富氧燃烧的特性及其发展现状
富氧燃烧技术简介

富氧燃烧(OEC)技术综述及展望
3、富氧燃烧技术在工业锅炉上的应用情况 3.4 在中国的应用情况
1998年,我国中科院大连化物所在江苏阜宁化肥厂的 WGC20/3.82- 1型燃煤蒸汽锅炉安装了一台富氧膜法装置 进行助燃,通过检测部门的检测发现,富氧设备性能稳定, 炉膛温度提高90℃,平均节能大于11%,最高达16.2%。
*
富氧燃烧(OEC)技术综述及展望
2、OEC对燃煤锅炉燃烧特性的影响
2.1 理论空气量
目前的锅炉理论空气计算是以空气中氧量20.93%作为前提的,在富氧条 件下,一般含氧量会升高到27%~30%。理论计算表明:当富氧空气中氧含 量到27%时,理论空气量减少到原来的78%。
2.2 过量空气系数
在富氧条件下,由于氧气浓度的升高,在其他条件相同的情况下,同样 的锅炉空气系数对于燃烧的作用不同,后者会激化燃烧过程,所以可以采用 较低的锅炉空气系数。
6.富氧燃烧技术在电站锅炉的发展展望 6.2 将在稳定燃烧、提高锅炉效率方面发挥重要 作用
富氧燃烧技术在点火阶段的应用只是该技术的初级阶 段,该技术完全可以在以下领域发挥更大的作用
(1)在锅炉低负荷稳燃方面 对于煤质较差而且煤源不稳定,煤的配比缺乏科学手 段造成燃烧不稳定的问题,也可以通过富氧局部助燃技术 得到弥补,满足稳定燃烧的要求。 如果将锅炉B、C、D某层或者某两层主燃烧器改造为 富氧燃烧器,将可以在锅炉燃烧不稳定时,起到快速稳燃 的作用。其投入稳燃的速度比等离子点火、微油点火都快 速得多。只需打开富氧燃烧器前的阀门即可稳燃。
*
富氧燃烧(OEC)技术综述及展望
3、富氧燃烧技术在工业锅炉上的应用情况 3.4 在中国的应用情况
*
富氧燃烧(OEC)技术综述及展望
富氧燃烧技术的应用现状分析

(北京科技大学机械工程学院)1前言对于现代钢铁企业来说,资源、能源与环境问题已经成为制约其快速发展的瓶颈。
节能降耗、减少排放是企业科学技术进步和可持续发展的必然选择。
钢铁企业作为能源消耗与污染排放大户,更应节约资源,应对能源危机以及环境压力。
目前节能降耗的主要方法有富氧燃烧的应用、料坯热送热装、高温蓄热燃烧、连铸连轧CSP短流程、热工设备的优化控制、耐火材料性能改进等。
由于在节能和减排方面的优良性能,富氧或全氧燃烧技术越来越受到热工领域的青睐。
本文主要讨论富氧燃烧技术的应用。
2富氧燃烧/纯氧燃烧技术在钢铁行业的发展及应用在人类钢铁发展史中,从炼金术到现代钢铁,始终和能源消耗密不可分。
早期的炼钢过程完全依赖于燃料在空气中燃烧以维持所需的热量。
一方面需要燃料供热,耗费大量能源(近代随着燃料资源的减少,矛盾更加突出) ;另一方面又生成大量的烟气,对环境造成严重污染。
面对能源资源的减少及环境污染问题,未来的钢铁企业必须能够做到同时满足社会发展对钢铁材料的需求和人类对生存环境的质量要求。
钢铁企业富氧的应用便是最好的解决办法之一,该项技术已被认为是近半个世纪以来钢铁业界的四大发明之一。
尤其现今很多钢铁企业还存在着氧气放散的问题。
富氧在经济上的可行性分析为其工业应用创造了良好的条件。
1937年,富氧在底吹转炉炼钢(Bessemer)上的应用是世界上最早的富氧冶炼技术。
富氧技术应用的成功,促使富氧在有色冶金领域也得到重视。
富氧技术在工业上的早期研究与生产实践为其在冶金行业中大规模的生产应用建立了坚实的基础。
西方发达国家及前苏联早在70年代末就开始了富氧燃烧技术用于玻璃炉窑的研究,并在70年代末80 年代初取得了良好的效果。
同时,世界大多数国家如美国、英国、日本、俄罗斯、德国、法国、加拿大等均广泛推广和应用了富氧技术,应用范围越来越广。
在20世纪70~80年代一些小的高温炉如搪瓷熔块旋转炉为提高生产率开始使用纯氧燃烧,但在当时纯氧燃烧是不经济的。
富氧燃烧的资料

一.富氧燃烧的概述通常空气中氧的含量为20.93%,氮为78.1%及少量惰性气体等,人们把含氧量大于20.93%的空气叫做富氧空气,富氧空气参与燃烧给富氧燃烧提供了大量的氧气,使可燃物充分的燃烧,减少了固体不能充分燃烧的排放,减少了氮气和其他气体随烟气带走的热能,将具有明显的节能和环保效应。
二.富氧燃烧分析助燃空气中氧浓度越高,燃料燃烧越安全,但富氧浓度太高,会导致火焰温度太高而降低炉膛受热面的寿命,同时制氧投资等费用增高,综合效益反而下降,因此国内外研究表明,助燃空气富氧浓度一般在26~30%时为最佳。
1.据测试氧含量增加4-5%,火焰温度的升高,促进整个炉膛温度的上升,炉膛受热物质更容易获得热量,热效率大幅度提高。
2.燃料在空气中燃烧与在纯氧中的燃烧速度相差甚大,如氢气在空气中的燃烧速最大为280cm/s,在纯氧中为1175cm/s,是在空气中的4.2倍,天然气则高达10.7倍,富氧助燃,可以使燃烧强度提高,燃烧速度提高,燃烧速度加快,从而获得较高的热传导,使燃料燃烧的更完全。
3.燃料的燃点温度不是一个常数,它与燃烧状况,受热速度,富氧用量,环境温度等密切相关,如在CO在空气中为609度,在纯氧中仅为388度,所以用富氧助燃能降低燃料燃点,提高火焰强度,减小火焰尺寸,增加释放热量等。
4.用普通空气助燃,约五分之四的氮气不但不参与助燃,还要带走大量的热量。
一般氧浓度增加1%,烟气量约下降2~4.5%,从而能提高燃烧速率。
5.如用普通空气助燃,当炉膛温度约为1300度,其可利用的热量为42%,而用26%的富氧空气助燃时,可利用热量为56%,热量利用率可增加14%。
6.排烟温度每降低12~15度,可降低排烟热损失约1%,用富氧代替空气助燃,可减少一次风量,降低了空气的过剩系数,减少了排烟量减低了排烟热损失。
三.富氧燃烧的危险性1.氧气的性质氧气不可燃但是支持燃烧,大多数物质在氧气中会猛烈燃烧,有时还会爆炸。
富氧燃烧技术

富氧燃烧技术富氧燃烧技术简介富氧燃烧技术是一种能够提高燃烧效率、降低燃烧产物排放的先进技术。
它通过在燃烧过程中供应额外的氧气,改善了燃料的燃烧质量,减少了污染物的生成,提高了能源利用效率。
富氧燃烧技术在工业领域的应用日益广泛,为实现清洁低碳发展做出了重要贡献。
富氧燃烧技术的原理富氧燃烧技术的原理是在传统的空气燃烧过程中加入含有高浓度氧气的氧化氮(NOx)和氧气混合物,通过调节氧气的浓度和进气速度来实现理想的燃烧效果。
在传统空气燃烧中,燃烧产生的氮氧化物会对环境产生严重的污染,而富氧燃烧技术能够有效地降低氮氧化物的生成,减少对环境的影响。
富氧燃烧技术的优势1. 提高燃烧效率:富氧燃烧技术可以增加燃料的燃烧速率,使燃料充分燃烧,提高燃烧效率,减少能源的浪费。
2. 降低污染物排放:富氧燃烧技术能够有效地降低氮氧化物(NOx)、二氧化硫(SO2)和颗粒物等有害物质的排放,对改善空气质量有很大的作用。
3. 减少能耗:富氧燃烧技术消耗的能量较少,可以降低能源的消耗,减少对环境的影响。
4. 适应性强:富氧燃烧技术适用于不同类型的燃料,包括固体燃料、液体燃料和气体燃料,具有很好的适应性。
富氧燃烧技术的应用领域1. 火力发电:富氧燃烧技术在火力发电中的应用能够提高发电效率,降低对环境的影响,推动清洁能源的开发和利用。
2. 钢铁行业:钢铁生产过程中需要大量能源,富氧燃烧技术的应用能够提高燃烧效率,降低能耗和污染物排放。
3. 化工工业:在化工过程中,富氧燃烧技术能够优化燃烧过程,降低燃料消耗,减少污染物的生成。
4. 垃圾处理:富氧燃烧技术在垃圾焚烧过程中的应用能够提高燃烧效率,减少有害气体的排放,降低对环境的影响。
富氧燃烧技术的发展前景随着能源需求的不断增长和环境污染的严重程度,富氧燃烧技术在未来有着广阔的应用前景。
随着技术的不断进步和成本的降低,富氧燃烧技术将更加普及和推广,为实现清洁低碳发展做出重要贡献。
总结富氧燃烧技术是一种能够提高燃烧效率、降低排放的先进技术。
富氧燃烧-专业文档

富氧燃烧富氧燃烧是一种高效的燃烧方式,它通过提高燃烧过程中的氧气含量来提高燃烧速度和效率。
在传统的空气中燃烧时,由于氧气含量只有约21%,其余大部分是氮气和二氧化碳等不可燃气体,因此火焰传播速度较慢,燃烧不充分。
而通过富氧燃烧,可以提高氧气浓度,使火焰传播速度加快,提高燃烧效率,同时降低烟气排放中的有害物质含量。
富氧燃烧的原理是利用氧气和氮气的沸点不同,在工业生产中通过分离空气制取出高纯度的氧气,将氧气和燃料在高温下进行燃烧。
由于氧气含量高,燃料能够更充分地燃烧,释放出更多的热量。
同时,由于氧气浓度高,火焰的温度也会相应提高,从而加快了燃烧速度。
富氧燃烧的优点主要包括:1.提高燃烧效率:由于富氧燃烧提供了更高浓度的氧气,使得燃料能够更充分地燃烧,提高了燃烧效率。
2.降低有害物质排放:由于富氧燃烧能够使燃料更充分地燃烧,因此可以降低烟气中一氧化碳、氮氧化物等有害物质的含量。
3.减少温室气体排放:富氧燃烧可以减少二氧化碳的排放量,因为高浓度的氧气可以使燃料燃烧得更完全,从而减少了碳排放。
4.提高火焰传播速度:由于富氧燃烧提供了更高浓度的氧气,火焰传播速度会加快,提高了燃烧速度。
富氧燃烧的应用领域非常广泛,包括钢铁、有色金属、陶瓷、化工等高能耗行业。
在这些行业中,富氧燃烧技术可以通过提高能源利用率和减少环境污染来降低生产成本和提高产品质量。
此外,富氧燃烧技术还可以用于锅炉改造、工业窑炉等领域,以提高热效率和减少环境污染。
在钢铁行业中,富氧燃烧技术可以提高冶炼效率和产品质量。
与传统的空气燃烧相比,富氧燃烧能够提供更高的氧气浓度和更高的火焰温度,使钢铁冶炼过程中的反应更加迅速和充分。
同时,由于氧气浓度的提高可以减少煤炭的使用量,因此可以降低钢铁生产过程中的成本。
此外,富氧燃烧还可以减少钢铁生产过程中的废气排放量,减少环境污染。
在陶瓷行业中,富氧燃烧技术可以提高烧成效率和产品质量。
在传统的空气烧成中,由于火焰传播速度较慢,烧成时间较长且温度分布不均匀。
富氧燃烧的基本原理及特点

富氧燃烧的基本原理及特点富氧燃烧是指在燃烧过程中,通过增加氧气的含量,使燃烧反应更加充分,提高燃烧效率和热值,降低燃烧产物中的有害物质排放。
以下是富氧燃烧的基本原理和特点。
一、基本原理富氧燃烧是在标准空气燃烧基础上进行的一种改良,主要原理包括以下几个方面:1.增加氧气含量:正常情况下,空气中氧气的含量约为21%,而富氧燃烧则在供氧时增加氧气的含量,以提高燃烧效率。
2.调整供气比例:富氧燃烧通过控制供气比例,让氧气与燃料的配比更加合理,以使燃烧反应更充分。
3.控制燃烧温度:富氧燃烧时可以通过调整供气比例和燃烧时间等控制燃烧温度,使燃料燃烧过程中的温度不超过最低燃烧温度,从而防止产生可燃物质,并提高燃烧效果。
二、特点1.燃烧效率高:富氧燃烧在增加氧气含量的基础上,通过调整供气比例和燃烧温度等因素,使燃烧反应更加充分,从而提高燃烧效率。
相比传统空气燃烧,富氧燃烧的热值可以提高20%以上。
2.减少污染物排放:富氧燃烧使燃料更加充分燃烧,减少了未燃烧的碳氢化合物和一氧化碳等有害物质的产生,有效降低了氮氧化物和颗粒物的排放。
3.节能环保:富氧燃烧通过提高燃烧效率和降低污染物排放,可以实现节能和减少环境污染的效果。
4.适用范围广:富氧燃烧技术可以适用于各种燃料,包括固体、液体和气体燃料,并且适用于各种燃烧设备。
无论是工业锅炉、炉窑,还是发电机组、车辆等都可以应用富氧燃烧技术。
5.操作简单:富氧燃烧技术相对于其他改进燃烧技术来说,操作较为简单,不需要进行大幅度的改造和投资,可以方便地在现有设备上应用。
三、应用领域富氧燃烧技术已经在许多领域得到了广泛的应用,包括以下几个方面:1.工业燃烧:富氧燃烧技术在工业锅炉、炉窑等设备上的应用可以提高燃烧效率,减少燃料消耗,降低污染物排放。
2.电力发电:富氧燃烧技术在发电机组中的应用可以提高燃料的利用率,减少二氧化碳等温室气体的排放,达到节能减排的目的。
3.交通运输:富氧燃烧技术在车辆燃烧系统中的应用可以提高燃料的燃烧效率,减少尾气排放,改善空气质量。
烧结富氧燃烧烟气循环

03
改善作业环境
富氧燃烧可以减少烟气中的一氧化碳等有毒气体含量,改善作业环境,
保障工人健康。
国内外研究现状及发展趋势
国内研究现状
国内在烧结富氧燃烧技术方面已经取得了一定的研究成果,部分钢铁企业已经开始应用富 氧燃烧技术。
国外研究现状
国外在烧结富氧燃烧技术方面的研究更加深入,已经形成了较为完善的技术体系和应用经 验。
发展趋势
未来,随着环保和节能减排要求的不断提高,烧结富氧燃烧技术将得到更广泛的应用和推 广。同时,该技术也将不断得到改进和优化,以进一步提高燃烧效率、降低污染物排放和 改善作业环境。
02
烟气循环系统介绍
艺选择适合的关键设备。
选型依据
主要考虑设备处理能力、效率、能 耗、可靠性等因素,结合烟气特性 和工艺要求选择最优设备。
性能参数及要求
明确关键设备的性能参数及要求, 如除尘效率、脱硫脱硝效率、设备 阻力、使用寿命等,确保设备满足 工艺要求和排放标准。
04
节能减排效果分析与评价
能源消耗降低途径探讨
富氧燃烧技术
05
操作管理与安全防范措施
操作规程制定和执行情况回顾
操作规程制定
根据烧结富氧燃烧烟气循环工艺特点 ,制定详细、全面的操作规程,包括 设备启动、运行、停机、检查、维护 等各个环节。
执行情况回顾
定期对操作规程的执行情况进行回顾 和总结,分析存在的问题和不足,提 出改进措施并及时更新操作规程。
安全防护设施配置要求
富氧燃烧特点
富氧燃烧具有火焰温度高、燃烧 速度快、热效率高、污染物排放 低等特点。
烧结工艺中应用富氧燃烧意义
富氧燃烧

1.富氧燃烧机的特性一般燃烧过程所用的助燃空气均在自然状态下,亦即氧浓度为21%,如果用比自然状态下含氧量高的空气做助燃空气,则该燃烧称为「富氧燃烧」,而富氧燃烧的极限状态为「纯氧燃烧」。
富氧燃烧火焰与普通燃烧火焰相比有如下特点:一、富氧燃烧机理论空气量少随着富氧空气中含氧量的增加,理论空气需要量减少,例如含氧量21%时,燃烧1立方公尺的CH4所需之理论空气量为9.52立方公尺,而含氧量28%时,燃烧1立方公尺的CH4所需之理论空气量为7.14立方公尺;空气量降低25%,从而改变燃烧特性,使燃烧容易在接近理论空气需要量下进行。
二、富氧燃烧机火焰温度高火焰温度和空气中的氧浓度有关,一般来说,火焰温度随空气中含氧浓度增加而升高,当含氧浓度小于30%时,火焰温度会随着氧浓度上升而急速增加,但当含氧浓度大于30%时,火焰温度增加就趋缓。
三、富氧燃烧机排烟量降低空气中仅有21%的氧参与燃烧反应,其余79%空气并没有作用,反而带走大量的热能,增加能源耗损。
故当空气中的含氧量越高,燃烧所需之空气供应量就可降低,烟气产生量也越少,同时排烟损失的能量也可大幅降低。
四、富氧燃烧机分解热增加随着燃烧温度升高,尤其是温度超过2000℃时,燃烧产物吸收了分解热而产生解离,当遇到低温表面时,这些解离的成分将会放出分解热,增加了热传效果。
五、富氧燃烧机节约能源由于富氧燃烧火焰温度高,火焰与被加热物之间的温差增大,使炉内辐射热传增加,提高了炉内热量利用率。
同时由于排烟量减少,排烟热损失也相对降低,因此提高了设备热效率,减少燃料使用量。
六、富氧燃烧机降低污染排放由于富氧燃烧可使排烟量降低,因此可降低包含CO、CO2等污染物的排放总量。
此外,由于富氧燃烧所使用的空气中不反应物N2降低,使燃烧废气中的CO、CO2、SOx、NOx浓度增加,可使CO2捕捉、排烟脱硝、排烟脱硫等废气处理程序更有效率,降低废气处理设备维修及购置成本。
2.富氧燃烧技术一、富氧燃烧可以提高燃烧区的火焰温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
富氧燃烧的特性及其发展现状
摘要本文从火焰温度和燃烧速度改变、燃烧产物的变化和可利用热的变化方面介绍了富氧燃烧的特性,分析了富氧燃烧的节能效果,并总结了富氧燃烧的发展现状,为发展富氧燃烧技术做出一些总结和建议。
关键词富氧燃烧;燃烧产物;氧气浓度;工作原理
在普通空气助燃的燃烧过程中,普通空气的成分氧只占20.94%,氮占78.09%,在燃烧过程中不助燃的氮吸收了大量热量,从废气中排掉,造成热损失,同时在高温下生成氮氧化物,造成大气污染。
富氧燃烧技术(简称OEC),即采用一种特殊的高分子膜装置,将吹入加热炉的空气的含氧浓度提高,采用这种氧含量高的空气来助燃。
富氧的极限就是使用纯氧。
富氧燃烧可以显著提高燃烧效率和火焰温度,使燃料燃烧迅速、完全,从而达到节约燃料、提高生产效率和保护环境的良好作用。
1 富氧燃烧的特性
1.1 火焰温度和燃烧速度改变
富氧燃烧比普通燃烧火焰温度会大大提高,这是因为空气为氧化剂时氮气作为稀释剂使烟温降低。
以甲烷燃烧为例:甲烷绝热燃烧中焰温随氧气成分的变化而变化,从空气变化到含60%增氧的氧化剂时,焰温有极大提高,氧气浓度越高焰温升高越慢。
30%富氧空气时的绝热火焰温度为2500 K,比通常空气燃烧提高近300 K;氧浓度大于80%时的火焰温度接近3000 K,层流燃烧速度增大到近3 m/s,而普通空气的层流燃烧速度仅为0.45 m/s。
通过富氧助燃可以提高燃烧强度,加快燃烧速度,获得较好的热传导,同时温度提高有利于燃烧反应。
1.2 燃烧产物的变化
燃烧产物的实际组份由许多因素决定,包括:氧化剂组成,气体温度等。
一般天然气与空气的燃烧中,约70%体积的废气是氮气,而其与氧气的燃烧中废气的体积因氮气的去除而大大减少,纯氧燃烧时的烟气体积只有普通空气燃烧的1/4,同时,烟气中的CO2浓度增加,有利于回收CO2综合利用或封存,实现清洁生产;烟气中高辐射率的CO2和水蒸气浓度增加,可促进炉内的辐射传热。
炉窑中的能量损失的大项是排烟损失,排出气体体积的减小使得烟气带出热量减小,这无疑增加了炉窑热效率。
1.3 可利用热的变化
可利用热被定义为燃料总热量减去由排出气体从燃烧过程中带出的能量。
空气中的氮气不参与燃烧,随废气带出很多热量。
甲烷燃烧中可利用热随氧化剂中氧气浓度变化时,随着废气温度增加,可利用热减少,因为更多热量从烟囱中被
带走了。
在氧气体积浓度以空气中的21%开始增长时,可利用热出现了第一次快速增长,如图1所示。
2 富氧燃烧的发展现状
2.1 制氧价格
制氧价格的高昂大大制约了OEC 的应用与发展,而新一代的制氧技术,减少了分离氧的费用,从而促进了增氧燃烧技术的发展。
目前可供选择的方案有三个:变压吸附法、低温精馏法和膜分离法。
变压吸附法(PSA)利用分子筛生产氧气,系统结构简单,可靠性高,产量可调节性好,PSA系统适合于中等的需求量并且氧气纯度小于95%的场合。
低温精馏法安全性好、噪声低、技术成熟、产氧纯度高,可以同时生产氧气、氮气,但结构比较复杂,产量调节性差,维护困难。
在氧气产量低时生产费用很高,但产量大时生产费用下降也很大。
膜分离法的设备简单,操作方便,在产气能力较小时成本效益最好,但产氧纯度低,约为25%~40%。
这三种方法使用的场合不同,可将它们结合起来使用,使得综合效应最佳。
2.2 氮氧化物的排放
由于富氧燃烧使得火焰高温化,由此导致的氮氧化物(NOx)排放增加是限制富氧燃烧技术推广的关键问题之一。
由图2可以看出,反应区中O2浓度是影响NOx生成的关键因素。
O2浓度的增加直接刺激了NOx的产生。
在燃烧装置中NOx产生机理,主要是热力NOx,其生成规律服从Zeldovich机理,主要反应有:
O2+M=O+O+M;N2+O=NO+N;N+O2=NO+O;N+OH=NO+H;
总反应为:
N2+O2=2NO-Q。
NO的反平衡浓度:[NO]=Kp(T)[O2]1/2[N2]1/2;NO的生成速率:
d[NO]/dτ=3×1014[N2][O2]1/2exp(-542000/RT)。
式中[NO]、[N2]、[O2]分别为三种气体的浓度,T为绝对温度;KP、R 为气体常数。
在此基础上,改变燃烧过程中的速度梯度发现随着速度梯度的增大,热力型NOx急剧下降,因此总的NOx也随之下降。
这说明在提高速度梯度的情况下可以有效降低NOx的生成,主要原因是随着速度拉伸率的加大,减少了反应物在高温区的停留时间,从而降低了热力型NOx的生成量。
由富氧燃烧的特点可知,在保证高温、高效率火焰的基础上开发一种减少NOx生成的技术是推动富氧燃烧的关键。
目前在实际应用中也有一些方法,主要有以下几点。
1)降低助燃氧中氮含量,但是提高氧气的纯度是有限的,因此限制了NOx 浓度的降低。
2)充分利用NOx的形成机理,尽可能地不给NOx提供生成的环境,如分级燃烧技术等。
3)采用无催化选择性还原NOx技术。
4)提高流动速度也可适当降低NOx的形成。
当燃烧空气高速喷射时,卷吸的气体到火焰带中,促进炉内气体再循环,限制炉内高温区的生成也可降低热力型NOx的形成。
5)在加热炉改造中,采用烟气再循环结合富氧燃烧技术,一方面降低了由于理论燃烧温度提高对耐火材料的要求,另一方面由于减少了烟气带走的热量,具有显著的节能效果。
针对国内加热炉的改造,采用烟气再循环结合富氧燃烧技术对NOx排放的影响还有待进一步研究。
2.3 潜在问题
如果系统没有正确设计,应用OEC还会有许多潜在问题,很多此类问题都和燃烧强度增强有关。
如:绝热材料的易损坏、不均匀加热现象、火焰扰动、增加污染排放、火焰回闪、增加潜热排放等。
另外由于OEC大量去除助燃剂中的氮气,还会引起烟气流速下降、对流换热减弱。
这些问题都可以通过正确调节系统及供氧量来解决。
3 结束语
富氧燃烧起到的节约燃料和提高热能利用率等效果是显而易见的,虽然目前富氧燃烧已取得很大进步,但是NOx的排放等一些问题仍有待进一步研究,因此要求我们对富氧燃烧中NOx形成机理和抑制机理深入地研究,同时将采用合适的手段将这些方法应用到实际的工业应用中,促进富氧燃烧在更多的领域发展,从而达到节能的目的。
参考文献
[1]郑晓峰,冯耀勋,贾明生.富氧燃烧的节能特性及其对环境的影响[J].节能,2006,
7:6-28.
[2]沈光林.膜法富氧的应用研究[J].低温与特气,2000,3:26-31.
[3]张霞,等.富氧燃烧技术的应用现状分析[J].冶金能源,2007,6:41-44.
[4]BryanCHokeJr,JulianLInskip.Acomparisonofoxygen-en2hancedcombustiontechnologies[J].CeramicE ngineeringandSci2enceProceedings,Columbus,
2002,23(1):135-139.
[5]沈锦林,等.玻璃熔窑富氧燃烧的几个关键问题[J].实用节能技术,2002,1:40-42.
[6]郑蕾,等.增氧燃烧的原理及其在热能工程中的应用[J].工业锅炉,2004,03.。