土壤学

合集下载

土壤学的专业课程包括

土壤学的专业课程包括

土壤学的专业课程包括土壤学是农学和地理学的交叉学科,主要研究土壤的形成、分类、性质、肥力、改良和利用等方面的知识。

作为农业生产的重要基础,土壤学在农业、环境保护和自然资源管理等领域具有重要意义。

下面将介绍土壤学的一些专业课程。

1. 土壤物理学土壤物理学是土壤学的基础学科之一,主要研究土壤的物理性质及其与土壤水分、空气和根系的关系。

该课程涵盖了土壤颗粒组成、土壤结构、土壤质地、土壤容重、土壤孔隙度、土壤水分运动等内容。

通过学习土壤物理学,可以了解土壤的渗透性、保水性、通气性等特性,为土壤的管理和利用提供科学依据。

2. 土壤化学土壤化学是研究土壤中元素的分布、迁移转化以及土壤与植物、微生物和环境之间的相互作用的学科。

该课程主要包括土壤中的无机物质和有机物质、土壤酸碱度、土壤养分循环等内容。

通过学习土壤化学,可以了解土壤中的养分供应和肥料利用,为土壤肥力的调控和土壤环境保护提供理论指导。

3. 土壤生物学土壤生物学研究土壤中的微生物、动物和植物,以及它们与土壤环境的相互作用。

该课程涉及土壤微生物的分类、数量和活性,土壤动物的功能和作用,土壤植物的根系结构和功能等内容。

通过学习土壤生物学,可以了解土壤生态系统的构建和维持机制,为土壤生物多样性保护和生态系统服务提供理论基础。

4. 土壤肥力学土壤肥力学研究土壤中养分的供应、转化和利用,以及肥料的施用和效果评价。

该课程涵盖土壤养分的形态、循环和动态平衡,土壤肥力评价和土壤肥力管理等内容。

通过学习土壤肥力学,可以了解土壤养分的供应机制和调控措施,为合理施肥和高效利用肥料提供科学依据。

5. 土壤水分学土壤水分学研究土壤中水分的运动和储存,以及土壤水分与作物生长和环境的相互关系。

该课程包括土壤水分特性、水分运动和水分利用效率等内容。

通过学习土壤水分学,可以了解土壤水分的储存和供应机制,为合理灌溉和水分管理提供科学依据。

除了以上几门专业课程,土壤学还涉及土壤侵蚀学、土壤改良学、土壤保持学等其他相关学科。

土壤土壤学

土壤土壤学

土壤土壤学
土壤学是一门科学,它研究土壤的物理、化学和生物学特性,以及土壤与环境之间的关系。

土壤学涵盖了土壤的发生和演变、土壤的分类和分布、土壤的肥力特征以及土壤的开发利用改良和保护等方面的内容。

土壤学是农业科学的基础学科之一,它与地球科学、生命科学以及环境科学等学科都有密切的联系。

土壤学不仅研究土壤本身的性质和变化,还关注土壤与植物之间的关系,以及土壤与环境之间的相互作用。

在历史上,土壤学的发展与自然科学,特别是化学和生物学的发展密切相关。

自16世纪以来,人们对土壤的认识逐渐从直观的经验出发,发展到更科学、更系统的研究。

土壤学在农业、水利、工业、矿业、医药卫生、交通和国防事业等多个领域都有应用。

例如,在农业上,土壤学的研究可以帮助我们了解如何改善土壤肥力,提高农作物的产量和质量。

在水利上,土壤学可以帮助我们了解土壤的水分保持能力和水渗透能力,从而更好地利用和保护水资源。

总的来说,土壤学是一门综合性很强的学科,它对于我们了解地球表面的生态系统和自然资源的可持续利用具有重要意义。

土壤学资料

土壤学资料

土壤学复习资料一. 名词解释1.土壤:土壤是地球陆地表面能够生长植物(产生植物收获量)的疏松表层。

2.土壤肥力:土壤为植物生长供应协调营养条件和环境条件的能力。

(水、肥、气、热)3.自然肥力:土壤在自然因子即五大成土因素(气候、生物、母质、地形和年龄)的综合作用下发育而来的肥力。

4.人工肥力:在自然肥力的基础上,通过人为措施的影响(如翻耕、施肥、灌溉、和排水等措施)形成的土壤肥力,也称经济肥力。

5.潜在肥力:在当季节中,不能立即产生经济效益的这部分肥力。

6.土壤学:农林科学体系中的一门基础科学,主要论述土壤和农林生产各个环节之间的内在联系:土壤变肥变瘦的一般规律,以及土壤利用和改良的技术。

7.矿物:矿物是地壳中的化学元素在各种地质作用下形成的自然产物,分为原生矿物和次生矿物。

8.原生矿物:地壳深处的岩浆冷凝而成的矿物(如长石云母)。

9.次生矿物:有原生矿物经过化学变化(如变质作用和风化作用)形成的矿物。

10.五大自然成土因素:气候、生物、母质、地形和年龄。

11.岩石:由一种或多种矿物有规律的组合形成的天然集合体。

12.岩浆岩:由地壳深处的熔融岩浆,受地质作用的影响,上升冷却凝固而成的岩石(如灿石、原始岩石)。

13.沉积岩:地壳表面早期形成的各种岩石(岩浆岩、变质岩和先形成的沉积岩)经过风化搬运、沉积和成岩等作用,再次形成的岩石。

14.变质岩:原有的岩石受到高温、高压和化学活性物质的作用,改变了原有的结构、构造及矿物成分而形成的新岩石。

二.土壤的本质特征?肥力的四大因子?答:土壤的本质特征是土壤具有肥力;肥力的四大因子是水、肥(营养物质)汽、热(环境)。

三.土壤组成如何?土壤学发展过程的三大学派?答:固体颗粒(38%)固相(50%)土壤有机物(12%)气相(50%)粒间空隙(50%)液相(50%)土壤学发展过程的三大学派:1.农业化学学派。

(提出矿质营养学说)。

2.农业地质学派(19世纪后半叶)。

土壤学

土壤学

名词解释土壤:陆地表面由矿物,有机物质,水,空气和生物组成,具有肥力且能生长植物的末固结层。

肥力:土壤具有能供应与协调植物正常生长发育所需的养分,水分,空气和热量的能力。

土壤矿物质:岩石风化形成的矿物颗粒岩石:一种或树种矿物的集合体母质:原生积岩经过一系列风化、搬运、堆积作用,在地表形成的一层疏松的最年轻的地质矿物质层,它是形成土壤的基础,是土壤的前身。

粒级:根据单个土粒的当量粒径的大小,可将土壤粒分为若干组。

土壤机械组成:土壤是由大小不同的土粒按不同的比例组合而成的,这些不同的粒级混合在一起表现出的土壤粗细状况,称土壤机械组成。

土壤质地:土壤中各粒级含量百分率的组成。

土壤有机质:存在于土壤中所有含碳的有机化合物矿质化过程:有机质在微生物作用下,有机质分解变为二氧化碳和水等,而N,P,S等以矿质盐类释放出来,同时释放能量,为植物和微生物提供养分和能量。

腐殖化过程:指土壤、堆肥或江河湖海等水体淤泥中的有机物质转变成为腐殖质的过程。

腐殖质:芳香族有机化合物和含氮化合物缩合成的一类复杂的高分子有机物,呈酸性,颜色为褐色或暗褐色。

吸湿水:固相土粒籍其表面的分子引力和静电引力从大气和土壤空气中吸附气态水,附着于土粒表面成单分子或多分子层。

重力水:当土壤水分超过田间持水量时,多余的水分不能被毛管所吸持,就会受重力的作用沿土壤的大孔隙向下渗透,这部分受重力支配的水称重力水。

毛管水:靠毛管力保持在土壤孔隙中的水分膜状水:吸湿水达到最大后,土粒还有剩余的引力吸附液态水,在吸湿水的外围形成一层水膜。

最大持水量:土壤所能容纳的最大持(含)水量。

田间持水量:毛管悬着水达到最大时的土壤含水量。

土壤通气性:土壤空气与近地层大气进行气体交换以及土体内部允许气体扩散和流动的性能土壤热容量:单位质量或原状体积土壤温度升高1℃或降低1℃所吸收或放出的热量。

孔性:指能够反映土壤孔隙总容积的大小孔隙的搭配及孔隙在各土层中的分布状况等的综合症状。

土壤学名词解释(完全版)

土壤学名词解释(完全版)

土壤学是以地球表面能够生长绿色植物的疏松层为对象,研究其中的物质运动规律及其与环境间关系的科学,是农业科学的基础学科之一。

主要研究内容包括土壤组成;土壤的物理、化学和生物学特性;土壤的发生和演变;土壤的分类和分布;土壤的肥力特征以及土壤的开发利用改良和保护等。

其目的在于为合理利用土壤资源、消除土壤低产因素、防止土壤退化和提高土壤肥力水平等提供理论依据和科学方法。

名词解释:1、土壤质地:是根据机械组成划分的土壤类型,一般分为砂土、壤土和粘土三类。

2、活性酸:指的是与土壤固相处于平衡状态的土壤溶液中的H+离子。

3、毛管持水量:毛管上升水达最大时称毛管持水量。

4、土壤退化过程:是指因自然环境不利因素和人为开发利用不当而引起的土壤物质流失、土壤性状与土壤质量恶化以及土壤肥力下降,作物生长发育条件恶化和土壤生产力减退的过程。

5、永久电荷:同晶置换一般形成于矿物的结晶过程,一旦晶体形成,它所具有的电荷就不受外界环境(如pH、电解质浓度等)影响,故称之为永久电荷、恒电荷或结构电荷。

6、土壤水分特征曲线:指土壤水分含量与土壤水吸力的关系曲线。

(土壤水分特征曲线表示了土壤水的能量与数量的关系。

)7、富铝化过程:是热带、亚热带地区土壤物质由于矿物的风化,形成弱碱性条件,随着可溶性盐、碱金属和碱土金属盐基及硅酸的大量淋失,而造成铁铝在土体内相对富集的过程。

(包括两方面的作用:脱硅作用(desilication)和铁铝相对富集作用。

)8、盐基饱和度:是指土壤中各种交换性盐基离子的总量占阳离子交换量的百分数。

9、土壤有机质:是指存在于土壤中的所有含碳的有机物质,它包括土壤中各种动、植物残体,土壤生物体及其分解和合成的各种有机物质。

10、同晶替代:是指组成矿物的中心离子被电性相同、大小相近的离子所替代而晶格构造保持不变的现象。

11、潜性酸:指吸附在土壤胶体表面的交换性致酸离子(H+和Al3+),交换性氢和铝离子只有转移到溶液中,转变成溶液中的氢离子时,才会显示酸性,故称潜性酸。

土壤学

土壤学

绪论(一)土壤是植物生长繁育和生物生产的基地1、土壤的营养库作用:是陆地生物所需营养物质的重要来源2、土壤在养分转化和循环中的作用;无机物的有机化,有机物的矿质化;3、土壤的雨水涵养作用:是一个巨大的水库;4、土壤对生物的支撑作用;土壤中拥有种类繁多,数量巨大的生物群;5、土壤在稳定和缓冲环境变化中的作用;缓冲库:酸碱性、养分、氧化还原、污染物等土壤圈(pedosphere)是覆盖于地球和浅水域底部的土壤所构成的一种连续体或覆盖层,它是地圈系统(geosphere system)的重要组成部分。

处于地圈系统的交界面,既是这些圈层的支撑者,又是它们长期共同作用的产物。

土壤:能产生植物收获的地球陆地表面的疏松层次土壤肥力(soil fertility):在植物生活全过程中,土壤供应和协调植物生长所需水、肥、气、热的能力。

自然肥力:指土壤在自然因子(气候、生物、地形等)综合作用下所具有的肥力。

人为肥力:土壤在人为条件熟化(耕作、施肥、灌溉等)作用下所表现出来的肥力。

潜在肥力:土壤肥力在生产上没有发挥出来产生经济效益的部分。

有效(经济)肥力:土壤肥力在当季生产中表现出来产生经济效益的部分。

二、土壤学与相邻学科的关系1、土壤学与地质学、水文学、生物学、气象学有着密切的关系;2、土壤学与农学、农业生态学有着不可分割的关系;3、土壤学与环境科学联系密切。

三、土壤学的任务(一)合理利用土壤:水土流失、土壤沙化、土壤次生盐渍化、土壤污染、农药污染、肥料污染、“三废”污染(二)中低产土壤改良(三)基础理论研究。

1、土壤温室气体形成机理、变化规律与减缓途径的研究(重点是CH4、NxOy、CO2);2、土壤污染发生类型、形成规律与防治途径研究;3、土壤退化时空变化、形成机理、调控对策;4、土壤质量的演变机制、评价体系及恢复重建的研究;5、经济快速发展地区土壤环境演变机制与调控研究;6、不同地区土壤生态环境建设及其治理途径的研究;7、土壤与环境问题有关基础应用与开发项目的研究。

土壤学

土壤学

第一章土壤矿物质土壤三相组成:固相(矿物质95%、有机质5%)、液相(土壤液体)、气相(土壤气体)矿物:是经各种地质作用,自然产生于地壳中的化合物或化学元素,是具有一定化学成分和物理性质的自然均质体,是组成岩石的基本单位。

原生矿物:是指那些经过不同程度的物理风化,为改变化学组成和结晶结构的原始成岩矿物。

土壤原生矿物以硅酸盐、铝硅酸盐占绝对优势。

次生矿物:原生矿物在风化和成土作用下,新形成的矿物,如各种盐类CO32-、SO42- 、SiO42- 、Cl-等。

次生粘土(粒)矿物:层状硅酸盐类和含水氧化物类,是土壤粘粒的主要组成。

粘粒(土)矿物:组成粘粒的次生矿物,主要包括:层状的硅酸盐矿物和氧化物类。

前者是晶型矿物,后者有晶型的,也有非晶型的。

粘土矿物分类:(一)层状硅酸盐a。

硅氧四面体b。

铝氧八面体单位晶层:(1:1型单位晶层铝氧片和硅氧片特点:晶层与晶层间距离稳定,连接紧密内部空隙小,电荷量少,单位个体小,分散度低。

多出现与酸性土壤,如高岭石类。

2:1型单位晶层两层硅氧片夹一层铝氧片,特点:胀缩性大,吸湿性强,易在两边硅氧片中以Al3+代Si4+,有时可在硅铝片中,一般以Mg2+代Al3+→带负电→吸附阳离子。

如蒙脱石,这类矿物多出现于北方土壤。

2:1:1型单位晶层)同晶替代:是指组成矿物的中心离子被电性相同、大小相近的离子所替代而晶格结构保持不变的现象。

同晶替代的结果使土壤产生永久电荷,能吸附土壤溶液中带相反电荷的离子,使土壤具有保肥能力。

(可变电荷)同晶替代的规律:1、高价阳离子被低价阳离子取代的多;因此,土壤胶体一般其净电荷为阴性。

2、四面体中的Si4+被Al3+离子所替代,八面体中Al3+被Mg2+替代。

3、同晶替代现象在2:1和2:1:1型的粘土矿物中较普遍,而1:1型的粘土矿物中则相对较少。

硅酸盐粘土矿物的种类及一般特性:(1)高岭组1:1型矿物无膨胀性电荷数量少阳离子交换量小胶体特性较弱华北、西北、东北(2)蒙蛭组2:1型胀缩性大电荷数量大同晶替代胶体特性突出东北、华北、西北蒙脱石主要发生在铝片中,一般以Mg2+代Al3+,蛭石的同晶替代主要发生在硅片中。

土壤学对我们生活的意义

土壤学对我们生活的意义

土壤学对我们生活的意义土壤学是研究土壤的产生、发展、性质、利用和保护的科学,对我们的生活有着重要的意义。

土壤是地球上最基本的资源之一,它不仅是植物生长的基础,也是人类生活所必需的。

以下是土壤学对我们生活的几个重要意义。

1. 农业生产土壤是农业生产的基础,直接关系到粮食产量和质量。

通过土壤学的研究,我们能够了解土壤的肥力状况、养分含量和pH值等,从而合理施用肥料,调节土壤酸碱度,提高土壤肥力,增加农作物产量。

同时,土壤学还研究土壤水分保持能力和排水性能,为农田的灌溉和排水提供科学依据,提高水分利用效率,保证农作物的正常生长。

2. 环境保护土壤学研究土壤的物理、化学和生物性质,了解土壤的吸附和解吸作用,为污染物的迁移和转化提供了重要的科学依据。

通过土壤学的研究,我们能够了解土壤对污染物的吸附能力,为环境污染的治理和修复提供技术支持。

此外,土壤中的微生物也对环境的净化起到重要作用,土壤学的研究可以帮助我们了解土壤中微生物的多样性和功能,为生物修复提供科学依据。

3. 自然灾害防治土壤学研究土壤的物理性质,了解土壤的保水和保持力,对防治自然灾害具有重要意义。

例如,土壤的保水能力可以缓冲降雨引起的洪水,减少洪灾的发生;土壤的保持力可以防止土壤侵蚀,减少泥石流和滑坡等灾害的发生。

通过土壤学的研究,我们可以制定合理的土壤保护措施,减轻自然灾害对人类和生态环境的影响。

4. 土地利用规划土壤学研究土壤的类型、质量和适宜性,为土地利用规划提供科学依据。

通过土壤学的研究,我们可以了解土壤的肥力和适宜作物的种植条件,制定合理的土地利用规划,提高土地利用效益。

土壤学还可以研究土壤的排水性能和承载力,为城市规划和土地开发提供科学依据,避免土地沉降和土地污染等问题。

土壤学对我们的生活有着重要的意义。

它不仅是农业生产的基础,也是环境保护和自然灾害防治的重要依据,同时还为土地利用规划提供科学支持。

通过深入研究土壤学,我们可以更好地利用土壤资源,实现可持续发展,为人类的生活和社会经济发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.土壤的概念:土壤是陆地表面由矿物质,有机质,水,空气和生物组成,具有肥力的,能生长植物的未固结层。

2.土壤肥力:土壤能够供应与协调植物正常生长发育所需要的养分和水,空气,热的能力。

第一章1.矿物:概念—矿物是指岩石圈中化学元素的原子或离子通过各种地质作用形成的,并在一定条件下相对稳定的自然产物。

分类—形成矿物的地质作用,主要矿物可分为三种成因类型:(1)岩浆矿物。

(2)表生矿物。

(3)变质矿物。

2.矿物的物理性质:颜色,条痕,光泽,解理,断口,硬度。

【任记四个】3.常见造岩矿物:石英SiO2、正长石KAlSi3O8、斜长石Na(AlSi3O8)•Ca(Al2Si2O8)、白云母、黑云母、角闪石、辉石、橄榄石、蛇纹石。

【任记三个】4.地质作用:地质学上把引起地壳物质组成、地表形态和地球内部构造发生改变的作用,称为地质作用。

第二章:1.风化作用:风化作用是地球或近地球表面的岩石在大气圈中的物理、化学作用的变化。

石发生物理和化学的变化称为风化。

可分为物理风化,化学风化,生物风化。

2.土壤形成过程中的大小循环学说土壤形成不外乎是由土壤的有机质积累和地球化学两个基本过程组成的。

这两个基本过程则是土壤形成的实质(基本矛盾)。

土壤形成的实质是地质大循环和生物小循环的矛盾与统一。

土壤形成的过程也就是土壤肥力不断发展的过程。

3.土壤形成的因素:气候、母质、生物、地质、时间。

4.土壤剖面:(1)0层(A0)为枯落物层。

L层:分解较少的枯枝落叶层。

F层:分解较多的半分解的枯枝落叶层。

H层:分解强烈的枯枝落叶层,已失去其原有植物组织形态。

(2)A层:腐殖质层。

(3)B层:淀积层,里面含有由上层淋洗下来的物质,所以一般较坚实。

(4)C层:母质层5.耕作土壤剖面的形成:(1)表土层【可分为两层】1、耕作层:受耕作、施肥、灌溉影响最强烈的土壤层,厚度一般约20厘米左右。

耕作层易受生产活动和地表生物、气候条件的影响,一般疏松多孔,干湿交替频繁,温度变化大,通透性良好,物质转化快,含有效态养分多。

根系主要集中分布于这一层中,一般约占全部根系总量的60%以上。

2、犁底层:位于耕作层之下,厚约6-8厘米。

典型的犁底层很紧实,孔隙度小,非毛管孔隙(大孔隙)少,毛管孔隙(小孔隙)多,所以通气性差,透水性不良,结构常呈片状,甚至有明显可见的水平层理。

这是经常受耕畜和犁的压力以及通过降水,灌溉使粘粒沉积而形成的。

(2)心土层位于犁底层以下,厚度约为20-30厘米,该层也能受到一定的犁、畜压力的影响而较紧实,但不象犁底层那样紧实。

在耕作土壤中,心土层是起保水保肥作用的重要层次,是生长后期供应水肥的主要层次。

在这一层中根系的数量约占根系总量的20-30%。

(3)底土层在心土层以下,一般位于土体表面50-60厘米以下的深度。

此层受地表气候的影响很少,同时也比较紧实,物质转化较为缓慢,可供利用的营养物质较少,根系分布较少。

一般常把此层的土壤称为生土或死土。

第三章:1.根际:是指植物根系直接影响土壤的范围。

2.根际效应:由于植物根系的细胞组织脱落和根系分泌物为根际微生物提供了丰富的营养和能量,因此,在植物根际的微生物数量和活性常高于根外土壤,这种现象称为根际效应。

第四章:1.土壤有机质:是指存在于土壤中的所有含碳的有机化合物。

它主要包括土壤中各种动物,植物残体,微生物体以及分解和合成的各种有机化合物。

2.土壤有机质的来源:(1)植物残体。

(2)动物,微生物残体。

(3)动物、植物、微生物的排泄物和分泌物。

(4)人为施入土壤中的各种有机肥料。

3.土壤有机质的组成:(1)碳水化合物。

(2)木质素。

(3)含氮化合物。

(4)树枝、蜡质、脂肪、单宁、灰分物质。

4.土壤腐殖质:是由芳香族有机化合物和含氮化合物缩合成德一类复杂的高分子有机物,呈酸性,颜色为褐色或暗黑色。

5.有机质在土壤肥力上的作用:(1)有机质是植物营养的主要来源之一(2)促进植物生长发育(3)改善土壤的物理性质(4)促进微生物和土壤动物的活动(5)提高土壤的保肥性和缓冲性(6)有机质具有活化磷的作用第五章:1.粒级的概念:根据土壤单粒直径大小和性质变化而划分的土粒级别称为粒级。

2.土壤粒级划分标准:卡庆斯基制—用0.01mm作为沙粒和黏粒的标准。

以0.01mm为界限的粒级分类法。

直径在0.01mm以上的土粒都具有砂粒的特性,称物理性砂粒,直径在0.0lmm以下的土粒都具有黏粒的特性,称物理性黏粒3.各级土粒的主要特性:(1)砂粒:砂粒主要是石英风化的细粒。

由于颗粒较大,故比表面积小,吸持性能较弱,矿物养分较低,无黏结性合黏着性,表面松散。

单粒间空隙较大,通透性良好。

(2)粘粒:是化学风化得产物,属于土壤胶体范畴。

其矿物组成以此生矿物为主,粒径小,比表面大,有很强的黏结性,黏着性,可塑性,胀缩性和吸附能力,矿物养分丰富。

4.土壤地质:将土壤的颗粒组成区分为几种不同的组合,并给每个组合一定的名称,这种分类命名称为土壤质地。

5.土壤质地的改良:(1)掺砂掺黏,客土调剂(2)引洪放淤,引洪漫沙(3)施有机肥,改良土性(4)植树种草。

培肥改土6.土壤结构:土壤中的固体颗粒很少以单粒存在,多数单个土粒在各种因素综合作用下相互黏合团聚,形成大小,形状和性质不同的团聚体,称为土壤结构体。

7.团粒结构形成的条件:胶结物质和成型动力。

8.团粒结构体是最理想的结构体:(1)创造了土壤良好的孔隙性团聚体内部以持水孔隙占绝对优势,而团聚体之间是充气孔隙,大小孔隙并存,搭配得当。

这种孔隙状况为土壤水、肥、气、热的协调,创造了良好的条件。

(2)保肥供肥性能良好团聚体间的充气孔隙,可以通气透水,在降水或灌水时,水分通过充气孔隙,进入土层,减少了地表径流。

团聚体内的持水孔隙具有保存水分的能力。

因此渗入土层中的水分受毛管力的作用,被吸持并保存在持水孔隙中,团聚体起到了小水库的作用。

平时充气孔隙经常充满空气,持水孔隙经常充满水分,协调了水分和空气间的矛盾。

由于水和气协调了,由水、气产生的土壤热容量等热学性质适中,因此土温能够稳定。

(3)水气协调土温稳定团聚体内部的持水孔隙水多空气少,既可以保存随水进入团聚体的水溶性养分,又适宜于嫌气性微生物的活动。

有机质分解缓慢,有利于腐殖质的合成,所以有利于养分的积累,起到保肥的作用。

团聚体间的充气孔隙中空气多,适宜于好气性微生物的活动,有机质分解快,产生的速效养分多,供肥性能良好。

所以保肥供肥的矛盾得以协调,团聚体的养分状况良好。

(4)土质疏松、耕性良好团聚体的土壤土质疏松,易于耕作,宜耕期长,耕作质量好,种子易于发芽出土,根系易于伸展,出苗整齐。

9.土壤孔性:是指能够反映土壤空隙总容积的大小,空隙的搭配以及空隙在各土层中的分部状况等的综合特性。

10.土壤孔隙度:在自然状况下,单位容积的土壤中过孔隙容积所占的百分数,称为土壤孔隙度。

11.土壤孔隙的类型:(1) 空气孔隙(非毛管孔隙或通气孔隙)(2) 毛管孔隙(3)非活性毛管孔隙(无效孔隙):12.土壤可塑性:是指土壤在一定含水量范围内,可被外力造型,当外力消失或土壤干燥后,仍能保持其塑型不变的性能。

13.土壤耕性:是指土壤在耕作过程中表现出来的特性,它是土壤物理机械性能的综合表现。

第六章:1.吸湿系数:又称最大吸湿水量。

是指干土从相对湿度接近饱和的空气中吸收水汽的最大量,即吸湿水的最大量与烘干土质量的百分率。

2.凋萎系数:是指导致植物产生永久凋萎时的土壤含水量。

3.土壤水分特征曲线:用于描述土壤水吸力与土壤含水量关系的曲线。

它表征土壤水的能量与数量间的关系。

第七章:1.土壤空气与近地表大气的组成差别:(1)土壤空气中的CO2含量高于大气(2)土壤空气中的O2含量低于大气(3)土壤空气中的水汽含量一般高于大气(4)土壤空气中含有较高量的还原性气体2.土壤热容量:单位质量或容积的土壤每升高(或降低)1°C所需要(或放出)的热量。

第八章:1.土壤胶体的构造:2.土壤胶体性质【大题目】(一)具有巨大的比表面和表面能1、比表面(简称比面):单位质量或体积物体的总表面积。

土壤胶体如粘粒、腐殖酸分子等不仅有巨大的外表面积,还有很大的内表面积。

砂粒和粗粉粒的比面与粘粒相比小得多。

2、表面能:由于胶体表面的分子受到内外不同分子的吸引力,从而在胶体表面呈现出的能量。

表面能可以做功,能吸附外界分子;若土壤中胶体数量愈多,则比面愈大,表面能也愈大,从而吸附能力也就愈强。

(二)带电性1、土壤胶体带电,是土壤产生离子吸附和交换、离子扩散、酸碱平衡等现象的根本原因。

2、胶体带电荷的符号和数量,决定于土壤胶体的种类、数量以及土壤溶液的反应状况。

3、胶体带电,是由于胶核表面的分分子解离为离子,或者吸附溶液中和胶核分子团有关的离子。

4、通常据说的胶体带电,应该是胶粒带电,胶团正负电荷数量相等,呈电中性的。

(1)同晶置换作用(2)晶格破碎边缘带电(3)晶格表面OH基解离(4)两性胶体带电(三)土壤胶体的分散和凝聚溶胶:胶体微粒互相排斥,均匀分散在土壤溶液中成溶液状态,称为溶胶。

凝胶:微粒彼此相互联结凝聚在一起成较大的颗粒,呈无定形沉淀状态的胶体,称凝胶。

分散和凝聚作用由溶胶联结凝聚成凝胶的作用,叫做胶体的凝聚作用。

凝聚的速度和强度与两个因素有关:一是电解质浓度;二是电解质种类。

一般地,离子的价数越高,离子半径越大,所产生的凝聚能力越强。

对于负电胶体,常见阳离子凝聚力的排列顺序是:凝胶分散成溶胶的作用,叫做胶体的分散作用。

胶体的凝聚作用,有些是可逆的,有些是不可逆的。

当土壤干燥时,土壤溶液中的电解质浓度相应增大,土壤胶体易成凝胶状态。

相反,当土壤水分增多土壤溶液浓度相应降低,土壤胶体便会带有多余的负电荷,互相排斥而成溶胶状态。

一般土壤胶体处于凝胶状态。

只有当渍水过多,或胶体吸附的阳离子主要是NH4+、Na+,而且又处于稀溶液中,土壤胶体才呈溶胶状态。

3.土壤阳离子交换作用:指土壤胶体表面所吸附的阳离子,与土壤溶液中的阳离子或不同胶粒上的阳离子相互交换的作用。

4.土壤阳离子交换吸附作用的特点:(1)阳离子交换吸附作用是一种可逆反应(2)阳离子交换与吸附的过程是以等量电荷关系进行(3)交换反应的速度受交换点的位置和温度的影响5.影响阳离子交换作用的因素:(1)离子交换能力(2)阳离子的相对浓度及交换生成物的性质(3)胶体性质6.土壤阳离子交换量:土壤溶液在一定的pH值时,土壤能吸附的交换性阳离子的总量。

7.土壤盐基饱和度:是指土壤胶体上交换性盐基离子占交换性阳离子总量的百分率。

第九章:1.活性酸度、;活性酸度是指土壤溶液中的氢离子浓度导致的土壤酸度,通常用pH值来表示。

2.潜性酸度:是指土壤胶体上吸附的H+和Al3+等致酸离子在通过离子的交换作用进入土壤溶液时显出的酸度。

相关文档
最新文档