电磁学静电场

合集下载

静电场的概念和计算方法

静电场的概念和计算方法

静电场的概念和计算方法静电场(Electrostatic Field)是指由于电荷的存在而产生的电场,其特征是电场强度恒定且不随时间变化。

静电场是电磁学的一个重要分支,具有广泛的应用领域,如电场感应、电介质性质研究、高压技术等。

本文将介绍静电场的概念、基本定律以及计算方法。

一、静电场的概念与特点静电场是由静电荷(即电荷在静止状态下的分布)所引起的电场。

在物质中,正、负电荷之间会相互吸引,同类电荷之间则互相排斥。

根据库仑定律,电荷间的作用力与距离的平方成反比,与电荷量的乘积成正比。

静电场具有以下特点:1. 电场强度:静电场在空间中的每一点都具有电场强度,用来描述电荷对单位正电荷所施加的力。

2. 电势:电荷在静电场中的能量状态,与电场强度有密切关系,是标量量。

电势的单位是伏特(V)。

3. 电势差:在两点之间的电势差等于从一个点到另一个点时单位正电荷所做的功。

电势差是标量量。

4. 等势面:在静电场中,与某个电荷距离相等的所有点构成一个曲面,该曲面上任何一点的电势相等。

二、静电场的基本定律1. 静电场的超定原理:在静电场中,只有N-1个独立的物理量(如电荷量、电场强度、电势等)决定N个物理量。

这是静电场基本定律之一。

2. 高斯定理:高斯定理是静电场的基本定律之一,它描述了电场流量与电场内电荷的关系。

高斯定理可以用来计算任意形状的静电场。

3. 波尔卡定律:波尔卡定律描述了电荷在静电场中的分布情况。

根据波尔卡定律,电荷主要存在于导体表面,且电场在导体内部为零。

4. 库仑定律:库仑定律描述了点电荷之间的电场强度和力的关系。

根据库仑定律,电场的大小与点电荷之间的距离成反比,与电荷量的乘积成正比。

三、静电场的计算方法1. 电荷分布:对于具有特定几何形状的电荷分布,可以利用积分的方法来计算电场强度和电势差。

常见的电荷分布形式包括均匀线电荷、均匀面电荷和均匀体电荷。

2. 高斯定理:对于具有对称性的电荷分布,可以利用高斯定理直接计算电场强度。

大学物理笔记(6)电磁学(一)静电场

大学物理笔记(6)电磁学(一)静电场
对于电荷面分布,可以取一小块面积元,其电荷面密度为σ ,则该面积元在距离r处产生的电势为dV=kσdA/r。
电荷体密度与电势关系
对于电荷体分布,可以取一小体积元,其电荷体密度为ρ, 则该体积元在距离r处产生的电势为dV=kρdV/r。电势ຫໍສະໝຸດ 与等势面概念及应用电势差定义
电势差是指电场中两点间电势的差值 ,用符号U表示,单位为伏特(V)。
种电荷相互吸引。
电场
电荷周围存在的一种特殊物质,对 放入其中的其他电荷有力的作用。
电场线
用来形象描述电场的曲线,电场线 上每点的切线方向表示该点的电场 强度方向,电场线的疏密程度反映 电场的强弱。
电场强度与电势
电场强度
描述电场强弱的物理量,用E表示 ,单位是牛/库仑(N/C)。电场 强度是矢量,方向与正电荷在该 点所受电场力方向相同。
电场强度
表示电场中某点的电场强弱 和方向的物理量,用E表示 。其方向与正电荷在该点所 受电场力的方向相同。
电势
描述电场中某点的电势能的 高低,用φ表示。电势差则 是两点间电势的差值,即电 压。
高斯定理
通过任意闭合曲面的电通量 等于该曲面内所包围的所有 电荷的代数和除以真空中的 介电常数。
常见误区及易错点提示
这种现象称为静电感应。
静电平衡
当导体内部电荷分布达到稳 定状态,即导体内部电场强 度为零时,称导体处于静电 平衡状态。此时,导体表面
电荷分布满足高斯定理。
屏蔽效应
处于静电平衡状态的导体, 其内部电场强度为零,因此 外部静电场对导体内部无影 响,这种特性称为屏蔽效应 。
介质在静电场中特性分析
01
电极化
05 静电场能量与能 量守恒定律探讨
静电场能量密度表达式推导

高中物理电磁学知识

高中物理电磁学知识

高中物理电磁学知识电磁学是物理学的重要分支,研究电荷和电荷之间的相互作用以及静电场、电流、磁场和电磁感应等现象。

本文将详细介绍高中物理电磁学的基本知识,包括静电场、电流、磁场和电磁感应等内容。

1. 静电场静电场是由静止的电荷引起的,它是指周围空间中由于电荷分布不均匀而产生的电场。

静电场有两个重要特征:一是电荷分布对电场产生影响,二是电场对电荷施加力。

静电场的电场强度E表示单位正电荷所受的力,其方向沿电场线指向负电荷。

2. 电流电流是电荷在单位时间内通过导体横截面的数量,通常用字母I表示,单位是安培(A)。

电流的大小与导体内的自由电子数目和电子的速度有关。

电流有两种性质:电流的守恒和欧姆定律。

守恒定律指出,在任何一个闭合回路中,电流的总和为零;欧姆定律则描述了电流与电压和电阻之间的关系,即I=U/R,其中U表示电压,R表示电阻。

3. 磁场磁场是由磁体或电流产生的,它是指在空间中存在的磁力的场。

磁场有两种表示方式:矢量法和标量法。

矢量法用矢量B表示磁感应强度,其方向垂直于磁场线;标量法用标量B表示磁场强度,其大小与磁场的强弱有关。

磁场对磁铁或电流有引力或斥力的作用,同时也对运动的带电粒子施加洛伦兹力。

4. 电磁感应电磁感应是指通过磁场引起电流或通过电流引起磁场的现象。

根据法拉第电磁感应定律,当磁场的变化引起导线内的磁通量变化时,导线两端会产生感应电动势。

电磁感应是电力生成与传输的基础,也是发电机和变压器等电器设备的工作原理。

综上所述,高中物理电磁学知识包括静电场、电流、磁场和电磁感应等内容。

这些知识都是理解电磁现象和应用电磁技术的基础,对于进一步研究电磁学和应用电磁技术都具有重要意义。

希望本文的介绍能够帮助读者更好地理解和应用电磁学知识。

电磁学部分教案2:静电场和静磁场的区别及应用

电磁学部分教案2:静电场和静磁场的区别及应用

电磁学作为自然科学中的一个重要分支,主要研究电磁场的产生、传播和作用规律。

而在电磁学中,静电场和静磁场是两个重要概念,它们之间有着明显的差别和区别,同时也有着各自不同的应用。

本文将针对这两个概念进行详细的介绍和分析,以期让读者对此有更深入、全面的认识。

一、静电场和静磁场的基本概念1.静电场静电场是由于电荷在空间中的分布而形成的一种电场,这种场强在空间中处处有定义,并且场强大小与该点上的试验电荷有关。

在静电场中,电荷是不运动的,也就是说不发生流动,因此电场的产生是纯粹由电荷分布所引起的。

静电场的场强与电荷的量成正比例,与距离的平方成反比例。

假设在空间中存在一个正电荷q1和一个试验电荷q0,两者的距离为r,那么它们之间的静电力可以表示为:F=kq1q0/r^2,其中k为比例常数,与真空介电常数ε0有关。

2.静磁场静磁场是由于电流在空间中的分布而形成的一种磁场。

反映空间中各点磁场的大小和方向的物理量称为磁场强度。

在静磁场中,电荷不断地通过导体,因此磁场的产生是由电流分布所引起的。

静磁场的大小与电流强度、导线的形状及其位置有关。

静磁场与静电场相似,也不能传播能量,是不产生电磁波的。

静磁场的强度与电流强度成正比例,与距离的平方成反比例。

假设在空间中存在一段电流为I的导线和一个距离它d远的试验电荷q0,那么它们之间的磁力可以表示为:F = kIq0/d,其中k为比例常数,与真空磁导率μ0有关。

二、静电场和静磁场的差别1.物理性质不同静电场和静磁场的物理性质有很大的不同。

静电场是由于电荷的分布而形成的,而静磁场是由于电流的分布所形成的。

静电场是一种静止的电场,因为电荷本身没有流动。

而静磁场则是由于电流引起的磁场,它的强度与电流的大小有关。

2.作用不同静电场和静磁场的作用也有很大的不同。

静电场不具备力矩,只有电荷之间的相互作用力。

而在静磁场中,磁场会产生力矩,使物体会受到力矩的作用,因此会产生旋转作用。

3.应用不同静电场和静磁场也有着不同的应用。

电磁学-静电场基本定理

电磁学-静电场基本定理

一、库伦定律1、定义在真空中,两个静止的点电荷q1和q2之间的相互作用力大小和q1与q2的乘积成正比,和他们之间的距离成反比;作用力的方向沿着他们的联线方向,同号电荷相斥,异号电荷相吸。

2、公式*k是引进单位制后引入的常数3、单位1库伦:当导线中通过1A电流时,1s内通过导线某一给定截面的电量为1C=1A*s若F=1N,q1=q2=1C,r=1m则:k=8.988*10^9 N*m^2/(C^2)二、电场强度1、定义单位正电荷在电场中收到的电场力的大小,方向与单位正电荷所受的力方向一致。

2、公式3、单位牛顿/库伦N/C4、场强叠加原理点电荷组在空间某点产生的电场等于各点电荷单独存在时在该点产生的场的矢量和。

三、静电场高斯定理1、电通量的定义穿过dS的电力线的根数2、电力线密度的定义单位面积内电力线的根数令其等于该处电场强度的大小3、高斯定理的定义穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比(电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比)4、包围一个点电荷的任意曲面上的电通量上式dS=一个点电荷所产生的电场,在以点电荷为中心的任意球面的电通量等于5、包围多个点电荷的任意曲面上的电通量6、闭合曲面不包围点电荷的电通量闭合曲线不包围点电荷,dS'与dS所对的立体角则电通量对于闭合面S'+S,总通量为结论:通过不包围点电荷的闭合曲面的电通量为零四、静电场环路定理1、定义静电场力做功与路径无关等价于静电场力沿任意闭合回路做功恒等于零。

(只与起点终点位置有关)2、静电场力做功电场力做功等于电势改变量电场力做功:电势能改变量:3、电势的定义单位正电荷从P点到Q点移动时电场力所作的功定义为电势4、空间某点电势一般选择无穷远为势能零点,P点的电势能为:两点之间的电势差可表示为两点电势值之差:四、结语希望本文对大家能够有所帮助。

电磁学 全套课件

电磁学 全套课件

2、计算
S
均匀电场中,平面 S 的电通量
S与电场强度垂直 e E S
S的法向与电场强度成 角

e E S E S cos E S
S

n

S
非均匀电场中,任意曲面 S 的电通量
在S上任取一小面元dS

de

E

dS

e
S de
当 qi 0 ,e>0,多数电场线从正电荷发出并穿出高斯面,
反之则多数电场线穿入高斯面并终止于负电荷
电场线是不闭合的曲线
----静电场是“有源场 ”
穿过高斯面的电通量只与高斯面内的电荷有关
高斯面上的电场强度与高斯面内外电荷都有关
高斯定理也适用于变化的电场
四、高斯定理应用举例
高斯定理可以用于求解具有高度对称性的带电体系所产生的电 场的场强。
超距的观点: 电荷
电荷
电场的观点: 电荷

电荷
近代物理的观点认为:凡是有电荷存在的地方,其周围空间便存 在电场
q1
q2
静电场的主要表现: 力:放入电场中的任何带电体都要受到电场所作用的力---电场力 功:带电体在电场中移动时,电场力对它做功 感应和极化:电场中的导体或介质将分别产生静电感应现象或极化
dx θ1= π -θ2
L q
E
j
j
4 0a 2 4 0a 2
例2、半径为R的均匀带电细圆环,电量为q。求圆环轴线上任 一点的场强。
dE dE
0
R
x
P
r
dEx x
讨论: x>>R时
x =0时
dl

赵凯华_电磁学_第三版_第一章_静电场_129_pages


dq
dV
q
P
(点电荷!!)组成,然后利用场强叠加 原理
r
dE
E
q

dE
q

dq 4 0 r
ˆ r 2
dq dV ds dl
体电荷 密度 面电荷 密度 线电荷 密度
dq dl
dq dV
dq ds
电荷密度 一般是位 置的函数
例1
等量异号电荷的电场 电荷之间的距离为 l。
E q 4 0 r ˆ r 2
球对称!!(图示见 下页) r 从源电荷指向场点 场强方向:
两式得
正电荷受力方向
z
F q ˆ r 2 q0 4 0 r

o
j
A
y
球对称!
静电场基本 特性的原因 !!!
x
问题 如何求 任意 带电体的场强?
方法: 电力叠加原理+场强定义
2 0
E E E
在可视为电 偶极子时 E
ˆ r
4 r
q
2 0
ˆ r
ˆ ˆ p 3 r p r 3 4 0 r
1
推导:
E 4 r q
2 0
ˆ r
4 r
q
P
ˆ r
2 0
r
r
l
q r r E 3 3 4 0 r r
由图中
q
r
q
矢量关系
平方
2 2
l r r 2
2
l r r 2
l r r r l 4
2 2 2
l r r r l, 4

大学物理电磁学总结

大学物理电磁学总结电磁学部分总结静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。

静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动, 电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。

电场强度 E =q 0∞ W a 电势 U a ==E ⋅d rq 0a2、反映静电场基本性质的两条定理是高斯定理和环路定理Φe =E ⋅d S =ε0∑qL E ⋅d r =0要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。

重点是高斯定理的理解和应用。

3、应用(1)、电场强度的计算1q E =r 02a) 、由点电荷场强公式 4πεr 及场强叠加原理 E = ∑ E 计i 0算场强一、离散分布的点电荷系的场强1q i E =∑E i =∑r 2i 0i i 4πεr 0i二、连续分布带电体的场强 d q E =⎰d E =⎰r 204πε0r其中,重点掌握电荷呈线分布的带电体问题b) 、由静电场中的高斯定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。

还有可能结合电势的计算一起进行。

c) 、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。

(2)、电通量的计算a) 、均匀电场中S 与电场强度方向垂直b) 、均匀电场,S 法线方向与电场强度方向成θ角E =-gradU =-∇U∂U ∂U ∂U =-(i +j +k )∂x ∂y ∂zc) 、由高斯定理求某些电通量(3)、电势的计算a) 、场强积分法(定义法)——计算U P =⎰E ⋅d rb) 、电势叠加法——q i ⎰电势叠加原理计算⎰∑U i =∑4πεr⎰0iU =⎰dq ⎰dU =⎰⎰⎰4πε0r ⎰第二部分:静电场中的导体和电介质一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。

《中学物理》第3册 电磁学 第1章 静电场—知识重点

《中学物理》第3册电磁学第1章静电场知识重点在“第1章静电场”是电学的基础,也是学生学习《中学物理》的难点内容。

本章的基础知识多、而且概念抽象,如:电场强度、电势、点电荷电场、匀强电场、电荷守恒定律、库仑定律、电力线、等势面、静电感应、电容器等。

一、库仑定律库仑定律:①大小:在真空中,2点电荷之间的作用力(F),与它们所带的电量(Q1)和(Q2)乘积成正比,与它们之间的距离平方(r2)成反比。

②方向:作用力的方向,在2点电荷之间的连线上。

③性质:同种电荷相斥,异种电荷相吸。

④公式:其中:F:电场力(库仑力)。

单位:牛顿(N)。

k:静电常数。

k = 9.0×109。

单位:牛顿·米2/库仑2 (N·m2 / C2)。

静电常数:在真空中2个相距为1米(m)、电荷量都为1库仑(C)的点电荷(Q1Q2)之间的相互作用力(F)为9.0×109牛顿(N)。

Q1Q2:2点电荷分别所带的电量。

单位:库仑(C)。

r:2点电荷之间的距离。

单位:米(m)。

注意:①库仑定律公式适用的条件:一是在真空中,或空气中。

二是静止的点电荷。

是指2个距离(r)足够大的体电荷。

②不能认为当r无限小时,F就无限大。

因为当r无限小时,2电荷已经失去了作为点电荷的前提。

③不用把表示正、负电荷的“+、-”符号,代入公式中进行计算。

可以用绝对值来计算。

计算的结果:可以根据电荷的正、负,来确定作用力为“引力/斥力”?以及作用力的方向。

④库仑力遵守牛顿第三定律。

2电荷之间是:作用力和反作用力。

(不要错误地认为:电荷量大的,对电荷量小的,作用力就大。

)附录:电量的单位:库仑(C)。

库仑(C):当流过某曲面的电流1安培时,每秒钟所通过的电量定义为1 库仑。

即:1 库仑(C)= 1 安培·秒(A·S)二、电场强度⒈电场强度①电场强度(E)为放入电场某一点的电荷,受到的电场的作用力(F),与它的电量(q)的比值。

静电场知识点

⎧ ⎧ 质子 ⎪原子核⎨ 原子⎨ ⎩中子 ⎪ 电子 ⎩
上夸克(u): e
夸克
3 1 下夸克(d): − e 3 1 − e 奇异夸克: 3 2 粲夸克(c): e 31 底夸克(b): − e 3 2 顶夸克(t): e 3
物体带电的内因
电量的定义: 物体所带电荷的多少叫作电量。单位:库仑(C)
3、电荷的相对论不变性:
在不同的参照系内观察,同一个带电粒子的电量不变。 电荷的这一性质叫做电荷的相对论不变性。
4、点电荷: 当带电体的几何线度比起它到其它带电体的距
离小得多,可抽象成一个几何点.
▲带电体的形状和电荷分布对其它带电体已无关紧要 ▲点电荷是理想模型,并非客观存在.
5、电荷的对称性——反粒子
电四极子:两个电偶极子反平行放置,称为电四极子
−q
+q
2、电偶极子轴线延长线上一点的电场强度 � E+ = � 1 q i 2 4πε 0 ( x − l / 2 )
−q O +q
� E−
A
� E+
� � 1 q E− = − i 2 4πε 0 ( x + l / 2) � � � ⎤� 1 ⎡ q q E=E++E- = - i ⎢ 2 2⎥ 4πε 0 ⎣ ( x − l / 2 ) (x+l / 2) ⎦
库仑定律内容
在真空中,两个静止的点电荷之间的相互作用力,其大小 与点电荷电量的乘积成正比,与两点电荷之间距离的平方 成反比,作用力在两点电荷之间的连线上,同号电荷互相 排斥,异号电荷互相吸引。
� q1q2 ˆ12 F12 = k 2 r r12 � � � r12 = r2 − r1 O � ˆ r 12 = r 12 / r 12 表示单位矢量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空中, 两个静止的点电荷之间相互作用力的大小, 与它们
的电量的乘积成正比, 与它们之间距离的平方成反比, 作用力
的方向沿着它们的联线. 同号电荷相斥, 异号电荷相吸.
数学表述:
F12
q1q 2 r2
r102
q2
q1
r
r102
r201
ቤተ መጻሕፍቲ ባይዱ
点电荷是一种理想模型。当带电体的几何尺寸远小于带电体
之间的距离时,可以不考虑带电体的大小,不考虑电荷在带
电体上的分布,把带电体看成一个几何点。
7
在SI制和有理化方程系中
F12
1
4 0
q1q2 r2
r102
F21
1
4 0
q1q2 r2
r201
真空介电常数 0 =8.854 187 817…10-12 C2/m2N
k 8.99 109 N m2 C -2
8
说明
1. 库仑定律是直接由实验总结出来的规律。是 整个静电学的基础,具有丰富的物理内涵。 2.厍仑力与电量的乘积成正比,这是电量(电 荷)的定义。即引入定量描述两点电荷带电多 少的物理量-电量。规定库仑力大小与两点电 荷电量乘积成正比,既表明库仑力是电力,又 能 通过q1、q2的大小、正负区分电力的大小以 及吸引还是排斥。
r
lim
v0
q v
(2)面电荷分布的带电体
f q0
4 0
s
r
r3
rdS
(3)线电荷分布的带电体
r
lim
S 0
q S
面密度
f
q0
4 0
l
r
r3
rdl
r
lim
l 0
q l
线密度
13
例题1-1-1 电荷量q均匀分布在半径为R的金属圆环上,
在环的轴线上有一条均匀带电的直线,单位长度的电
一、迎接挑战—关于电磁学的教学
1. 电磁学-研究对象的重大变化,必将引起基本观念、规律 性质的深刻变化,必将导致新的概念、新的研究方法、新 的描述手段和新的数学工具的出现,从而标志新的研究领域 的开辟,预示新的理论的诞生。
2.电磁场理论的研究由静止转为运动,由稳恒步入变化,最终 建立了一组十分优美而简洁的麦克斯韦方程组。它概括了麦 克斯韦之前所有的电磁经验定律。它不仅是物理学史上划时 代的伟大成就,也为理解什么是物理理论、怎样建立物理理 论提供了光辉的范例。
11
静电力叠加原理
试验指出,两个以上的点电荷对一个点电荷的作用力,等于
各个电荷单独存在时对该电荷作用力的矢量和.
q
F Fi
Fi
i
1
4 0
q0qi ri2
ri
0
ri
qi
ri
0
qn
连续带电体对点电荷的作用力则为
q1 q2
(1)体电荷分布的带电体
f q0
4 0
v
r
r3
rdv
12
其中体电荷密度
库仑力平方反比律的精度不仅直接影响电磁场理论的 精度,而且与光子静止质量是否为零密切相关,涉及物理学 一系列根本问题,关系重大。
(1)精确程度:
1
f r 2
1971年实验值:
2.7 3.1 10-16
(2)适用范围: r ~ 10-15 -107 m
5.氢原子的电子、质子间的库仑力与万有引力相比 F电 F引 2.3 1039
4. 电荷守恒.在一个和外界没有电荷交换的系统内, 正负电荷 的代数和在任何物理过程中保持不变.具有相对论不变性。 如:摩擦生电荷; 感应带电荷; 电子对的产生和湮灭等。
6
第二节 库仑定律(1785年)
受牛顿力学的深刻影响,寻找电力遵循的规律成为引人瞩 目的研究课题,它的发现迎来了电学历史上第一个重要突破。
5
第一节 电荷
一、对电荷的基本认识
1. 电荷是带电基本粒子的一种属性。 2. 自然界只存在两种电荷(电荷对称性)。 3. 电荷量子化. 密立跟实验(1906-1917年)
Q=Ne, e=1.6021892(46)10-19C
理论研究认为,夸克带分数电荷。迄今为止尚未在实验中 找到自由夸克。今后即使真的发现了自由夸克,仍不会改变 电荷量子化的结论。
唐朝 杜甫(中文的“物理”一词源出此)
“求学问,需学问;只学答,非学问”
李政道(1957年与杨振宁同获诺贝尔
物理学奖)
3
考核方式
• 学期总成绩中作业成绩占10%、实验成 绩10%、自主学习与合作交流占20%、期 末考试卷面成绩占60%。
4
第一章 静电场的基本规律
目录
1. 电荷 2. 库仑定律 3. 静电场 4. 高斯定理 5. 电场线 6. 电势
3.电磁学的难点在于“场”。场是在一定空间范围内连续分布的 客体,从概念到方法,对学生来说都是全新的。认识场要从 它的空间分布规律入手,从总体上去把握它,掌握恰当的描 述方式和新的概念。静电学是整个电磁学的基础和重点。1
二、物理学思维特点
物理教学,重要的是要启发学生的思维,加强科学方法论的 教学。如果学生能从学习中体会到物理学特有的思维方式,将 终生受益。
2
3. 创设模型。物理学并不讳言自身只研究模型。模型并不全同 于真实,但物理学的成功正在于创造出许多成功的模型。模型是 “理想化”的,但不是“伪劣”的,它突出了许多表面上看是千差 别的物体最本质的特征,例如法拉第的“力线”模型的建立。
三、悟物穷理
学好物理学,关键是勤于思考,悟物穷理。
“细推物理须行乐,何用浮名绊此身”
9
3.库仑定律成立的条件是静止。即两点电 荷相对静止,且 相对于观察者静止。两 个静止电荷之间的作用力符合牛 顿第三 定律. 运动电荷之间的相互作用力问题既 涉及到电场问题(不是静电场),也涉 及到磁场问题,表现也比较复杂,将在 《电动力学》中解决。
10
4.关注库仑力平方反比律的精确程度和适用范围。
荷量为 ,直线的一端在环心,另一端趋向无穷远。
试求它们之间的相互作用力。
dq
R2 x2
d
p
0
x
dF
q
【解】如图,环上电荷元
元 dx 上的库仑力为
dq q
2
d
作用在直线上p处电荷
dxdq
q dxd
dF 4 0 R2 x2 8 2 0 R2 x2
14
根据对称性,整个圆环的电荷作用在 dx 上的力为
物理学思维特点主要一表现在:
1. 敢于想像。要认识敢想才有物理学,不敢想就没有物理学。 爱因斯坦说:“想像力比知识更重要。”例如,麦克斯韦的位移 电流假说,爱因斯坦的狭义相对论和光电效应的论述。
2. 善于归纳。物理学的构架是一系列大大小小的定律。这些 定律都是从实验(或观察)中归纳出来的。但这种所用的科学 方法,只能是“不完全”归纳法,而不是数学的完全归纳法。例 如“势”概念的应用。
相关文档
最新文档