三角高程测量
三角高程测量规范

三角高程测量规范三角高程测量是地理信息系统中常用的一种测量方法,它通过观测不同位置的视线方位角和仰角,来确定地理位置的高程。
为了保证测量结果的准确性和可靠性,在实际工作中需要遵循一定的测量规范。
下面就是三角高程测量的一些常见规范。
1. 测量设备:使用三角高程测量需要配备一套精确的测量设备,包括测量仪器、仪器三脚架、平板、测量杆等。
这些设备应当符合国家测绘行业的标准,保证测量精确度和重复性。
2. 观测站设置:测量中需要选择合适的观测站点,观测站点的选择应当满足以下条件:地势平坦、地表稳定、无阴影和悬空物遮挡等,并且要求观测站之间的距离合适,以保证测量结果的有效性。
3. 观测天气条件:三角高程测量过程中的观测天气条件对结果的准确性有很大的影响。
通常情况下,应避免在雾、雨、大风等恶劣天气条件下进行测量,以保证观测结果的稳定性。
4. 观测精度要求:根据实际需求确定测量的精度要求,一般要求不同观测站点之间的高程差别不超过一定范围。
在实际操作中应使用合适的仪器和方法来提高测量的精度。
5. 观测过程中的纠偏和调整:在完成初始观测后,需要根据实际情况进行数据纠偏和调整,以消除误差和提高测量结果的准确性。
6. 数据处理和成果输出:完成测量后,应对观测数据进行处理和分析,以得到最终的测量结果。
处理过程中应当使用合适的数学模型和算法,并充分考虑各种误差来源,以确保结果的可靠性和准确性。
7. 测量记录和归档:在测量过程中应当详细记录观测数据、测量步骤和方法,并妥善保存测量原始数据和处理结果,以备后续的查验和验证。
以上就是三角高程测量的一些常见规范。
通过遵循这些规范,可以提高测量结果的准确性和可靠性,从而更好地应用于地理信息系统和测绘工作中。
三角高程测量

中铁七局集团武汉工程有限公司测绘分公司
专业、专注、专心
勇于跨越 追求卓越
1、基本要求
1.1布设原则: 1.1.1以高程导线布设测区的基本高程控制,其等级应与测区范围相适 应,满足加密需要,一般应与国家水准点连测。 1.1.2导线水准点的高程,采用正常高系统和“1985国家高程基准”。 1.1.3各等级高程导线网的最弱点相对于高等级点(或起始点)的高程 中误差不超过0.05m。 1.1.4高程导线一般应在高级点间布设成附合路线或高程导线网。当测 区远离国家水准点时,也可布设支线引测国家水准点高程,作为测区的 高程起算点。 1.1.5当采用支线引测高程时,引测路线的等级不应低于测区基本高程 控制等级。引测高程的起算点必须进行检测。引测支线的长度可按表1 的规定放宽0.5倍。 1.1.6高程导线测量可与同等级水准测量混合使用,但在同一测段中只 能使用一种方法。
专业、专注、专心
勇于跨越 追求卓越
两点距离D>300m时,考虑地球曲率和大气折光的影响
地球曲率的影响:
c D2 2R
大气折光的影响: 综合两项的影响:
r k D2 2R
f c - r (1 k)D2 2R
当D=300m,K取0.14时,f≈5.9mm
中铁七局集团武汉工程有限公司测绘分公司
1、边长误差 边长误差决定于距离丈量方法。用普通视距法测定距离,精度只有
1/300;用电磁波测距仪测距,精度很高,边长误差一般为几万分之一到 几十万分之一。边长误差对三角高程的影响与垂直角大小有关,垂直角愈 大,其影响也愈大。因此,尽可能利用短边传算高程。
2、垂直角误差 垂直角观测误差包括仪器误差、观测误差和外界环境的影响。垂直
环线或附合路线闭合差
三角高程测量

§4-6 三角高程测量一、三角高程测量原理及公式在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。
传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。
方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆),并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为:故(4-11)式中为A、B两点间的水平距离。
图4-12 三角高程测量原理当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正数简称为两差改正:设c为地球曲率改正,R为地球半径,则c的近似计算公式为:设g为大气折光改正,则g的近似计算公式为:因此两差改正为:,恒为正值。
采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。
采用光电测距仪测定两点的斜距S,则B点的高程计算公式为:(4-12)为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。
实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。
理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。
当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。
二、光电三角高程测量方法光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。
表4-6 光电三角高程测量技术要求往返各注:表4-6中为光电测距边长度。
对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。
三角高程测量技术的原理与应用

三角高程测量技术的原理与应用引言:三角高程测量技术是一种用于确定地面上各点的高程差的技术,广泛应用于土地测量、建筑工程、地质勘探等领域。
本文将介绍三角高程测量技术的原理以及其在实际应用中的一些案例。
一、三角高程测量技术的原理三角高程测量技术基于三角形的几何性质,利用三角形的内角和外角之和等于180°的特点,通过测量三角形内角或边长的变化来计算高程差。
1.三角形的内角和在平面几何中,三角形的内角和总是等于180°。
通过测量三角形的内角和可以计算出与地面平行的三角形的高程差。
2.三角形的边长比例当两个三角形有一个共边时,它们的边长比例与高程差之间存在一定的关系。
根据这个关系可以通过测量两个三角形的边长比例来计算高程差。
3.水平仪水平仪是一种测量仪器,可以用来测量物体相对于地面的水平度。
通过水平仪可以测量物体的高度差,并计算出高程差。
二、三角高程测量技术的应用案例三角高程测量技术在土地测量、建筑工程和地质勘探等领域有着广泛的应用。
下面将分别介绍这些领域中的一些应用案例。
1.土地测量在土地测量中,三角高程测量技术可以用于确定不同地块之间的高程差,从而帮助规划和设计土地利用。
例如,在城市规划中,通过测量不同街区的高程差,可以确定出最佳的排水系统设计,以应对雨水的排放。
2.建筑工程在建筑工程中,三角高程测量技术可以用于确定建筑物的高程差,从而保证建筑物的平整度和垂直度。
例如,在建造高楼大厦时,通过测量建筑物不同层之间的高程差,可以确保整个建筑物的垂直度。
3.地质勘探在地质勘探中,三角高程测量技术可以用于确定地质构造的高程差,从而提供地质勘探的基础数据。
例如,在勘探矿产资源时,通过测量不同地质构造点的高程差,可以确定出矿石的分布情况。
三、三角高程测量技术的优势与难点1.优势三角高程测量技术具有测量范围广、测量精度高的优势。
由于三角测量是一种基于三角形几何性质的测量方法,可以适用于不同尺度和不同地形的测量需求。
(完整版)三角高程测量

32
2020年8月9日星期日
四、偏心误差系数的测定
基本原理:因为相对观测竖角(绝对值) 的平均值可消除竖盘偏心的影响,因此也可 通过相对观测的竖角来反映偏心误差。
测定步骤 1.为了减小竖盘指标差的影响,在平坦 地区选择两个相距约50m的固定点A、B, 在两点上竖立标尺,如图10-8所示。
33
2020年8月9日星期日
α=(R–L-180°)/2
=(278°12′24″- 81°47′36″- 180°)
= + 8°12′24″
12
2020年8月9日星期日
对高度角式注记,竖直角的计算 当竖直角为仰角时(参考前面的示意图)
α左 = L - 0° α右 = 180°- R α= (L – R + 180°)/2 (a) 当竖直角为俯角时
竖盘指标水准管
竖盘指标水准 管微动螺旋
6
图中3号螺旋为 竖盘指标水准管 微动螺旋
2020年8月9日星期日
2.竖盘的注记形式 顺时针,逆时针。
望远镜水平时,竖盘读数为90°的整倍数。
竖盘逆时针注记(盘左高度角式)
7
2020年8月9日星期日
竖盘顺时针注记(盘左天顶距式)
8
2020年8月9日星期日
3.竖角的表示形式
• 计算竖直角:各按三丝所测得的L和R分别计算出相应
的竖角,最后取平均值为该竖角的角值。
22
2020年8月9日星期日
五、指标差的检验与校正
1.测定指标差 盘左、盘右瞄准同一明显目标,观测多个测回 求得指标差。 2.求出盘左或盘右的正确读数(读数减指标 差)。 3.微调竖盘指标水准管,使竖盘位于正确读数。 4.调节竖盘水准管校正螺丝,使气泡居中。
中间法三角高程测量步骤

中间法三角高程测量步骤1.设定基准点:首先,确定一个已知高程的基准点,一般选用水准点或高程已知的控制点作为基准点。
将基准点的高程作为起始高程,进行后续高程测量。
2.布设测站:在需要测量高程的地点附近选择合适的测站,并使用三角仪或全站仪定位测站的坐标。
3.放样参考边:在测站附近放置一个参考边,参考边的两个端点与测站组成一个三角形。
参考边长度应尽可能大,以提高测量精度,通常选择具备较好外业可见性和控制点连续性的位置。
4.观测角度:使用三角仪或全站仪观测测站与参考边两个端点之间的角度,并记录下来。
5.测量距离:使用测量仪器测量测站与参考边两个端点之间的距离,并记录下来。
如果是使用全站仪,可以直接通过仪器内置的测距功能测量距离。
6.计算高程差:根据测量的角度和距离,使用三角函数计算出测站的高程差。
高程差等于参考边长乘以正切(θ)角度,其中θ为测站与两个参考点夹角的一半。
7.修正高程差:在进行计算时,需要考虑到仪器误差、气象条件和仪器的漂移等因素。
根据实际情况,校正或修正高程差的计算结果,以提高测量精度。
8.连续观测和校验:为了提高测量的准确性,可以多次观测同一个点,并进行比对和校验。
如果测量结果存在较大差异,需要重新观测和计算,直到结果稳定为止。
9.选择下一个测站:在得到一个测站的高程差后,选择附近的另一个测站作为下一个测量点,重复以上操作,依次测量所有需要测量的点。
10.计算高程:最后,将基准点的高程和各个测站的高程差相加,即可得到各个测站的绝对高程。
总结:中间法三角高程测量是一种常用的地形测量方法,通过布设测站,观测角度和测量距离,计算出测站和参考边的高程差,从而得到测站的绝对高程。
在测量过程中需要考虑仪器误差、气象条件和仪器漂移等因素,并进行修正和校正,以提高测量精度。
同时,连续观测和校验是保证测量结果准确性的重要步骤。
三角高程测量的计算公式

三角高程测量的计算公式三角高程测量是地理测量中常用的一种方法,用于测量地面上的点的高程。
本文将介绍三角高程测量的计算公式,并解释其原理和应用。
三角高程测量是基于三角法原理的一种测量方法。
它利用三角形的一些特性和测量数据,通过计算可以得到被测点的高程。
三角高程测量适用于各种地形条件,无论是平原、山地还是高原,都可以通过三角高程测量来确定各个点的高程。
三角高程测量的计算公式如下:h = H + d * tan(a)其中,h表示被测点的高程,H表示参考点的高程,d表示两个测点之间的水平距离,a表示两个测点之间的夹角。
根据这个公式,我们可以通过测量参考点和被测点之间的距离和夹角,再加上参考点的高程,就可以计算出被测点的高程。
这个公式的原理是基于三角形的相似性原理,即两个三角形的对应边的比例相等。
在实际测量中,我们首先需要选择一个参考点,可以是已知高程的点或者固定测量设备的位置。
然后,利用测量仪器测量参考点和被测点之间的水平距离和夹角。
最后,根据测量数据和计算公式,我们可以计算出被测点的高程。
三角高程测量在地理测量中具有广泛的应用。
它可以用于绘制地形图、制作地图、建筑工程设计等。
通过三角高程测量,我们可以快速准确地确定地面上各个点的高程,为地理信息系统的建设和规划提供重要的数据支持。
在实际应用中,三角高程测量需要考虑一些误差因素。
例如,测量仪器的精度、天气条件、地形复杂度等都会对测量结果产生影响。
因此,在测量过程中要注意选择合适的测量仪器、控制测量误差,并进行合理的数据处理和分析。
三角高程测量是一种常用的地理测量方法,通过测量参考点和被测点之间的距离和夹角,再结合计算公式,可以准确地确定被测点的高程。
它在地理信息系统、地形图制作、建筑工程设计等领域具有重要的应用价值。
在实际应用中,我们需要注意测量误差的控制和数据处理,以提高测量结果的精度和可靠性。
通过三角高程测量,我们可以更好地了解地球表面的地形特征,为人类的生活和发展提供有益的信息。
三角高程测量的形式

三角高程测量是高程控制测量的方法之 一,它速度快、效率高,特别适合水准测量 有困难的山岳地带(地形起伏较大)以及沼泽 、水网地区。
三角高程测量的精度较水准测量的精度 低,一般用于较低等级的高程控制中。
三角高程测量
2.三角高程测量的形式
三角高程测量宜在平面控制点的基础上布设成三 角高程网或高程导线,亦可根据实际需要布设成独立 交会点、极坐标点等形式。
高程点与待定点对向观测(复觇),另一已知高程点单 觇(直觇或反觇)观测。
三角高程测量
独立交会点高程测量的形式:
3个直觇
3个反觇
2个直觇+1个反觇
1个直觇+2个反觇
1个复觇+1个直觇
1个复觇+1个反觇
三角高程测量
(3)极坐标点 极坐标法测定图根点的高程时,垂直角可单向观
测一测回,变动棱镜高度后再测一次。
三角高程测量
(1)高程导线 高程导线可以布设成附合路线或闭合路线(环线)
,特殊情况下,还可以采用支导线的形式。
附合路线 支导线
闭合路线
三角高程测量
(2)独立交会点 独立交会点的高程一般应由3个已知高程点向
测定,这些单向观测既可以是直觇,也可以是反觇。 若由2个已知高程点测定时,则必须有一个已知
The end!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角高程测量计算
所求点
起算点
觇法
平距D/m 垂直角α Dtanα/m 仪器高i/m 觇标高v/m 高差h/m
对向观测的高差较差 /m
高差较差容许值/m
平均高差/m 起算点高程/m 所求点高程/m
B
A
直 286.36 +10˚32′26″ +53.28 +1.52 -2.76 +52.04
反 286.36 -9˚58′41″ -50.38 +1.48 -3.20 -52.10
-0.06
0.11
+50.07 105.72 157.79
三、三角高程测量主要误差来源及减弱措施
由公式知,观测边长D、垂直角、仪高i和觇标高v的测量误差 及大气垂直折光系数K的测定误差均会给三角高程测量成果带 来误差。
1、边长误差 边长误差决定于距离丈量方法。用普通视距法测定距离,
精度只有1/300;用电磁波测距仪测距,精度很高,边长误差 一般为几万分之一到几十万分之一。边长误差对三角高程的影 响与垂直角大小有关,垂直角愈大,其影响也愈大。
•中小城市一般以四等网作为首级控制网。
测区面积
首级控制
图根控制
1~15 0.5 ~2 0.5以下
一级小三角或(一级导线) 两级图根 二级小三角或(一级导线) 两级图根 图根三角(或图根导线)
三角网
导线网
一等水准是国家高程控制的骨干,沿地质 构造稳定和坡度平缓的交通线布满全国,构 成网状。
一等水准路线全长为93000多公里,包括 100个闭合环,环的周长为800~1500公里。
平面:国家平面控制网由一、二、三、四等 三角网组成。
高程:国家高程控制网是由一、二、三、四 等水准网组成。
国家控制网的特点:高级点逐级控制低级点。
图形1:国家一、二等平面控制网布置形式
一等三角网
二等三角网
200~250km
20~30km
一等基本锁的边长为20~25公里, 二等网的平均边长为13公里,三 等网平均边长为8km,四等网平 均边长:2-6km
3、大气垂直折光系数误差 大气垂直折光误差主要表现为折光系数K值测定误差。
4、丈量仪高和觇标高的误差 仪高和觇标高的量测误差有多大,对高差的影响也会有
多大。因此,应仔细量测仪高和觇标高。
控制测量
内容提要:
1\控制测量概述 2\导 线 测 量 3\交会测量 4\高程控制测量
控制测量 概述
一、控制测量
1、目的与作用
为测图或工程建设的测区建立统一的平面控 制网和高程控制网。
控制误差的积累。 作为进行各种细部测量的基准
2、有关名词
小地区(小区域):不必考虑地球曲率对水平 角和水平距离影响的范围。
控制点:具有精确可靠平面坐标或高程的测量 基准点。
控制网:由控制点分布和测量方法决定所组成 的图形。
控制测量:为建立控制网所进行的测量工作。
D AB
tan
i
v
B点的高程HB为:H B
H A
h AB
Байду номын сангаас
H A
D AB
tan
i
v
注意:当两点距离较大(大于300m)时:
1、加球气差改正数:
f
0.43 D 2 R
;即有:hAB
i Dtg
l
f
2、可采用对向 观测后取平均的 方法,抵消球气 差的影响。
球差为正,气差为负
图形:电磁波三角高程测量记录表
2、 垂直角误差
垂直角观测误差包括仪器误差、观测误差和外界环境 的影响。J6经纬仪两测回垂直角平均值的中误差可达 ±15″,对三角高程的影响与边长及推算高程路线总长有 关,边长或总长愈长,对高程的影响也愈大。
因此,垂直角的观测应选择大气折光影响较小的阴 天和每天的中午观测较好,推算三角高程路线还应选择 短边传递,对路线上边数也有限制。
二等水准是国家高程控制网的全面基础, 一般沿铁路、公路和河流布设。
二等水准环线布设在一等水准环内,每个 环的周长为300~700公里,全长为137000多 公里,包括822个闭合环。
沿一、二等水准路线还要进行重力测量, 提供重力改正数据。
一、二等水准环线要定期复测,检查水准 点的高程变化供研究地壳垂直运动用。
二、三角高程测量的基本公式
1、地球曲率与大气折光的影响
由于大地水准面是曲面,过测站点的曲面切线不 一定和水平视线平行。故测得的高差和实际高差不 一定相等。
空气密度随着所在位置的高程变化,越到高空, 密度越稀,光线通过由下而上密度均匀变化的的大 气层时,光线发生折射,形成凹向地面的曲线。引 起三角高程测量偏差。
如图,PC为水平视线, PE 是通过P点的水准面。 由于地球曲率的影响, C、E高程不等。P、E同 高程。CE为地球曲率对 高差的影响:
P
CE
S
2 0
2R
如图,A点高程已知,测量A、B 之间的高差hAB,求B点的高程。 PC为水平视线。PM为视线未受大 气折光影响的方向线,实际照准
在N上。 视线的竖直角为 。 则MN为大气折光影响:
MN
K 2R
S
2 0
其中,K为大气垂直折光系数, S0为AB两点间的实测的水平距离。 R为地球曲率半径。
i为仪器高, v 为觇标高,则B点 的高程可以表示为: v H=HA+ i +EC+CM-MN-NB = HA+ i +P+CM - 其中
CM PC tan=S0 tan
三角高程测量的公式可写为:
3、控制测量分类
按内容分:
平面控制测量:测定各平面控制点的坐标X、Y。 高程控制测量:测定各高程控制点的高程H。
按精度分:一等、二等、三等、四等;一级、二级、
三级
按方法分:三角网测量、天文测量、导线测量、交
会测量、卫星定位测量
按区域分:国家控制测量、城市控制测量、小区域
工程控制测量
二、国家控制网
§ 5.11 三角高程测量
三角高程测量是根据两点间的水平距离和 垂直角,计算两点间的高差。
适用于:地形起伏大的地区进行高程控制。 实践证明,电磁波三角高程的精度可以达到四 等水准的要求。
1.三角高程测量原理
i
v
D tan
B hAB
HB
A HA
D 大地水准面
A、B两点间的高差hAB为:
h AB
hAB H B H A D tan i v f
2、对向观测计算高差
为了消除或减弱地球曲率和大气折光的影响, 三角高程测量一般应进行对向观测,亦称直、反 觇观测。三角高程测量对向观测,所求得的高差
较差不应大于0.4D(m),其中D为水平距离,以
km为单位。若符合要求,取两次高差的平均值作 为最终高差。