)都有(,)x y αε∆∆<成立,我们就称函数(,)z f x y =在点00(,)x y 关于y 对x 一致可导.类似地可定义),(y x f z =在点),(00y x 关于x 对y 一致可导.定理 5 若函数),(y x f z =在点),(00y x 有:),(00y x f y 存在,),(y x f 关于y 对x 一致可导,且),(y x f o x 在0y 连续,则),(y x f z =在点),(00y x 可微.证明: 因),(00y x f y 及),(00y y x f x ∆+)(η<∆y 存在,故有),(),(),(000000y x f y y x x f y x y -∆+∆+=∆),(),(),(),(00000000y x f y y x f y y x f y y x x f -∆++∆+-∆+∆+=[][]y y y x f x y x y y x f y x ∆∆++∆∆∆+∆+=)(),(),(),(0000βαy y y y x f x y x x y y x f y x ∆∆+∆+∆∆∆+∆∆+=)(),(),(),(0000βα(3)其中),(y x ∆∆α如前述定义,而0)(→∆y β()0,0→∆→∆y x ), 于是有0)(lim22=∆+∆∆⋅∆→∆→∆yx yy y x β (4)又因为),(0y x f x 在0y 连续,故有),(),(lim 000000y x f y y x f x y x x =∆+→∆→∆ (5)再由),(y x ∆∆α所具备的性质知,对任意0>ε,存在)(0ηδδ<>,当δδ<∆<∆y x ,且022≠∆+∆y x 时,有εα<∆∆),(y x 此即0),(lim 00=∆∆→∆→∆y x y x α从而0),(lim220=∆+∆∆∆∆→∆→∆yx xy x y x α (6)综合(3)——(6)式即得[]0),(),(),(lim2200000000=∆+∆∆+∆-∆→∆→∆y x yy x f x y x f y x f y x y x可见),(y x f 于),(00y x 可微.显然,调换定理条件中x f 和y f 的位置,结论仍然成立.指出,尽管定理5已完全放弃对两个偏导数的(二元)连续性要求,但它所给出的条件仍然不是可微的必要条件.因此,如何用两个偏导数所应具备的性质来等价地刻画二元函数的可微性,就需要进一步的探讨,这对以后仍是大我们还要有裨益的.1. 若果f 在点),(00y x 处不连续或偏导数不存在,则f 在点),(00y x 处不可微.2. 若果f 在点),(00y x 处连续,存在),(00y x f x 、),(00y x f y ,则f 在点),(00y x 处可微的充分必要条件是满足下列等价的任一式: (1) ),(),(0000y x f y y x x f z -∆+∆+=∆220000(),(),(y x y y x f x y x f y x ∆+∆+∆+∆=ε其中0→ε(当0,0→∆→∆y x )(2) ),(),(0000y x f y y x x f z -∆+∆+=∆y x y y x f x y x f y x ∆=∆+∆+∆=210000),(),(εε 其中120,0εε→→(当0,0→∆→∆y x 时)推论 4 若二元函数(,)z f x y =在00(,)x y 处两个偏导数00(,)x f x y ,00(,)y f x y 均存在,且00(,)xy f x y 或者00(,)yx f x y 存在,则函数(,)f x y 在00(,)x y 处可微.证明 不妨设00(,)xy f x y 存在(00(,)yx f x y 存在的情形可作类似证明).因为000000(,)(,)(,)limx x xy y y f x y f x y f x y y y →-=-所以000lim (,)(,)x x y y f x y f x y →=,即0(,)x f x y 在0y y =处连续.根据定理3可知函数(,)f x y 在00(,)x y 处连续. 2.3 二元函数偏导数存在性进一步研究二元函数()y x f ,在点),(0o y x 的两个偏导数有明显的几何意义:设)),(,,(00000y x f y x M 为曲面),(y x f z =上的一点,过0M 作平面0y y =,截此曲面得一曲线,此曲线在平面0y y =上的方程为),(0y x f z =,则导数0|),(0x x y x f dxd→, 即偏导数),(00y x f x ,就是这曲线在点0M 处的切线x T M 0对x 轴的斜率.同样,偏导数),(00y x f y 的几何意义是曲面被平面0x x =所截得的曲线在点0M 处的切线y T M 0对y 轴的斜率.我们已经知道,如果一元函数在某点具有导数,则它在该点必定连续.但对于二元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续.这是因为各偏导数存在只能保证点P 沿着平行于坐标轴的方向趋于0P 时,函数值)(p f 趋于)(0p f ,但不能保证点P 按任何方式趋于0P 时,函数值)(p f 都趋于)(0p f .3 二元函数三个概念之间关系的总结3.1 二元函数连续性与偏导数存在性的关系及例证对一元函数来说,可导必连续.但对二元函数来说,即使x f ,y f 存在但f 也不一定连续.事实上,对于二元函数来说,函数在一点处的偏导数存在和函数在该点处连续是没有必然联系的.下面加以说明这个问题. 3.1.1 二元函数连续,但偏导不一定存在的举例证明例 1 讨论函数()22,y x y x g +=在点()0,0处的连续性和偏导数是否存在? 解: 由()()()()()220,0,0,0,lim,lim y x y x g y x y x +=→→0=(0,0)g =可知函数()22,y x y x g +=在点()0,0连续. 而由偏导数定义:0(0,0)(0,0)(00)limx x g x g f x∆→+∆-=∆2001,0lim lim 1,0x x x x x x x x ∆→∆→∆>∆⎧∆===⎨-∆<∆∆⎩该极限()0,0x g 不存在,同理可证()0,0y g 也不存在. 所以函数),(y x g 在()0,0点的偏导数不存在. 由此说明,二元函数在一点连续,偏导数未必存在. 3.1.2 二元函数偏导存在,但不一定连续的举例证明例 2 函数()22,,1,x y f x y ⎧+=⎨⎩ 00≠=xy xy 在点()0,0处()0,0x f ,()0,0y f存在,但不连续.证明 由偏导数定义:()()()xf x f f x x ∆-∆+=→∆0,00,0lim 0,00 0lim x x ∆→=∆0= 同理可求得 ()0,00y f = 因为()()()()()()()22,0,0,0,0lim,lim00,01x y x y f x y x y f →→=+=≠=故函数()22,,1,x y f x y ⎧+=⎨⎩00≠=xy xy 在点()0,0处不连续.综上可见,对于二元函数()y x f ,在某点()00,y x 的连续性与偏导数存在,两者之间没有必然的联系,即()y x f ,在某点()00,y x 偏导数存在与否,与其在该点是否连续无关.但如果假定函数的各个偏导数有界,即有下面命题:命题 1 如果二元函数f 在点00(,)P x y 的某邻域()U P 内的偏导数x f ,y f 有界,则f 在()U P 内连续.证明 由x f ,y f 在()U P 内有界,设此邻域为1(,)U P δ,存在0M >,使x f M <,y f M < ,在1(,)U P δ内成立,由于12(,)(,)(,)(,)x y Z f x x y y f x y f x x y y x f x y y y M x M yθθ∆=+∆+∆-=+∆+∆∆++∆∆≤∆+∆(其中120,1θθ≤≤).所以对任意的正数ε,存在1,2(1)M εδδ⎧⎫=⎨⎬+⎩⎭,当,x y δδ∆<∆<时,有(,)(,)f x x y y f x y ε+∆+∆-<,故f 在(,)U P δ内连续.3.2 二元函数可微性与偏导数存在性的关系及例证 3.2.1 可微与偏导存在关系的举例证明定理 6 (可微的必要条件)若二元函数()y x f z ,=在其定义域内一点()000,y x P 处可微,则f 在该点关于每个自变量的偏导数都存在,且()()()000000|,,,x x d x y f x y dx f x y dy =+ ,()00,y x f A x =,()00,y x f B y =. 证明 由于()y x f ,在点),(000y x P 可微,则())(),(,0000ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z其中,y x ∆∆,为自变量y x ,的该变量,B A ,仅与点),(000y x P 有关,而与y x ∆∆,无关,22y x ∆+∆=ρ.若令0y y =即0=∆y ,于是x ∆=ρ,故)(x x A z ∆+∆=∆ο可见xx A x z∆∆+=∆∆)(ο,Axx A x zy x f x y x x =∆∆+=∂∂=→∆))((lim |),(0),(0000ο,即()A y x f x =00,,类似可证()B y x f y =00,.可见,对于二元函数,偏导数的存在是函数),(y x f z =可微分的必要条件.但是偏导数的存在不是函数可微分的充分条件.事实上,当一个二元函数),(y x f z =在点),(y x 处的偏导数yzx z ∂∂∂∂,都存在时,尽管形式上可以写成式子y y zx x z ∆∂∂+∆∂∂,但是它与z ∆之间可以不是22y x ∆+∆=ρ的高阶无穷小,因而由定义,此时函数),(y x f z =在点),(y x 处是不可微的.注 1:定理5的逆命题不成立.即二元函数()y x f ,在点()000,y x P 处的偏导数即使存在也不一定可微.下面用例3说明函数在一点的偏导数存在,但函数在该点却不可微.例 3 证明函数()22,,0,xy x y f x y ⎧⎪+=⎨⎪⎩002222=+≠+y x y x 在原点两个偏导数存在,但不可微.证明 由偏导数的定义:()()()xf x f f x x ∆-∆+=→∆0,00,0lim0,00=000lim0x x∆→-=∆同理可证()0,00y f =,即在原点关于x 与y 的偏导数存在. 下面利用可微的定义来证明其不可微 用反证法:若函数f 在原点可微,则())(()()00,00,00,00,0y f df f x y f f dx f dy ⎡⎤⎡⎤∆-=+∆+∆--+⎣⎦⎣⎦ 22x y x y∆∆=∆+∆应是较22y x ∆+∆=ρ的高阶无穷小量,为此考察极限2200limlimy x yx dff ∆+∆∆∆=-∆→→ρρρ当动点()y x ,沿直线mx y =趋于()0,0时, 则()()()()220,0,220,0,11lim limm mm m y x xy y x mx y y x +=+=+→=→ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同,因此所讨论的极限不存在.故函数f 在原点不可微. 3.2.2 偏导连续与可微关系的举例证明定理 7 (可微的充分条件) 若二元函数()y x f z ,=的偏导在点()000,y x P 的某邻域内存在且x f 与y f 在点()000,y x P 处连续,则函数()y x f ,在点()000,y x P 可微.可微的充分条件可以改进: 如果函数()y x f z ,=满足以下条件: 1. (,)x f x y 在点00(,)x y 处存在;2. (,)y f x y 在点00(,)x y 的某个邻域内存在;3. (,)y f x y 在点00(,)x y 处连续; 则(,)f x y 在点00(,)x y 处可微.证明 由于00(,)x f x y 存在,即有:0000000(,)(,)lim (,)x x f x x y f x y f x y x ∆→+∆-=∆ 即:0000(,)(,)(,)x f x x y f x y f x y xα+∆-=+∆(其中0lim 0x α∆→=)则000000(,)(,)(,)x f x x y f x y f x y x x α+∆-=⋅∆+⋅∆由于(,)x f x y 在点00(,)x y 的某个邻域内存在,不妨设(,)y f x y 在ω={01(,)|x y x x ψ-<且02y y ψ-<}内存在设0()(,)g y f x x y =+∆并规定1x ψ∆<则()g y 在20|2y y y ψ⎧⎫-≤⎨⎬⎩⎭上每一点都存在,从而()g y 在20|2y y y ψ⎧⎫-≤⎨⎬⎩⎭上每一点都连续,规定:22y ψ∆≤则根据中值定理存在1y ,使得:001()()()g y y g y g y y +∆-=∆(其中10y y y -≤∆)即:000001(,)(,)(,)y f x x y y f x x y f x x y y +∆+∆-+∆=+∆⋅∆当220x y ∆+∆→且0y ∆→ 从而有00x x x +∆→,10y y →又由于0100(,)(,)y y f x x y f x y +∆=在点00(,)x y 处连续0100(,)(,)y y f x x y f x y β+∆=+其中220lim 0x y β∆+∆→=则000000(,)(,)(,)y f x x y y f x x y f x y y y β+∆+∆-+∆=⋅∆+⋅∆综上所述有:0000(,)(,)f x x y y f x y +∆+∆-[][]00000000(,)(,)(,)(,)f x x y y f x y f x x y y f x y =+∆+∆-++∆+∆- 0000(,)(,)x y f x y x x f x y y y αβ=∆+⋅∆+∆+⋅∆又由于2222lim0x y x yx yαβ∆+∆→⋅∆+⋅∆=∆+∆故(,)f x y 在点00(,)x y 点可微.证毕.教材中关于二元函数的微分一般只是分别给出了必要条件和充分条件,对可微的充要条件涉及比较少.偏导数的存在是函数可微的必要条件而不是充分条件,但是,如果在假设函数的各个偏导数连续,则函数是可微的.但此条件给的太强,于是我们总结了判别二元函数在某点可微的一个充分条件,可对此定理的条件进行减弱,得出:定理 8 若函数()y x f z ,=在点()000,y x P 的邻域G 内()y x f x ,连续,()00,y x f y存在,则函数f 在点()00,y x 可微.证明 全增量()),(,0000y x f y y x x f z -∆+∆+=∆[][]),(),(),(),(00000000y x f y y x f y y x f y y x x f -∆++∆+-∆+∆+=这里第一个括号是当y y y ∆+=0时函数关于x 的增量,而第二个括号则是当0x x =时函数关于y 的增量,对于它们分别应用一元函数的拉格朗日中值定理,得()y y y x f x y y x x f z y x ∆∆++∆∆+∆+=∆),(,200010θθ )1,0(21<<θθ 由于()y x f x ,,()00,y x f y 在点()00,y x 连续,因而有()αθ+=∆+∆+),(,00010y x f y y x x f x x ,()βθ+=∆+),(,00200y x f y y x f y y , 其中当)0),((→∆∆y x 时,0,0→→βα.所以()()y x y y x f x y y x f z y x ∆+∆+∆+∆=∆βα0000,, 令22y x ∆+∆=ρ,则当0→ρ时,ερρβραρβα⋅=∆+∆=∆+∆)(yxy x 是关于ρ的高阶无穷小.事实上,由于βαρβραε+≤∆+∆=yx而当0→ρ时0→ε,即)(ροερβα=⋅=∆+∆y x .这就证明了),(y x f z =在点),(00y x 是可微的.例 4 求证21sin ,0(,)0,0x e y y y f x y y ⎧≠⎪=⎨⎪=⎩在点(0,0)可微.证明 因为0(,)(,)(,)lim x f f x x y f x y x y x x∆→∂+∆-=∂∆22011sin sin limx x x x e y e y y yx+∆∆→-=∆201sin (1)limx xx e y e yx∆∆→-=∆21sin(0)x e y y y=≠0(,)(,)limy f f x y y x y x y∆→∂+∆=∂∆ 22011()sin sin limx x y e y y e y y y yy∆→+∆-+∆=∆11112sincos (2sin cos )x x x e y e e y y y y y=-=-.(0)y ≠ 00(,0)(,0)00(,0)lim lim 0x x f f x x f x x x xx ∆→∆→∂+∆--===∂∆∆同理(0,)0fy y∂=∂ 即21sin ,0(,)0,0x e y y f y x y x y ⎧≠∂⎪=⎨∂⎪=⎩ 11(2sin cos ),0(,)0,0xe y yf y y x y x y ⎧-≠∂⎪=⎨∂⎪=⎩于是(0,0)(0,0)0x y f f == 又2001lim sin0x x y e y y∆→X →=, 所以(,)x f x y 在点(0,0)连续. 但0011lim (2sincos )x x y e y y y∆→X →-不存在,即(,)y f x y 在(0,0)点不连续. 又定理8可知(,)f x y 在点(0,0)可微.显然,与传统的判别方法相比,这个充分条件更加减弱了判别条件,进一步阐明了二元函数偏导数与可微性的关系,使适用范围扩大,适用性加强.注意 这个条件是可微的充分条件并非必要条件,即()y x f z ,=在()00,y x 的邻域G 内()00,y x f y 存在但()y x f x ,不连续,但()y x f ,在点()00,y x 也可微.下面我们用例5说明函数在一点可微,但它的偏导数在该点却不连续. 例 5 求函数()()22221sin ,,0,x y x y f x y ⎧+⎪+=⎨⎪⎩ 002222=+≠+y x y x ,在原点()0,0处,(1)()0,0y f 是否存在 (2)x f 是否连续(3)是否可微.解 (1) 由定义知()()()0,0,00,0limx y f y f f y∆→∆-=∆221sinlim 0y y y y∆→∆∆==∆所以()0,0y f 存在.(2) 因为当022≠+y x 时,()y x f ,偏导数存在,故()⎪⎩⎪⎨⎧⎪⎪⎭⎫⎝⎛++-+=,0,1cos 11sin 2,222222y x y x y x x y x f x 002222=+≠+y x y x , 而()y x f x y x ,lim 00→→不存在,故()y x f ,在原点不连续.(3)法 1:因()()200,00,01(0,0)limlim sin 0x x x f x f f x x x→→-=== ()()2000,0,01(0,0)limlim sin 0y y y f y f f y y y→→-=== 则()()0,00,00x y df f dx f dy =+=()22221,(0,0)()sinf f x y f x y x y∆=-=++ 221sinρρ=(()22,:0x y x y ∀+≠)从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(),f x y 在点()0,0可微.法 2:(0,0)0x f =,(0,0)0y f =,(0,)(0,0)(0,0)lim00x x xy y f y f f y →-==-即(0,0)x f ,(0,0)y f 存在,且(0,0)xy f 存在.根据推论4可知题设所给函数(,)f x y 在(0,0)处可微.3.3 二元函数连续性与可微性的关系及例证类似于一元函数的连续性与可导性间的关系,即二元函数(),f x y 在点()000,P x y 可微,则必连续.反之不然.定理 9 若二元函数()y x f ,在其定义域内一点()y x ,可微,则f 在该点必然连续.证明 事实上()ρο+B∆+A∆=∆y x z ,0lim 0=∆→z ρ,()()[]()y x f z y x f y y x x f y x ,,lim ,lim 0=∆+=∆+∆+→→∆→∆ρ故f 在()y x ,连续.注意 函数()y x f ,在某点()y x ,可微,则()y x f ,在该点连续;但()y x f ,在某点()y x ,连续,函数在该点却不一定可微.例 6 证明函数(),||f x y xy =在点()0,0连续,但它在点()0,0不可微.证明 (1) 因为()()000lim ,lim ||00,0x x y y f x y xy f →→→→===,故函数(),||f x y xy =在点()0,0连续.(2) 因为(0,0)(0,0)||||f f x y f x y ∆=+∆+∆-=∆∆()()0,00,00x y df f dx f dy =+=所以 2200||||limlim()()x y x y f dfx y ρρ→∆→∆→∆∆∆-=∆+∆当动点(),x y 沿直线y x =趋于()0,0时,有2200||||1lim02()()x y x y x y ∆→∆→∆∆=≠∆+∆ 即0lim0f dfρρ→∆-≠,故(),f x y 在原点()0,0不可微.例 7 函数y x y x f +=),(在点)0,0(处连续,但在)0,0(点不可微. 解: 因为()()()()())0,0(0)(lim ,lim0,0,0,0,f y x y x f y x y x ==+=→→所以y x y x f +==),(在点)0,0(处连续. 又因为xx x f x f f x x x ∆∆=∆-∆+=→∆→∆00l i m )0,0()0(l i m)0,0(,此极限不存在;同理)0,0(y f 的极限也不存在.因此不能把)(ρο+∆+∆=∆y B x A z 的形式.4 二元函数连续性、偏导数存在性及可微性关系的概图如果函数(),z f x y ∆=在点(,)x y 可微分,则函数在该点必连续,反之不一定成立.如果函数(),z f x y ∆=在点(,)x y 可微分,则函数在该点的偏导数必存在,反之一定成立.如果函数(),z f x y ∆=在点(,)x y 连续,则偏导不一定存在. 如果函数(),z f x y ∆=在点(,)x y 偏导存在,则不一定连续.如果函数(),z f x y ∆=在点(,)x y 偏导连续,则函数在该点必可微,反之不一定成立.综上所述二元函数连续性、偏导数存在性及可微性的关系如下图所示.偏导连续可微连续偏导存在结束语本文对二元函数连续性、偏导数存在性及可微性之间关系的讨论,根据分析可以看出二元函数连续性、偏导数存在性及可微性之间的关系比一元函数连续、导数存在及可微之间的关系要复杂的多,究其原因主要在于二元函数极限比一元函数极限对自变量的要求更高、更复杂.如0lim ()x x f x →只要求在x 从0x 的左右俩侧趋向于0x 时,()f x 趋于同一值.而对()()()00,,lim,x y x y f x y →要求点(),x y 以任何方式趋向于点()00,x y 时,(),f x y 都趋向于同一极限,任何方式包含了x 与y 的不同关系以及趋向时的不同路径,从而导致二元函数产生了二重极限与累次极限的区别,正是由于二元函数极限的这种复杂性导致了二元函数诸多关系的复杂性.依据本文的分析得出它们三者之间的关系,不但对学习是一种积极的推动作用,有助于使学生对这方面的知识不会产生干扰,能较好地辨别它们之间的本质区别,使得原有知识更加牢固,也同时抓住了函数的本质.这方面的知识繁多,证明的方法难易悬殊,使用技巧各异,而且同一问题也可用多种不同方法来解决. 二元函数连续性、偏导数存在性及可微性之间关系的知识是人类智慧最伟大的成就之一,是数学上的伟大创造,它现在广泛影响着生产技术和科学的发展,如今已是广大科学工作者以及技术人员不可缺少的工具.以上我从比较初等的方法入手,进而对二元函数连续性、偏导数存在性及可微性的若干概念、定理、性质等内容这一方面的内容作了浅显的论述,将初等数学和高等数学的有关内容衔接起来,从而在整体上更好地理解有关这方面的知识.至于解决具体问题时个人可依据知识的储备、问题的要求来进行方法的选择.本文列举了二元函数连续性、偏导数存在性及可微性这方面的知识和证明方法,根据证明方法、举例、适用范围进行了归纳总结,力求有理论依据、有例题参考、有实用价值.从定义出发证明是最“原始”的做法,不易被人想到,但它在证明中确有其优势.证明的方法应该还有很多,对于其它新的方法有待于进一步探索与研究.为此,我们有必要学习好、掌握好二元函数连续性、偏导数存在性及可微性之间的关系这方面的知识,配以先进的管理观念和现代化的通信、网络、计算机技术,尽可能的把这些知识灵活运用推广,满足其他行业对这些知识的需要,创造更好的经济效益和社会效益.参考文献[1] 华东师范大学数学系. 数学分析(下)[M] . 北京: 高等教育出版社,2001: 100 –112[2] 吉米多维奇. 数学分析习题集[M] . 北京: 人民教育出版社, 1958: 62-78[3]马振民. 数学分析的方法与技巧选讲[M]. 兰州: 兰州大学出版社, 1999: 36-54.[4] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 北京高等教育出版社, 1993: 86-97.[5] 华东师范大学数学系. 数学分析[M] . 北京: 人民教育出版社, 1981: 137-160.[6] 李超. 有关多元函数连续性的几个新结论[J]. 韶关学院学报(自然科学版).2002,23(6): 1-6.[7] 周良正,王爱国. 偏导数存在,函数连续及可微的关系[J]. 高等函授学报(自然科学版).2005,19(5): 1-4.[8] 何鹏,余文辉,雷敏敛. 二元函数连续、可偏导、可微等诸条件间关系的研究[J]. 南昌高专学报. 2005,61(6): 1-2.[9] 黄梅英. 浅谈二元函数可微性[J]. 三名师专学报. 2000,17(1): 1-5.[10] 龚俊新. 二元函数连续、偏导、可微之间的关系[J]. 湖北师范学院学报(自然科学版).2000.23-24.[11] 同济大学数学教研室主编.高等数学(下册)(第四版)[M]. 高等教育出版社,.2000,20(3): 1-3.[12] 张郑严. 关于二元函数可微性定理的探讨[J]. 西北建筑工程学院报,.1993.4,46-48.[13] 高敏艳. 二元函数可微性定理的一个新的证明[J]. 天津师范大学学报(自然科学版),1999,19(3): 71-72.[14] 吴良森,等. 数学分析学习指导书.高等教育出版社, 2004.9.[15] 刘玉琏,傅沛仁. 数学分析讲义(三版).高等教育出版社, 2001.2.[16] 刘玉琏,等. 数学分析讲义学习辅导书(二版).高等教育出版社, 2004.7.[17] 罗炳荣. 《数学》(报考理工科研究生复习指导丛书).湖南科学技术出版社,.高等教育出版社,1985.327.。

多元函数连续、可导和可微性关系的相关探讨

多元函数连续、可导和可微性关系的相关探讨

多元函数连续、可导和可微性关系的相关探讨摘要:函数的连续性、可导性和可微分性及其内在联系在高等数学和数学分析课程中都具有十足轻重的作用.本文主要通过相关概念及几何意义研究多元函数极限、连续、偏导数和微分之间的关系,旨在帮助学习者理清概念,更好地掌握这部分的知识.关键词:多元函数;连续性;偏导数;微分引言函数微分学和积分学是高等数学和数学分析课程的非常核心的内容,在多元函数微分学学习过程中,很多同学对多元函数的极限存在、函数连续性、函数偏导数存在与函数的可微性之间的关系认识比较迷糊,从而导致后续课程的学习很吃力;同时,该部分知识也是数学相关专业考研的必考科目,其重要性不言而喻;针对这一问题,本文从多元函数(以二元函数为例)出发讨论函数这几个概念之间存在的联系与区别,在难以理解的地方通过给予实例说明,同时结合相关该男的几何意义对概念之间的关系做直观描述,最后与一元函数相关概念关系进行对比,以便加深学习者对该部分知识的深入理解.1 多元函数重极限与累次极限的关系从多元函数重极限与累次极限的定义可知,二者的存在性没有必然的蕴含关系,也就是说无法由其中一种极限判断另一种极限是否存在以及极限值的情况,但在一定的条件下,二者也是有联系的.首先,如果重极限与某个累次极限都存在的话,二者必相等,也可以说如果重极限与两个累次极限都存在的话,三者也必然相等,这也说明了如果两个累次极限都存在但不相等时,可以判断重极限一定是不存在的.2 多元函数极限存在与连续性的关系函数在某点极限存在与否不能判断函数在该点是否连续.这是因为判断函数在某点极限是否存在的前提是该点为函数定义点集的聚点,而连续性没有这一要求,这样的话即使函数在该点极限不存在也可能在该点连续,如孤立点,同时,函数在该点的极限值即使存在也未必是函数在该点的函数值,所以也未必连续.函数在某点是否连续也不能判断函数在该点是否极限存在.也就是说连续点可以是聚点也可以是孤立点,由定义可知孤立点是连续点但极限不存在,但如果连续点是聚点的话一定极限存在.总的来说,函数在该点极限是否存在不能判断在该点是否连续(聚点的话由极限值是否等于函数值决定),函数在该点是否连续也不能判断函数在该点极限的存在性(如孤立点).3 多元函数连续性与偏导数存在之间的关系多元函数连续与否无法判断偏导数是否存在,如函数在点(0,0)连续但偏导数不存在,但在点(0,0)连续且偏导数存在.函数在点(0,0)不连续但偏导数存在.同时多元函数偏导数存在与否也无法判断函数是否连续,如上述函数在点(0,0)偏导数存在且连续,而函数在点(0,0)偏导数存在但不连续.总的来说,函数在该点连续与否不能判断函数在该点偏导数是否存在,按一元函数理论,函数偏导数存在则在该方向是连续的,但多元函数的连续要求在任意方向都是连续的,这也解释了多元函数连续性与偏导数存在性的关系.需要注意的是,虽然偏导数存在无法判断函数是否连续,但如果函数偏导数存在且有界的话,就能判断函数是连续的.4 多元函数连续性与可微性的关系由可微性定义易知,函数在某点可微则在该点一定是连续的,但函数在某点连续无法判断函数在该点是否可微,如3中函数在点(0,0)连续,但在该点不可微;但函数在点(0,0)连续且可微.总的来说,函数在某点可微一定连续,反之不一定成立.5 多元函数偏导数存在与可微性之间的关系由函数可微性定义可知,如果函数在某点可微则偏导数一定存在,但偏导数存在无法判断函数的可微性,如3中函数在点(0,0)偏导数存在且可微,而函数在点(0,0)偏导数存在但不可微.从几何意义来讲,多元函数在某点可微,则曲面在该点存在不平行于z轴的切平面,但偏导数存在只能保证该点处沿某个别方向切线存在,不能保证切平面存在,这也解释了多元函数在一点可微与偏导数存在的关系.总的来说,函数在某点可微偏导数一定存在,反之不一定不成立.需要注意的是,虽然偏导数存在无法判断函数可微,但如果函数偏导数存且偏导数连续的话,就能判断函数是可微的.结束语对于一元函数而言,函数在某点可微分函数在该点可导函数在该点连续函数在该点极限存在,反过来都不一定成立.但对于多元函数而言,除了函数在某点可微分函数在该点偏导数存在、函数在某点可微分函数在该点连续外,其它关系都不一定成立.通过以上分析,明确了多元函数极限、连续、偏导数和可微几个重要概念的关系,也给出了多元函数与一元函数本质上的区别和联系,对于容易弄不清的关系通过反例给出了解释,但对函数连续性与一致连续性的关系没有提及,同时函数连续性、可微性的充分条件还有待进一步的研究.参考文献[1] 华东师范大学数学科学学院.数学分析下[M].北京:高等教育出版社,2022:89-106.[2] 金少华,徐勇等. 关于多元函数可微性教学的一个注记[J].高师理科学刊,2018(2):61-62.[3] 王霞,谢孔锋. 二元函数连续、偏导数、可微分与方向导数之间的关系及举例[J].贵阳学院学报(自然科学版),2014,9(4):1-2,40.[4]齐小忠.浅谈二元函数中六大重要概念间的关系 [J].喀什师范学院报,2013,34(3):23-25.作者简介:宋玲珍,1980.01,女,河南滑县人,汉,硕士,讲师,研究方向:图像处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档