制动器的选型和计算

制动器的选型和计算
制动器的选型和计算

1 引言

目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。能耗制动是变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。

2 制动电阻的介绍

制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。

3 制动电阻的阻值和功率计算

3.1刹车使用率ED%

制动使用率ED%,也就是说明书中的刹车使用率ED%。刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。(图1)

图1刹车使用率ED%定义

现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。

3.2 制动单元动作电压准位

当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。台达制动电压准位如表1所示。

3.3 制动电阻设计

(1)工程设计。实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是:

其中:

UD制动电压准位

IMN电机的额定电流。

为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。选择制动电阻的阻值时,不能小于该阻值。

根据以上所叙,制动电阻的阻值的选择范围为:

制动电阻的耗用功率

当制动电阻R在直流电压为UD 的电路工作时,其消耗的功率为:

耗用功率的含义:如果电阻的功率按照此数值选择的话,该电阻可以长时间的接入在电路里工作。

现场中使用的电阻功率主要取决于刹车使用率ED%。因为系统的进行制动时间比较短,在短时间内,制动电阻的温升不足以达到稳定温升。因此,决定制动电阻容量的原则是,在制动电阻的温升不超过其允许数值(即额定温升)的前提下,应尽量减小容量,粗略算法如下:

λ 为制动电阻的降额系数

R为实际的选用电阻阻值

PB为制动电阻的功率

(2)设计举例。根据以上的公式我们可以大致的推算出来我们需要的制动电阻的阻值和功率。以台达VFD075F43A变频器驱动7.5KW的电机作为例来说明,7.5KW电机额定电流是18A,输入电压AC460,则有:

因此制动电阻的阻值取值范围:

44.4 < R ≤ 88.9

选择电阻阻值要选择市场上能够买到的型号和功率段为宜,选择阻值75欧。

根据实际的情况可以在计算的数值功率上适当的扩大。

4 结束语

制动电阻的阻值和功率的计算都是从工程的角度来考虑的,因此在实际的应用时需要结合现场的具体情况进行适当的该动,最终形成一个经济适用的选择方案。

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

建筑结构选型知识点全

建筑结构 第1章概论 1.建筑结构与建筑的关系 强度是建筑的最基本特征,它关系到建筑物保存的完整性和作为一个物体在自然界的生存能力,满足此“强度”所需要的建筑物部分是结构,结构是建筑的的基础,没有结构就没有建筑物。结构以建筑之间的关系能够采用多种形式,结构是建筑物的基本受力骨架。 2.建筑结构的基本要求 安全性、经济性、适用性、耐久性、可持续性 3.建筑结构的分类 1.按组成材料 1)木结构 优点:施工周期短;易于扩建和改造;保温隔热性能好;节能环保性能好。 缺点:多疵病;易燃;易腐;易虫蛀。 2)砌体结构(包括无筋砌体和配筋砌体等)消防限制,最高七层。 优点:耐久性好;耐火性好;就地取材;施工技术要求低;造价低廉。 缺点:强度低,砂浆与砖石之间的粘接力较弱; 自重大;砌筑工作量大,劳动强度高;粘土用量大,不利于持续发展。3)混凝土结构(包括素混凝土结构、钢筋混凝土结构和预应力混凝土结构等。) 优点:耐久性好;耐火性好;可模性好;整体 性好;可就地取材。 缺点:自重大;抗裂差;施工环节多;施工周 期长;拆除、改造难度大。 4)钢结构 优点:强度高、重量轻;材性好,可靠性高; 工业化程度高,工期短;密封性好;抗震性能 好。 缺点:钢材为非燃烧体,耐热但不耐火;耐腐 蚀性差。 5)组合结构(可分为钢骨混凝土结构和混合结构)优点:刚度大;防火、防腐性能好;重量轻; 抗震性能好;施工周期短、节约模板 缺点:需要特定的剪力连接件、需要专门焊接 设备与人员、需要二次抗火设计 2.按结构体系 1)混合结构体系—主要承重构件由不同的材料组成的房屋。主要用于量大面广的多层住宅。 2)排架结构—由屋面梁或屋架、柱和基础组成,其屋架与柱顶为铰接,柱与基础顶面为固接。主要用于单层工业厂房中。 3)框架结构—采用梁、柱等杆件组成空间体系作为建筑物承重骨架的结构。 优点:建筑室内空间布置灵活;平面和立面变化丰富。

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

磁粉制动器的分类及选型要素

磁粉制动器的分类及选型要素 天机传动磁粉制动器的分类及选型要素介绍: 按励磁线圈的供电方式,磁粉离合器、制动器有两大类产品:线圈旋转式和线圈静止式。线圈旋转式旋转线圈的供电是经过安装在轴上的滑环进行的,由于接电方式的不可靠和线圈在高速旋转过程中有可能发生的不平衡引起震动,这种类型的产品已经很少应用,目前市场上的绝大部分产品都采用线圈静止型的。 线圈静止型产品又有外壳静止和外壳旋转二种类型。对于外壳静止的产品,静止线圈位于转子的外部,对于外壳旋转的产品,静止线圈位于转子的内部。根据输出转子工作面的形状不同,常用的产品有圆柱形转子、杯形转子和盘形转子之分。圆柱形转子一般用于大中型

产品,结构比较简单;杯形转子一般用于外壳旋转型产品,散热好,滑差功率较大;而盘形转子一般用于微型产品,适用于精密控制场合。按规格可分为大型(%"""34以上)、中小型(2-5""34/和微型.#34以下/,按其冷却方式可分为自然冷却式、强迫风冷却式和水冷却式,按连接型式还可分为伸出轴型和空心轴型,按主、从动传递路线不同又可分为外壳旋转型和外壳静止型(线圈静止),按安装形式还有卧式和立式等等。各种形式可以根据使用的需要进行组合设计,完成相应的功能,但立式和卧式安装的形式不可以交替使用。 天机传动磁粉制动器最小扭矩规格为0.5Nm,转矩规格5Nm(包括5Nm)以内的属于微型磁粉制动器,最大扭矩规格400Nm,以及6Nm、12Nm、25Nm、50Nm、100Nm、200Nm为常用规格。磁粉制动器额定电压为DC24V,可通过张力控制器控制输出DC0~24V。 在磁粉制动器选型的时候,请根据其安装类型、额定转矩、额定电压等来进行选型,提高选型效率: 1、确定磁粉制动器的型号、扭矩、类型(内旋转空心轴系列、外旋转中空轴系列、微型系列、单轴系列)等详细资料;

《气压盘式制动器制动力矩的计算》

T= 气压盘式制动器制动力矩的计算 1.制动力矩 在气压盘式制、动器中,制动力矩T f 主要来源于压力臂(增力杠杆元件)对气室推力Q 的放大,我们将其称之为传动比K ,经过增力机构放大的正推力为W p ,则W p =KQ 。 ηηe e p f KQfR fR W T 22== Tf=2W P fRe η Q ——气室推力; f ——摩擦块的摩擦系数; R e ——制动半径; η——机械传动效率。 2.制动半径 根据右图,在任一单 元面积RdR ?d 上的摩擦力 对制动盘中心的力矩为 ?dRd fqR 2,式中q 为衬块与 制动盘之间的单位面积 上的压力,则单侧制动块作用于制动盘上的

制动力矩为: θ?θθ)(322313222 1R R fq dRd fqR T R R f -==??- 单侧衬块给予制动盘的总摩擦力为: θ?θθ)(21 222 1R R fq dRd fqR fW R R p -==??- 得有效半径为: )2]()(1[34322212212121223132R R R R R R R R R R fW T R P f e ++-=--?== 式中R 1=134,R 2=214(考虑到制动盘的倒角) 计算得:R e =177。 3.压力臂力臂 下图为装配状态压力臂的工作范围图: 由上图简化成下列坐标关系:

坐标原点为气室推杆的安装基点; 压力臂工作圆心的坐标点为(67.57,38.84),极坐标为(77.94,29.892°); 工作半径R =67.65; 工作范围:α=74°~90°~85.83°; 气室推杆端部球头圆心的运动轨迹方程: 220002)cos(2R =+--ρααρρρ (1) 其中94.770=ρ;?=892.290α;65.67=R 代入(1)式得:012.1498)892.29cos(88.1552 =+?--αρρ (2) 设气室推出长度为H ,10-=ρH 。 制动力臂的长度为L ,由坐标关系图可以得到下式: ααsin )84.3857.67(ctg L -= (3) 因此,测出气室的推出长度,就可以求出压力臂的力臂长度。

建筑结构体系及选型

建筑结构体系及选型 Structural Systems and choices for Architects and Engineers 课程编号:223 开课单位:建筑系建筑技术教研室 撰写人:樊振和 开课学期:2 总学时:40 学分:2 课程类别:选修 考核类型:考试 考核方式:平时成绩占40%;其中,考勤10%,课堂纪律10%,作业20%。考查测验成绩占60%。 预修课程:建筑力学,建筑结构 适用专业:建筑设计及其理论、建筑历史与理论、建筑技术科学 一、教学目标 通过本课程的学习,使学生熟悉建筑结构的主要类型及适用范围;熟悉各种建筑结构体系的受力和变形特点,以及选型和布置的一般原则;掌握常用建筑结构的选型和布置方法。为今后进一步的研究和工作打下必要的基础。 二、教学要求 通过课堂讲授、课堂讨论、模型试验、参观调研、撰写论文等多种教学形式,使学生熟悉和掌握建筑结构选型的原理和方法。 三、课程内容 建筑结构体系及选型课程主要介绍常见的各种建筑结构型式,主要包括各种钢筋混凝土平板结构、屋架、刚架、拱、网架、悬索、薄壁空间结构、充气结构等大、中、小跨度空间结构类型以及框架、剪力墙、框架—剪力墙、筒体结构、框架—筒体结构、悬挂结构等各种中、高层建筑结构类型,各种类型结构的受力和变形特点、适用范围、经济分析、选型和布置的一般原则和方法。同时,还将介绍建筑设计和结构设计的关系以及结构在建筑中的非结构功能。 71

四、教学时间安排 四、选用教材 虞季森,《中大跨建筑结构体系及选型》,中国建筑工业出版社,1990.12 五、参考书目 1.清华大学土建设计研究院,《建筑结构型式概论》,清华大学出版社,198 2. 2.[意] P·L·奈尔维,《建筑的艺术与技术》,中国建筑工业出版社,1981.1 3.[美] 林同炎 S·D·斯多台斯伯利《结构概念和体系》(第二版),中国建筑工业出版社,1999.2 72

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

《气压盘式制动器制动力矩的计算》

气压盘式制动器制动力矩的计算 (Calculation on braking torque of air disc brake ) 勇波 摘要: 气压盘式制动器ADB (air disc brake )制动力矩的大小,从一开始使用就是争论的焦点。本文试图从实证研究入手,建立制动力矩的数学模型。 关键词: 气压盘式制动器ADB (air disc brake ); 制动力矩——使汽车运动减速或停止的力矩; 压力臂——气压盘式制动器中产生增力的杠杆元件; 传动比——ADB 增力机构对输入力的放大比例。 参考书目: 《最新汽车设计实用手册》 林秉华 正文: 20世纪90年代,气压盘式制动器ADB (air disc brake )开始被广泛应用于商用车辆,近几年在国内发展迅速,城市公交客车、中高档客车已经普遍采用ADB 配置。但各种各样的仿制产品在行业内落地生根的同时,理论上的研究显得比较冷清。在此,我抛砖引玉,对ADB 产品的传动比和制动力矩的计算方法作一番探讨和归纳。 1.制动力矩 在气压盘式制动器中,制动力矩T f 主要来源于压力臂(增力杠杆元件)对气室推力Q 的放大,我们将其称之为传动比K ,经过增力机构放大的正推力为W p ,则W p =KQ 。 ηηe e p f KQfR fR W T 22== Q ——气室推力; f ——摩擦块的摩擦系数; R e ——制动半径; η——机械传动效率。 2.制动半径 根据右图,在任一单元面积RdR ?d 上的摩擦力 对制动盘中心的力矩为?dRd fqR 2,式中q 为衬块 与制动盘之间的单位面积上的压力,则单侧制动块 作用于制动盘上的制动力矩为: θ?θ θ)(3 223132221R R fq dRd fqR T R R f -==??- 单侧衬块给予制动盘的总摩擦力为: θ?θ θ)(212221R R fq dRd fqR fW R R p -==??- 得有效半径为:

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

盘式制动器制动计算

制动计算 制动系统方面的书籍很多,但如果您由于某事需要找到一个特定的公式,你可能很难找到。本文面将他们聚在一起并作一些的解释。他们适用于为任何两轴的车辆,但你的责任就是验证它们。并带着风险使用..... 车辆动力学 静态车桥负载分配 相对重心高度 动态车桥负载(两轴车辆) 车辆停止 制动力 车轮抱死 制动力矩 制动基本原理 制动盘的有效半径 夹紧力 制动系数 制动产生 系统压力 伺服助力 踏板力 实际的减速度和停止距离 制动热 制动耗能 动能 转动能量 势能 制动功率 干式制动盘温升 单一停止式温升 逐渐停止式温升 斜面驻车 车桥负荷 牵引力 电缆操纵制动的损失 液压制动器 制动液量要求 制动基本要求 制动片压缩性 胶管膨胀 钢管膨胀 主缸损失 制动液压缩性 测功机惯性

车辆动力学 静态车桥负载分配 这里:Mf=静态后车桥负载(kg);M=车辆总质量(kg);Ψ=静态车桥负载分配系数注:对于满载和空载的车辆的变化往往是不同的。 相对重心高度 这里: h=重心到地面的垂直距离(m);wb=轴距;X=相对重心高度; 动态车桥负载(仅适用于两轴车辆) 制动过程中车桥负载的变化与哪个车桥制动无关。它们只依赖于静态负载条件和减速度大小。 这里:a=减速度(g);M=车辆总质量(kg);Mfdyn=前桥动态负载(kg); 注:前桥负荷不能大于车辆总质量。后桥负荷是车辆质量和前桥负荷之间的差值,并不能为负数。它可能脱离地面。(摩托车要注意)! 车辆停止 制动力 总制动力可以简单地用牛顿第二定律计算。 这里:BF=总制动力(N);M=车辆总质量(kg);a=减速度(g);g=重力加速度(s/m2);车轮抱死 如果车轮不抱死只能产生制动力,因为轮子滑动摩擦力比滚动摩擦力低得多。在车轮抱死前特定车轴可能的最大制动力计算公式如下: 这里:FA=车桥可能的总制动力(N);Mwdyn=动态车桥质量(kg);g=重力加速度(s/m2);μf=轮胎与地面间摩擦系数; 制动力矩 决定了哪个车轮需要制动来产生足够的制动力,每个车轮扭矩的要求需要确定。对于某些规则,前部和后部制动器之间的分配是确定的。这可能是通过不同的刹车片大小或更容易使

建筑结构体系及选型樊振和课后题

建筑结构体系及选型樊振和课后题

建筑结构选型 绪论 0-1.建筑结构选型是对各种建筑结构形式的结构组成、基本力学特点、适用范围以及技术经济、施工要求等方面的内容进行分析和研究,建筑师做到了这些,才能更好解决以下两个问题:(1)做方案时,主动并正确地考虑、推敲、确定并采用最适宜的建筑结构体系,并使之与建筑空间、体型及形象有机融合;(2)作为工程主持人的建筑师,掌握了建筑结构体系及选型的知识(以及必要的其它相关专业知识),就能很好地与建筑结构工程师进行默契的协作和配合。 0-2.技术因素:建筑材料、建筑技术发展水平 社会因素:人们对建筑功能要求的丰富和提高 0-3.非结构功能:美学表现力 建筑师的设计:处理好建筑功能与建筑空间的关系,并选择合理的建筑结构形式,就自然形成了建筑的外观,然后去发现、选择、袒露那些建筑结构自身具有美学价值的因素;再在选择的基础上,根据建筑构图原理,对那些具有美学价值的结构因素进行艺术加工和创造,从而利用这些来构成建筑的艺术形象。 0-4.(1)选择能充分发挥材料性能的结构形式。根据力学原理选择合理的结构形式使结构处于无弯矩状态,以达到受力合理节省材料的目的。减少结构弯矩峰值,使结构受力更为合理。

(2)合理地选用结构材料。充分利用结构材料的长处,避免和克服它们的短处。提倡结构形式的优选组合。采用轻质高强的结构材料、 一般平板结构 1-1.平板结构:一个简单而基本的概念,即非曲面结构,不但涵盖建筑结构水平分系统中的板式结构和梁板式结构,而且涵盖了建筑结构竖向分系统,包括结构柱、结构墙体、带壁柱结构墙体等 板式结构与梁板式结构都属于平板结构 1-2.单向板:荷载主要沿短跨方向传递 双向板:长跨短跨两个方向都有明显挠曲,板在两个方向上都传递荷载。 单向板在结构上属于平面受力和传力,双向板在结构上属于空间受力和传力,因此双向板比单向板更为经济合理 1-3.水平分系统:自身跨度 竖向分系统:稳定性条件 两者都是结构力学的问题 1-4.减小板的跨度。 无关,壁柱是为了提高砖墙的稳定性以及增加墙体刚度的。 1-5.简支梁:静定结构,由梁自身承重,内力较连续梁大,跨度

磁粉制动器的特性及应用

磁粉制动器的特性及应用 发表时间:2019-06-10T16:46:17.130Z 来源:《防护工程》2019年第5期作者:曹帅辉 [导读] 磁粉制动器又称电磁粉离合器、磁粉式离合器,是根据电磁原理和利用磁粉传递转矩的,其传达之扭矩与激励电流基本成线性关系。 中国船舶重工集团公司第七一〇研究所湖北宜昌 443003 摘要:磁粉制动器是一种以高导磁性的磁粉为工作媒介,以激励电流为控制手段的性能优越的新型自动控制元件,可达到控制制动或传递转矩的目的。该文详细介绍了磁粉制动器的工作原理、特性、选型及应用范围。 关键词高导磁性磁粉选型 0 引言 磁粉制动器又称电磁粉离合器、磁粉式离合器,是根据电磁原理和利用磁粉传递转矩的,其传达之扭矩与激励电流基本成线性关系。因此,只要改变激励电流之大小,便可轻易地控制转矩之大小。正常情况下,在5%至100%的额定转矩范围内,激励电流与其传达之转矩成正比例线性关系。 1 工作原理 磁粉制动器是采用磁粉做介质,在通电情况下形成磁粉链来传递扭矩的新型传动元件,主要由内转子、外转子、激励线圈及磁粉组成。当线圈不通电时,主动转子旋转,由于离心力的作用,磁粉被甩在主动转子的内壁上,磁粉与从动转子之间没有接触,主动转子空转;当线圈通电时产生电磁场,,工作介质磁粉在磁力线作用下形成磁粉链,把内转子、外转子联起来,从而达到传递,制动扭矩的目的。 2 特性 2.1稳定的滑差力矩 当磁粉制动器内部磁粉量不变、激励电流保持不变时,其传递之扭矩不受传动件与从动件之间差速(滑差转速)之影响,即静力矩与动力矩无差别。因此可以稳定地传达恒定之转矩。 2.2快速响应特性 磁粉制动器因其固有的结构特点,确定了该种产品的无响应时间、转矩上升时间及转矩下降时间都极短,以5kgm的磁粉制动器为例,其无响应时间,其转矩上升下降时间分别为270ms和350ms。此特性决定了它可以应用于需频繁启停、换向的应用场合。 2.3激磁电流与转矩成线性关系 磁粉制动器的转矩跟激励电流的大小基本成线性关系,通过改变激励电流的大小可以任意调节控制转矩的大小,以5kgm的磁粉制动器测试数据为例,如图1所示。 图1 典型的滑差力矩测试图 2.4磁粉特性 磁粉制动器内部灌装的磁粉为铁钴镍磁粉,颗粒80目~400目。其基本性能表现为磁性能、磁粉粒径及其配比、流动性、耐久性。磁性能包括磁感应强度、磁导率、矫顽力和剩磁,这都与磁粉制动器工作特性密切相关。磁粉粒径及其配比对制动力矩传递有较大的关系,磁粉松装密度愈大,其颗粒间空气间隙愈小,磁感应强度和磁导率就愈大。受运转离心力影响,磁粉粒径过大,会削弱磁粉制动器转矩传递能力;磁粉粒径过小,磁粉制动器工作间隙中连接的磁粉颗粒就会过多,使磁粉制动器转矩传递性能不稳定,磁粉的平均粒径一般按其工作间隙的1/16来确定。磁粉流动性越好,磁粉制动器转矩传递响应越快,转矩传递稳定性也越好。磁粉球形度高,磁粉流动性就好,有利于提高制动的快速性和减小磁粉与工作面间的摩擦,形成稳定“磁粉链”。磁粉耐久性是指磁粉在磁粉制动器台架试验中磁粉制动器力矩降至初始值70 %所用时间。一般的磁粉在额定电流下工作寿命在5000小时~8000小时。在滑差运行工况下,磁粉间产生滑动摩擦损耗,要求磁粉耐磨性、耐热性要好,其磁性能在温度变化范围内必须不改变,以保证磁粉制动器在长时间的滑差工作状态下稳定运行。 磁粉制动器的制动力矩与磁粉充填率成正比关系,以磁粉充填率为参变数时,制动力矩与激磁电流的特性曲线如图2所示。

盘式制动器-课程设计

盘式制动器-课程设计

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 (9)、轮胎参数:165/70R13; 轮胎有效半径为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径 (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则满足制动性能要求的制动减速度由:计

建筑结构选型讲义(史上最全面)

绪论 一:结构对于建筑的意义 A:结构如同建筑的骨骼,支撑着建筑物;要克服重力,形成支撑体系 B:通过满足技术要求来满足建筑的使用功能;如:无柱空间的设计,中厅空间的设计C:形成特定的建筑造型;如现在的一些大跨度建筑,其独特的外观造型是进行了正确的结构选型的结果。 D:结构科学的进步推动着建筑的发展。一部建筑史也是一部建筑结构发展史 二:几个基本结构原理 (一)意义 介绍一些反映在力学原理中的普遍规律。 1.可以提高对结构设计分析、判断的直观能力。 2.可以引导和我们合理选择满足功能及力学性能的结构形式。 (二)通过对建筑实践的长期考察、分析,有以下传力的普遍规律。 1.在荷载作用下,结构的安全可靠性是由结构的(1)强度(2)刚度(3)稳定性这 三个方面决定的。 即:(1)足够的抵抗破坏的能力;砖柱与混凝土柱受压比较(取决于材料承载力) (2)抵抗变形的能力;大截面梁与小截面梁受弯性能比较(取决于截面大小) (3)维持原有平衡状态的能力。长柱与短柱受压比较(取决于其结构构件稳定系数)现代趋势:轻质高强材料满足①对其材料结构断面易导致②、③破坏,也就是结构受拉力学性能增强,受弯受压性能减弱(同时) 选用以受拉传力方式为主的结构系统是一大关注点 2.在荷载作用下,直接、矩捷的传力路线使结构的工作效能充分利用,减少耗材。 选用最短的传力路线组结构构件是一个好的结构设计必须遵循的原则,尽可能减少弯曲应力。 分析梁、柱、拱的受力 3.在荷载作用下,结构的连续性可以改进结构的工作性能。 结构的连续性是指其整体性,受力范围扩大,同时还表现在结构构件交接处方向渐变的体形特征上,结构构件的交接以微曲线过渡较理想。 力流顺畅同时造型优美 例:壳体结构,拱结构。 三、课程性质、目的和意义 第一章:建筑结构基本构件 1.支撑构件:梁、柱、承重砌体、楼盖、楼梯。 2.覆盖构件:屋盖,填充砌体 第一节:梁 一、梁的受力特点 梁主要承受垂直于梁轴线方向的荷载的作用,这在各种受力体中是最不保理的一种:不 能完全发挥材料(强度)—力学性能。

磁粉制动器型号规格—天机传动

天机传动天机传动 磁粉制动器型号规格—天机传动 磁粉制动器型号规格TJ-POD 型號TJ-POD0.6KG 1.5 KG 2.5 KG 5 KG10 KG20 KG40 KG 定格转矩(N-m) 6 12 25 50 100 200 400 电流(A)0.81 0.94 1.24 2.15 2.4 2.7 3.5 功率(W)- 250 380 700 1100 1900 2800 重量(KG) 4 5.2 9 14.5 34 53 100 最高转速(r/min)1800 磁粉重量(g)10 20 33 60 140 225 370 D1 134 152 182 219 278 327 395 D2 116 126 160 196 260 301 365 D3(g7) 42 42 55 74 100 110 130 D4 64 64 78 100 140 150 200 L 112.5 132 155 193 239 278 338 L1 26 29 43 55 65 69 92 L2 82 98 108 132 167 199 234 L3 14 15 17 30 28 30 35 L4 18 25.5 26 28 46 56 70 L5 12.5 14.5 15 18 21.5 32 40

天机传动天机传动 d(h7) 12 15 20 25 30 35 45 H 13.5 17 22 28 33 38.5 48.5 W(p7) 4 5 5 7 7 10 12 V M4*0.7P M4*0.7P M5*0.8P M6*1P*1M10*1.5P*20L R 6-M5*0.6-M6*1P*10L 6-M10*1.5P*15L 8-M10*1. S 1/8 1/8 1/8 1/4 3/8 3/8 3/8 磁粉制动器型号规格TJ-POD-A 型號TJ-POD-A0.6KG 1.5 KG 2.5 KG 5 KG10 KG20 KG40 KG 定格转矩(N-m) 6 12 25 50 100 200 400 电流(A)0.3 0.39 0.73 0.94 1.21 1.9 2.2 允许转速(r/min)1800 1800 1800 1800 1800 1000 1000 功率(W)130 320 450 700 900 1900 2600 外形尺寸 D 128 160 180 220 275 335 360 L 68 88 98 115 136 160 210 空心轴联结 d(h7) 12 18 20 30 35 45 50 尺寸 b(F8) 4 5 6 8 10 14 12 L1 4 2 5 5 6 8 8 定子固定尺 L2 2 5 5 5 5 6 6 寸

汽车液压盘式制动器设计研究

2009年第10期 科技经济市场 1汽车工业的发展 在人类历史发展的过程中,“衣”、“食”、“住”、“行”始终是人类生存的四大需要,是人类发展、进步的最重要的基本条件。而在“四大需要”中,“行”或“交通”的变化,在人类社会发展过程中 是最突出的,它对社会进步的影响也是最大的。 汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的“行”的手段。因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步象征及文明形态的一种代表。中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥巨大的作用。 2汽车零部件的工业现状及水平 在汽车行驶过程中,其零部件承受的载荷的大小和性质受着许多因素的影响。汽车的可靠性与在其使用期间作用在其零部件上的实际载荷有关。由于汽车的使用条件非常复杂,时间也不固定,有影响且变化的因素很多,致使在零件中的应力值会在很大的范围内变动,甚至应力性质也会改变。因此,确定汽车零部件所承受的实际载荷要比确定其他机械产品的载荷复杂很 多。而引起零件产生应力的力有些是恒定的(例如重力、 零件装配时产生的预紧力或过盈力),有些是不定的(例如汽车起步时和制动时产生的力,零件制造误差引起的力,发动机工作工况改变而引起转矩及力的改变,行驶阻力引起的力等等)。在设计中为了校核零件的静强度,首先就要确定其危险断面及其所承受的最大载荷;为了校核零件的疲劳强度,除了可按相关文献给出的计算方法进行疲劳强度的计算校核外,还常常以其实测的载荷谱为基础编制加载语并按加载谱的加载程序加载,在疲劳试验台上进行试验验证。可见,在设计中为了进行零部件的强度设计,首先要弄清其载荷工况、破坏机理,以便采取相应的强度计算方法进行有效的设计。 3汽车设计技术的发展 汽车设计技术在近百年中也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段,进而自60年代中期在设计中引入电子计算机后又形成了计算机辅助设计(CAD)等新方法,并使设计逐步实现半自动化和自动化。参阅相关权威资料了解到汽车设计的直接目的有以下三点: (1)提高汽车的技术水平,使其承载能力更强,使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少; (2)改善汽车的外观造型,特别对轿车来讲改善车身艺术效果,使其更美观、更科学、更新颖、更有时代感,往往是车型设计 的重要目的,也是提高市场竞争力的重要手段; (3)改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。 电子计算机的出现和在工程设计中的推广应用,使汽车设 计技术飞跃发展,设计过程完全改观。 汽车结构参数及性能参数等的优化选择与匹配、 零部件的强度核算与寿命预测、产品有关方面的模拟计算或仿真分析、车身的美工造型等等设计方案的选择及定型、设计图纸的绘制,均可在计算机上进行。 4盘式制动器设计、计算分析模块4.1概述 在轿车和中小型客车的设计中,一般其结构形式为前轮制动器采用浮钳式制动器,后轮制动器采用领从蹄自动定义浮销式鼓式制动器。而对总重大于20KN-40KN 的客车而言,前轮也有采用固定钳式盘式制动器,后轮采用自增力自动定义浮销式鼓式制动器。 在根据汽车的整车参数分析了汽车的制动力、制动力矩之后,就可以根据具体的制动器结构形式作相关设计、计算、分析等工作。 4.2基本原理(1)确定柱式制动器制动钳体主要结构参数的计算方法:在初步计算制动器制动钳体结构参数时,盘式制动器效能因数BF 的值可定为0.8。根据汽车前轮所需的最大理论制动力矩,初步选取制动钳体缸孔直径D 1可由下面的公式算出: M μ1=(P 1-P 10)Awc 1ηa .BF 1r 1……………1-1式中:Awc 1—盘式制动器制动钳体缸也的工作面积:(mm 2) BF 1—盘式制动器制动效能因数;P 10—前制动管路的开启压力;(M pa 或N/mm 2)ηa —主缸以后的机械效率;r l —制动盘有效半径;(m)P 1—前制动管压;(M pa 或N/mm 2)(2)确定盘式制动器计算用的最大制动力矩: 由于考虑到汽车实际制动时的最大输出制动力矩与理论值受很多因素影响而发生改变,如制动衬片与制动盘接触时不一定非常均匀使加制动力、制动衬片的摩擦系数受温度变化而发生改变等一些因素。这样用于计算的最大制动力矩应由下面公式算出: M 'u 1max=1.2M u 1max …………………1-2式中:M 'u 1max —用于计算的最大制动力矩(N.m ) M u 1max —单个前轮制动器理论最大制动力矩(N.m ) 作者简介:王亮,在读硕士,现工作在淮阴工学院,承担汽车服务工程专业的课程讲授工作。 汽车液压盘式制动器设计研究 王 亮关荣 (淮阴工学院,江苏淮安223001) 摘 要:本文主要是研究汽车液压盘式制动器设计计算程序, 通过运用V isual B asic 6.0软件和A ccess 数据库实现制动系的计算机辅助设计,基于制动器中的零部件数目较多,在掌握了汽车工业发展的历史和现状、 汽车设计技术理论知识构成以及汽车零部件的工业现状及水平的基础上,选取具有代表性的汽车液压盘式制动器设计、计算分析模块。从模块功能的概述、基本原理以及程序设计流程三个方面进行完整的模块设计说明。从而实现汽车液压盘式制动器设计的自动化,提升整车的安全性能。 关键词: 制动系;程序库;盘式制动器;模块技术平台 趤趽

建筑结构选型复习资料及试题(有答案)

建筑结构选型复习资料 1、简述简支梁和多跨连接梁的受力和变形特点? 简支梁的缺点是内力和挠度较大,常用于中小跨度的建筑物。 简支梁是静定结构,当两端支座有不均匀沉降时,不会引起附加内力。因此,当建筑物的地基较差时采用简支梁结构较为有利。 简支梁也常被用来作为沉降缝之间的连接结构。 多跨连续梁为超静定结构,其优点是内力小,刚度大,抗震性能好,安全储备高,其缺点是对支座变形敏感,当支座产生不均匀沉降时,会引起附加内力。 2、桁架结构的受力计算采用了哪些基本假定? 一、组成桁架结构的所有各杆都是直杆,所有各杆的中心线都在同一平面内,这一平面称为桁架的中心平面。 二、桁架的杆件和杆件的相连接的节点都是铰接节点。 三、所有外力都作用在桁架的中心平面内,并集中作用于节点上。 3、桁架斜腹杆的布置方向对腹杆受力的符号(拉或压)有何关系? 斜腹杆的布置方向对腹杆受力符号(拉或压)有直接关系。对于矩形桁架,斜腹杆外倾受拉,内倾受压,竖腹杆受力方向与斜腹杆相反。对于三角形桁架,斜腹杆外倾受压,内倾受拉,而竖腹杆总是受拉。 4、屋架结构的布置有哪些具体要求? 一、屋架的跨度:一般以3米为模数 二、屋架的间距:宜等间距平行排列,与房屋纵向柱列的间距一致,屋架直接搁置在柱顶 三、屋架的支座:当跨度较小时,一般把屋架直接搁置在墙、跺、柱或圈梁上。当跨度较大时,则应该采取专门的构造措施,以满足屋架端部发生转动的要求。 5、钢筋混凝土刚架在构件转角处为避免受力过大,可采取什么措施? 在构件转角处,由于弯矩过大,且应力集中,可采取加腋的形式,也可适当的用圆弧过渡。为了减少材料用量,减轻结构自重,也可采用空腹刚架,其形式有两种:一种是把杆件做成空心截面,另一种是在杆件上留洞。 6、刚架结构的支撑系统起何作用?应怎样布置? 为保证结构的整体稳定性,应在纵向柱之间布置连系梁及柱间支撑,同时在横梁的顶面设置上弦横向水平支撑。柱间支撑和横梁上弦横向水平支撑宜设置在同一开间内。 7、简述拱的支座反力的受力特点? 一、在竖向荷载作用下,拱脚支座内将产生水平推力 二、在竖向荷载作用下,拱脚水平推力的大小等于相同跨度简支梁在相同竖向荷载作用下所产生的相应于顶铰C截面上的弯矩除以拱的失高

相关文档
最新文档