初二数学平行四边形专题练习题有答案

合集下载

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版数学八年级下期第十八章平行四边形含辅助线证明题训练1.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.2.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.3.如图,在平行四边形ABCD中,AC,BD交于点O,且AO=BO,∠ADB的平分线DE交AB于点E.(1)求证:四边形ABCD是矩形.(2)若AB=8,OC=5,求AE的长.4.如图,在正方形ABCD中,E是边AB上一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC,CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG,CG,DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.6.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:DP=BF;(2)若正方形ABCD的边长为4,求DP的长;(3)求证:CP=BM+2FN.7.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.8.在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.AC,将菱形ABCD绕着点B (3)如图3,若E是线段AC延长线上的一点,CE=12顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.9.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.10.如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC的中点.求证:AF=BC+CF.11.已知:如图(1),点E、F分别为正方形ABCD的边BC、DC上的点,线段AE和AF分别交BD于点M和点N,连接MF,MF⊥AE于点M.(1)求证:∠EAF=45°;(2)如图(2),连接EF,当AD=5,DF=1时,求线段EF的长度;BD.(3)如图(3),作FR⊥BD于R.求证:RM=12BC,CE⊥AB于点E,F是AD的中点,连接12.如图,在平行四边形ABCD中,AB=12EF,CF.求证:(1)EF=CF;(2)∠EFD=3∠AEF.13.如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.14.已知:如图,G为平行四边形ABCD中BC边的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,得∠3=∠2,求证:CD=BF+DF.15.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF:(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形.并证明你的结论(请先补全图形,再解答):(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.16.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(答案解析)

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(答案解析)

一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒A解析:A【分析】 由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24C解析:C【分析】 根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.3.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30C解析:C【分析】 延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒ 90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.4.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°A解析:A【分析】 根据平行四边形的对角相等求出∠B 即可得解.【详解】 解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205B解析:B【分析】 结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012=1=(5)A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B 221+2=5由题意,以此类推,215C B =2225C B =∴第3个正方形1234C C C C 222(5)(25)5(5)+==…∴第n 个正方形的边长为15)n -∴第2020个正方形的边长为2019(5)故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .43D解析:D【分析】 根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.7.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.8.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4C解析:C【分析】 根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°, ∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.9.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF ,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a B 解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.10.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=A 解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题11.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.8【分析】过点A 作AM ⊥BC 过点A 作AN ⊥BC 交DE 于N 证明△AFN ≌△BFE 得出AN=BE=3再利用勾股定理解答即可【详解】解:∵AB=AC ∴∠B=∠C ∵∴∠C+∠BFE=90∠B+∠BFE=90解析:8【分析】过点A 作AM ⊥BC ,过点A 作AN ⊥BC 交DE 于N ,证明△AFN ≌△BFE ,得出AN=BE=3,再利用勾股定理解答即可.【详解】解:∵AB=AC ,∴∠B=∠C ,∵DE BC ⊥,∴∠C+∠BFE=90,∠B+∠BFE=90°,∵∠BFE=∠AFD ,∠B=∠C ,∴∠BFE=∠AED=∠CDE ,∴AD=AF ,过点A 作AM ⊥BC ,在△ABC 中,∵AB=AC ,∴M 为BC 的中点,∴BM=12BC =6, 在Rt △ABM 中,AM=2222106AB BM -=-=8∵F 为AB 中点,FE ⊥BC , ∴FE 为△ABM 的中位线,BF=AF=12AB =5, ∴AD=AF=5,BE=132BM =, 过点A 作AN ⊥BC 交DE 于N ,∵AF=BF ,∠AFN=∠BFE ,∠ANF=∠BEF=90°,∴△AFN ≌△BFE ,∴AN=BE=3,在Rt △AND 中,DN=2222534AD AN -=-=,∵AD=AF ,AN ⊥DF ,∴DF=2DN=8.故答案为:8.【点睛】本题考查了勾股定理,等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,正确作出辅助线是解题的关键.12.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12. 【点睛】 本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键.13.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.14.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=192.5 2×2=14.5.故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.15.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P 不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF的最小值等于__________.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.17.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.【分析】连接FE根据题意得CD=2AE=设BF=x则FG=xCF=2-x 在Rt△GEF中利用勾股定理可得EF2=(-2)2+x2在Rt△FCE中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.20.如图,在平行四边形ABCD中,∠ABC=135°,AD=42,AB=8,作对角线AC的垂直平分线EF,分别交对边AB、CD于点E和点F,则AE的长为_____.【分析】连接CE过点C作交AB的延长线于点H设AE=x则BE=8-xCE=AE=x在根据勾股定理即可得到x的值【详解】如图:连接CE过点C作交AB的延长线于点H平行四边形ABCD中设AE=x则BE=解析:20 3【分析】连接CE,过点C作CH AB,交AB的延长线于点H,设AE=x,则BE=8-x,CE=AE=x,在根据勾股定理,即可得到x的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒=90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==, 在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=, 解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.三、解答题21.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE BF =,连接AE ,CF .(1)求证:E F ∠=∠;(2)连接AF ,CE ,当BD 平分ABC ∠时,四边形AFCE 是什么特殊四边形?请说明理由.解析:(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)根据四边形ABCD 是平行四边形,可以得到AD=CB ,AD ∥BC ,从而可以得到∠ADE=∠CBF ,然后根据SAS 证明△ADE ≌△CBF ,从而得出结论;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADE=∠CBF ,在△ADE 和△CBF 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (SAS ),∴∠E=∠F ;(2)当BD 平分∠ABC 时,四边形AFCE 是菱形,理由:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴AC ⊥EF ,∵DE=BF ,∴OE=OF ,又∵OA=OC ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的判定、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t秒.∵四边形MNCB是平行四边形,∴MB=NC,当N从D运动到C时,∵BC=13cm,CD=21cm,∴BM=AB-AM=16-t,CN=21-2t,∴16-t=21-2t,解得t=5,当N从C运动到D时,∵BM=AB-AM=16-t,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t =72(秒);Ⅲ.当BM=BN ,当N 从C 运动到D 时,则BH=AB-AH=AB-DN=16-2t ,∵BM 2=BN 2=NH 2+BH 2=122+(16-2t )2,∴(16-t )2=122+(16-2t )2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.解析:(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴AP=2253-=4,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.24.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.解析:证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF . ∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 25.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.解析:(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点,∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD , ∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用. 26.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 解析:(1)证明见解析;(2)证明见解析;(3)2'='DD OC. 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形. (2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC .如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.27.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案解析:(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-, ∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.28.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.解析:(1)见解析;(2)CE=CF ,理由见解析;(3)522【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt△ADK≌Rt BAG,则AK=BG=12,DK=AG=5,∵AF+FK=AK=BG=GF=AG+AF∴FK=AG=5在R t△DFK中,根据勾股定理可得,DF=2252+=DK FK②点F在AB左侧时,如图,过D作DK⊥AG,交其延长线于K.方法同①,可得FK=AG=12,在R t△DFK中,根据勾股定理可得,DF22122+=DK FK综上所述,DF的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。

八年级初二数学 平行四边形练习题含答案

八年级初二数学 平行四边形练习题含答案

八年级初二数学 平行四边形练习题含答案一、选择题1.如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在RT DCE 中,DEC ∠= 90︒, DCE ∠= 30︒,若OE =622+,则正方形的面积为( )A .5B .4C .3D .22.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m3.如图,菱形ABCD 的边长为4,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为 ( )A .3B .4C .232D .43+4.正方形ABCD ,CEFG 按如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA PF =,且APF 90∠=︒,连接AF 交CD 于点M ,有下列结论:EC BP =①;BAP GFP ∠∠=②;2221AB CE AF 2+=③;APF ABCD CEFG S S 2S +=正方形正方形④.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④5.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥;④2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④6.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .127.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .2B .52C .332D 58.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )A .2B .2C .1.5D .39.如图,在正方形ABCD 中,E 是BC 边上的一点,BE=4,EC=8,将正方形边AB 延AE 折叠刀AF ,延长EF 交DC 于G ,连接AG ,现在有如下结论:①∠EAG=45°;②GC=CF ;③FC ∥AG ;④S △GFC =14.4;其中结论正确的个数是( )A .1B .2C .3D .410.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.12.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.13.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.14.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .15.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______16.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.17.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =32S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)18.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ;(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时;情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: .22.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+23.如图,四边形OABC中,BC∥AO,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x 轴于点P,连结AC交NP于Q,连结MQ.(1)当t为何值时,四边形BNMP为平行四边形?(2)设四边形BNPA的面积为y,求y与t之间的函数关系式.(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.24.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.25.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =AC=2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.26.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

初二平行四边形练习题含答案

初二平行四边形练习题含答案

初二平行四边形练习题含答案本篇文章将为初二学生提供一些关于平行四边形的练习题,并附带答案,帮助学生巩固对平行四边形的理解和应用。

以下是一些练习题,希望对同学们有所帮助。

练习题一:已知平行四边形ABCD中,点E、F分别为AB、CD的中点。

若AE的长度为8cm,求线段EF的长度。

解答:由平行四边形的性质可知,连结AC和BD两线段的中点为G,那么EG = GF。

由于AE的长度为8cm,AB和CD平行,所以AC的长度为16cm。

根据三角形EGC和GFC的相似性,可得EF与GF之比等于AC与CG之比,即EF/GF = AC/CG。

由于AC的长度为16cm,而CG的长度为8cm(CG为AC的中点),所以EF/GF = 16/8,即EF/GF = 2。

因此,EF的长度为GF的2倍,即EF = 2 * GF。

由于EG= GF,所以EF = 2 * EG。

代入已知条件,得到EF = 2 * 8 = 16。

因此,线段EF的长度为16cm。

练习题二:在平行四边形EFGH中,已知EF的长度为10cm,FG的长度为8cm,角EFG的度数为120°,求线段GH的长度。

解答:由平行四边形的性质可知,EF与GH的长度相同,FG与EH 的长度相同,且角EFG与角HGE互补(即两个角的度数之和为180°)。

已知EF的长度为10cm,FG的长度为8cm,所以GH的长度也为8cm。

又已知角EFG的度数为120°,根据平行四边形内角和定理,可得角HGE的度数为180° - 120° = 60°。

因此,线段GH的长度为8cm。

练习题三:已知平行四边形IJKL中,IJ的长度为12cm,KL的长度为20cm,角KJL的度数为110°,求角KIL的度数。

解答:由平行四边形的性质可知,角IJK与角KJL互补(即两个角的度数之和为180°),角IJK与角KIL互补。

已知角KJL的度数为110°,所以角IJK的度数为180° - 110° = 70°。

八年级数学《平行四边形》测试题及参考答

八年级数学《平行四边形》测试题及参考答

GBA D CEF 第18章 《平行四边形》测试题及答案姓名: 班级: 分数:一、选择题:(每小题3分,共30分) 1.下列说法中正确的是( )A.有两组对边分别平行的图形是平行四边形;B.平行四边形的对角线相等C.平行四边形的对角互补,邻角相等;D.平行四边形的对边平行且相等 2.平行四边形的四个内角平分线若能相交成一个四边形,则这个四边形( ) A.一定是正方形 B.一定是矩形; C.一定是菱形 D.一定是梯形 3.用两个全等的不等边三角形拼成平行四边形,则所得的不同的平行四边形有( ) A.0个 B.1个 C.2个 D.3个4.在四边形ABCD 中,AD ∥BC,若ABCD 是平行四边形,则还应满足( )A.∠A+∠C=180°B.∠B+∠D=180°;C.∠A+∠B=180°D.∠A+∠D=180° 5.能判断平行四边形是菱形的条件是( )A.一个角是直角B.对角线相等;C.一组邻角相等D.对角线互相垂直6.平行四边形的两条对角线将它分成四个小三角形, 则这四个小三角形的面积是( ) A.都不相等 B.不都相等; C.都相等 D.以上结论都不对7.矩形、菱形、正方形都具有的性质是( ) A.对角线相等 B.对角线平分一组对角 C.对角线互相平分 D.对角线互相垂直8.一条直线把正方形的周长两等分,则这样的直线有( ) A.2条 B.4条 C.8条 D.无数条9.下列图形中是对称图形而不是中心对称图形的是( ) A.梯形 B.直角梯形 C.等腰梯形 D. 正方形10.在ABCD 中,对角线AC 与BD 相交于点O,则能通过旋转达到重合的三角形有( ) A.2对 B.3对 C.4对 D.5对 二、填空题:(每小题3分,共18分)11.平行四边形的一组对角的和为300°,则其相邻有两个内角分别为_______.12.一个平行四边形的周长是20cm,一条对角线把它分成的两个三角形的周长都是18cm,则这条对角线的长为______cm.13.已知平行四边形的面积是144cm 2,相邻两边上的高分别为8cm 和9cm, 则这个平行四边形的周长为________.14.矩形的两条对角线的夹角为60°,一条对角线与短边的和是15cm, 则短边的长为________cm,对角线的长为________cm.15. 菱形的两条对角线分别为6cm 和8cm, 此菱形的边长为_____cm, 周长为_____cm,面积为_______cm 2. 16.如图所示,正方形ABCD 的周长是20cm,则矩形EFGH 的周长为____cm.三、解答题:(共52分) 17.如图所示,已知在平行四边形ABCD 中,AE 平分∠BAD,交DC于E,AD=5cm,AB= 8cm,求EC 的长.(6分)231BADCE18.如图所示,矩形ABCD 的两条对角线相交于O 点,∠AOD=120°,AB=4cm,求矩形对角线的长.(6分)O BADC19.如图所示,正方形ABCD 内有一点E,且AE=BE=AB,试求∠EDC 和∠ECB 的度数.(6分) 20.如图所示,把边长为2cm 的正方形剪成四个全等的直角三角形, 请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法画出来.(12分) (1)不是正方形的菱形(一个);(2)不是正方形的矩形(一个); (3)梯形(一个); (4)不是矩形和菱形的平行四边形(一个); (5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图形互不全等, 能画几个画几个).654231BADCE21.如图所示,在△ABC 中,AD 平分∠BAC,且DE ∥AC,DF ∥AB,试说明四边形AEDF 为菱形(7分).231B AD CEF22.如图所示,在梯形ABCD 中,AD ∥BC,∠B+∠C=90°,M,N 分别是AD,BC 的中点, 试说明等式MN=12(BC-AD)成立.(7分) NBA M D C23.如图甲(1)所示,在矩形ABCD 中,对角线AC 交BD 于O,有等式AO=12AC=12BD 成立,即以如图8(2)所示的直角三角形,AO 为斜边BD 的中线,所以直角三角形斜边上的中线等于斜边的一半,这个结论应用很广泛,你能应用这个结论解决下题吗?如图乙所示,在等腰梯形ABCD 中,AD ∥BC,对角线AC ⊥BD 于O,AD=3cm,BC=7cm,试求此梯形的面积.(8分)O(1)BADCO(2)BADOB A DC(甲) (乙)答案:一、1.D 2.B 3.D 4.D 5.D 6.C 7.C 8.D 9C 10.C二、11.150°和30° 12.8 13.68cm 14.5 10 15.5 20 24 16.10 三、17.解:在ABCD 中, AD=BC=5cm,AB=CD=8cm,且因为AE 平分∠DAB,即∠1= ∠3, 又∵AB ∥CD, ∴∠2=∠3. ∴∠1=∠2. ∴AD=DE,∴DE=5cm,EC=CD-DE=8-5=3cm.18.解:由于矩形对角线相等且互相平分,所以AC=BD,AO=CO=12AC,OB=OD=12BD, 所以AO=BO,又因为∠AOD=120°,所以∠AOB=60°.根据有一个角为60 °的等腰三角形是等边三角形,所以△AOB是等边三角形,即AO=BO=AB=4cm,所以AC=BD=2×4=8cm.19.解:因为四边形ABCD是正方形,且AD=AB=BC=CD,∠DAB=∠ABC=∠BCD=90°,又∵AE=AB=BE,∴ABE是等边三角形,∴∠1=∠2=∠AEB=60°,∴∠5=90°-∠1=90°-60°=30°.且△AED与△BEC可以通过旋转互得,∴∠4=∠3.且AE=AD,∴∠3=∠4=12(180°-∠5)=12(180°-30°)=75°,∴∠EDC=90°-∠4=90°-75°=15°, ∴∠EDC= 15°,∠ECB=75°.20.(1)如图所示,21(2)如图所示,21(3)如图所示,2121(4)如图所示,121(5)如图所示,12(6)如图所示,1221.解:如图所示,因为AB ∥DF,AC ∥ED,所以四边形AEDF 为平行四边形.又因为AB ∥DF, ∴∠1=∠3, ∴∠2=∠3. ∴AF=DF,∴ AEDF 为菱形.22.解:如图所示,过点M 作ME ∥AB 交BC 于E,作MF ∥CD 交BC 于F,得ABEM 和MDCF,∴EF=BC-(BE+CF)=BC-(AM+DM)=BC-AD.又∵∠B+∠C=90°,即∠1+∠2=90°, ∴△EMF 为直角三角形,且N 为斜边EF 的中点,∴MN=12EF. ∴MN=12(BC-AD).21NBAMDCEF23.解:如图所示,过点D 作DH ∥AC,交BC 的延长线于H,得ACHD,且四边形ABCD 是等腰梯形,AC=BD=DH,且∠BDH=90°, ∴△BDH 为等腰直角三角形. ∴BH=BC+CH=BC+AD.∴BH=7+3=10.作梯形的高DG,则DG 为直角三角形斜边上的中线,∴DG=12BH=12×10=5.∴S梯=S△BDH=12BH×DG=12×10×5=25.∴梯形的面积为25cm2.。

八年级初二数学平行四边形练习题附解析

八年级初二数学平行四边形练习题附解析

八年级初二数学平行四边形练习题附解析一、解答题1.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.2.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积.3.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图24.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).5.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.6.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.7.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.8.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.9.如图,在矩形 ABCD中, AB=16 , BC=18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处.(I)若 AE=0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE=3 时,且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE=8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.10.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D→→→路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)112;(2)112或4;(3)四边形PBQD不能成为菱形【分析】(1)由∠B=90°,AP ∥BQ ,由矩形的判定可知当AP=BQ 时,四边形ABQP 成为矩形;(2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ时,CDPQ 是平行四边形,求得t 的值;(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.【详解】(1)如图1,∵∠B=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 成为矩形,此时有t=22﹣3t ,解得t=112. ∴当t=112时,四边形ABQP 成为矩形; 故答案为112; (2)如图1,当t=112时,四边形ABQP 成为矩形, 如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,则16﹣t=3t ,解得:t=4, ∴当t=112或4时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形; 故答案为112或4; (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.由PD=BQ ,得16﹣t=22﹣3t ,解得:t=3,当t=3时,PD=BQ=13,,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,由题意,得162216t vtt -=-⎧⎪⎨-=⎪⎩62t v =⎧⎨=⎩. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.【点睛】此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.2.(1)详见解析;(2)18【分析】(1)根据正方形的性质得出BC=BD ,AB=BF ,∠CBD=∠ABF=90°,求出∠ABD=∠CBF ,根据全等三角形的判定得出即可;(2)根据全等三角形的性质得出∠BAD=∠BFC ,AD=FC=6,求出AD ⊥CF ,根据三角形的面积求出即可.【详解】解:(1)四边形ABFG 、BCED 是正方形,AB FB ∴=,CB DB =,90ABF CBD ∠=∠=︒,ABF ABC CBD ABC ∴∠+∠=∠+∠,即ABD CBF ∠=∠在ABD ∆和FBC ∆中,AB FB ABD CBF DB CB =⎧⎪∠=∠⎨⎪=⎩()ABD FBC SAS ∴∆≅∆;图1 图2(2)ABD FBC ∆≅∆,BAD BFC ∴∠=∠,6AD FC ==,180AMF BAD CNA ∴∠=︒-∠-∠ 180()BFC BNF =︒-∠+∠1809090=︒-︒=︒AD CF ∴⊥-ACD ACF DFM ACM ACDF S S S S S ∆∆∆∆∴=++四边形11112222AD CM CF AM DM FM AM CM =⋅+⋅+⋅-⋅ 1133(6)(6)1822CM AM AM CM AM CM =++---⋅= 【点睛】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点,能求出△ABD ≌△FBC 是解此题的关键.3.(1)见解析(2)见解析(3)15【分析】(1)根据四边形ABCD 是正方形,得到∠QBA =∠QBC ,进而可得△QBA ≌ △QBC ,∠QAB =∠QCB ,再根据CQ =MQ ,得到∠QCB =∠QMC ,即可求证;(2)根据∠QAB =∠QMC ,∠QMC +∠QMB =180°,得到∠QAB +∠QMB =180°,在四边形QABM 中,∠QAB +∠QMB +∠ABM +∠AQM =360°可得∠ABM +∠AQM =180°,再根据∠ABM =90°即可求解;(3)设正方形ABCD 的边长为a ,延长ND 至点H ,使DH =BM =2,证得△ADH ≌△ABM ,得到∠DAH =∠BAM ,且AH =AM ,由(2)知,△QAM 是等腰直角三角形,易得∠NAM =∠NAH ,进而得到△NAM ≌ △NAH ,在Rt △MNC 中,利用勾股定理得到6a =,即可求解.【详解】解:(1)∵四边形ABCD 是正方形∴∠QBA =∠QBC在△QBA 和△QBC 中BA BC QBA QBC QB QB =⎧⎪∠=∠⎨⎪=⎩∴△QBA ≌ △QBC (SAS )∴∠QAB =∠QCB又∵CQ =MQ∴∠QCB =∠QMC∴∠QAB =∠QMC (2)∵∠QAB =∠QMC又∵∠QMC +∠QMB =180°∴∠QAB +∠QMB =180°在四边形QABM 中∠QAB +∠QMB +∠ABM +∠AQM =360°∴∠ABM +∠AQM =180°而∠ABM =90°∴∠AQM =90°(3)设正方形ABCD 的边长为a ,则2MC a =-,3ND a =-延长ND 至点H ,使DH =BM =2易证△ADH ≌ △ABM∴∠DAH =∠BAM ,且AH =AM由(2)知,△QAM 是等腰直角三角形∴∠QAM =45°∴∠DAN +∠BAM =45°∴∠DAN +∠DAH =45°即∠NAH =45°∴∠NAM =∠NAH∴△NAM ≌ △NAH (SAS )∴NM =NH =()321a a -+=-在Rt △MNC 中,222MN MC NC =+∴()()222123a a -=-+∴6a = ∴11651522AMN AHN S S AD NH ==⋅=⨯⨯=【点睛】此题主要考查正方形的性质、全等三角形的判断和性质、四边形的内角和、等腰直角三角形的性质及勾股定理,灵活运用性质是解题关键.4.(1)见解析;(2)FG=EP ,理由见解析;(32【分析】(1)证△ODE ≌△OFB (ASA ),即可得出OE=OF ;(2)连AC ,由(1)可知OE=OF ,OB=OD ,证△AOE ≌△COF (SAS ),得AE=CF ,由折叠性质得AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,则∠D=∠B 1,证△A 1PE ≌△CGF (AAS ),即可得出FG=EP ;(3)作OH ⊥BC 于H ,证四边形ABCD 是矩形,则∠ABC=90°,得∠OBC=30°,求出AC=8,由勾股定理得BC=43CF=3,由等腰三角形的性质得BH=CH=12BC=3HF=423-,OH=12OB=2,由勾股定理得OF=2622,进而得出答案. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ODE=∠OBF ,∠OED=∠OFB ,∵AE=CF ,∴AD-AE=BC-CF ,即DE=BF ,在△ODE 和△OFB 中, ODE OBF DE BFOED OFB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODE ≌△OFB (ASA ),∴OE=OF ;(2)FG=EP ,理由如下:连AC ,如图②所示:由(1)可知:OE=OF ,OB=OD ,∵四边形ABCD 是平行四边形,∴AC 过点O ,OA=OC ,∠BAD=∠BCD ,∠D=∠B , 在△AOE 和△COF 中,OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴AE=CF ,由折叠性质得:AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1, ∴∠D=∠B 1,∵∠A 1PE=∠DPH ,∠PHD=∠B 1HG ,∴∠DPH=∠B 1GH ,∵∠B 1GH=∠CGF ,∴∠A 1PE=∠CGF ,在△A 1PE 和△CGF 中,111A PE CGF A FCG A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1PE ≌△CGF (AAS ),∴FG=EP ;(3)作OH ⊥BC 于H ,如图③所示:∵△AOB 是等边三角形,∴∠ABO=∠AOB=∠BAO=60°,OA=OB=AB=4, ∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∴AC=BD ,∴四边形ABCD 是矩形,∴∠ABC=90°,∴∠OBC=∠OCB=30°,∵AB=OB=BF=4,∴AC=BD=2OB=8,由勾股定理得:BC=2222=84AC AB --=43,∴CF=43-4, ∵OB=OC ,OH ⊥BC ,∴BH=CH=12BC=23, ∴HF=4-23,OH=12OB=2, 在Rt △OHF 中,由勾股定理得:OF=22OH HF +=()222423+-=2622-,∴434226222CF OF -===-, 故答案为:2.【点睛】本题是四边形综合题,考查了平行四边形的性质、矩形的判定与性质、翻折变换的性质、全等三角形的判定与性质、等腰三角形的性质、含30°角的直角三角形的性质、等边三角形的性质、勾股定理等知识;本题综合性强,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,属于中考压轴题.5.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得α=∠DCE =30°.(2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH .从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE =CD ,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE =60°.又∵∠BCD =90°,∴α=∠DCE =30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE =CD ,∴∠CED =∠CDE =1809022︒-αα︒-, 在△CEB 中,CE =CB ,∠BCE =90α︒-,∴∠CEB =∠CBE =1804522BCE α︒-∠=︒+, ∴∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过点A 作AG ∥DF 与BF 的延长线交于点G ,过点A 作AH ∥GF 与DF 交于点H ,过点C 作CI ⊥DF 于点I易知四边形AGFH 是平行四边形,又∵BF ⊥DF ,∴平行四边形AGFH 是矩形.∵∠BAD =∠BGF =90°,∠BPF =∠APD ,∴∠ABG =∠ADH .又∵∠AGB =∠AHD =90°,AB =AD ,∴△ABG ≌△ADH .∴AG =AH ,∴矩形AGFH 是正方形.∴∠AFH =∠FAH =45°,∴AH =AF∵∠DAH +∠ADH =∠CDI +∠ADH =90°∴∠DAH =∠CDI又∵∠AHD =∠DIC =90°,AD =DC ,∴△AHD ≌△DIC∴AH =DI ,∵DE =2DI ,∴DE =2AH AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(1)①EAB DAC ∠=∠; ② 平行四边形,证明见解析;(2)成立,证明见解析.【分析】(1)①根据EAD BAC ∠=∠,两角有公共角BAD ∠,可证EAB DAC ∠=∠;②连接EB ,证明△EAB ≌△DAC ,可得,ABE ACD EB CD ∠=∠=,再结合平行线的性质和等腰三角形的判定定理可得EF=DC ,由此可根据一组对边平行且相等的四边形是平行四边形证明四边形CDEF 为平行四边形.(2)根据60BAC ∠=︒,可证明△AED 和△ABC 为等边三角形,再根据ED ∥FC 结合等边三角形的性质,得出∠AFC=∠BDA ,求证△ABD ≌△CAF ,得出ED=CF ,进而求证四边形EDCF 是平行四边形.【详解】解:(1)①EAB DAC ∠=∠,理由如下:∵EAD BAC ∠=∠,EAD EAB BAD ∠=∠+∠,BAC BAD DAC ∠=∠+∠, ∴EAB BAD BAD DAC ∠+∠=∠+∠,∴EAB DAC ∠=∠;②证明:如下图,连接EB,在△EAB 和△DAC 中∵AE AD EAB DAC AB AC =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△DAC (SAS )∴,ABE ACD EB CD ∠=∠=,∵AB AC =,∴ABC ACD ∠=∠,∴ABE ABC ∠=∠,∵//EF DC ,∴EFB ABC ∠=∠,∴ABE EFB ∠=∠,∴EB EF =,∴DC EF =∴四边形CDEF 为平行四边形;(2)成立;理由如下:理由如下:∵60BAC ∠=︒,∴=60EAD BAC ∠=∠︒,∵AE=AD ,AB=AC ,∴△AED 和△ABC 为等边三角形,∴∠B=60°,∠ADE=60°,AD=ED,∵ED ∥FC ,∴∠EDB=∠FCB ,∵∠AFC=∠B+∠BCF=60°+∠BCF ,∠BDA=∠ADE+∠EDB=60°+∠EDB ,∴∠AFC=∠BDA ,在△ABD 和△CAF 中,60BDA AFC B BAC AB CA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ABD ≌△CAF (AAS ),∴AD=FC ,∵AD=ED ,∴ED=CF ,又∵ED ∥CF ,∴四边形EDCF 是平行四边形.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质和判定,等边三角形的性质和判定,平行四边形的判定定理,平行线的性质.在做本题时可先以平行四边形的判定定理进行分析,在后两问中已知一组对边平行,所以只需证明这一组对边相等即可,一般证明线段相等就是证明相应的三角形全等.本题中是间接证明全等,在证明线段相等的过程中还应用到等腰三角形的判定定理(第(1)小题的第②问)和等边三角形的性质(第(2)小题),难度较大.7.(1)35;(2)41;(3)53101或【分析】(1)利用勾股定理即可求出.(2)过点F 作FH ⊥AD 交AD 于的延长线于点H ,作FM ⊥AB 于点M ,证出ECD FEH ∆∆≌,进而求得MF ,BM 的长,再利用勾股定理,即可求得.(3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得.【详解】(1)由勾股定理得:22223635BF AB AF =+=+=(2)过点F 作FH ⊥AD 交AD 于的延长线于点H ,作FM ⊥AB 于点M ,如图2所示:则FM=AH ,AM=FH∵四边形CEFG 是正方形 ∴EC=EF,∠FEC=90° ∴∠DEC+∠FEH=90°,又∵四边形ABCD 是正方形 ∴∠ADC=90° ∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH 又∵∠EDC=∠FHE=90°,∴ECD FEH ∆∆≌ ∴FH=ED EH=CD=3∵AD=3,AE=1,ED=AD-AE=3-1=2,∴FH=ED=2∴MF=AH=1+3=4,MB=FH+CD=2+3=5在Rt △BFM 中,BF=22225441BM MF +=+=(3)分两种情况:①当点E 在边AD 的左侧时,过点F 作FM ⊥BC 交BC 的反向延长线于点M ,交DE 于点N.如图3所示:∆≅∆同(2)得:ENF DEC∴EN=CD=3,FN=ED=7∵AE=4∴AN=AE-EN=4-3=1∴MB=AN=1 FM=FN+NM=7+3=10∆中在Rt FMB由勾股定理得:2222=+=+=FB FM MB101101②当点E在边AD的右侧时,过点F作FN⊥AD交AD的延长线于点N,交BC延长线于M,如图4所示:∆≅∆同理得:CDE EFN∴NF=DE=1,EN=CD=3∴FM=3-1=2,CM=DN=DE+EN=1+3=4∴BM=CB+CM=3+4=7∆中在Rt FMB由勾股定理得:2222FB FM MB=+=+=2753或故BF53101【点睛】本题为考查三角形全等和勾股定理的综合题,难点在于根据E点位置的变化,画出图形,注意(3)分情况讨论,难度较大,属压轴题,熟练掌握三角形全等的性质和判定以及勾股定理的运用是解题关键.8.(1)证明见解析;(2)证明见解析;(3)CN=25.【解析】【分析】(1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,先证明得到FG=CG=GE,∠CGT=2α,再由FG是BC的中垂线,可得BG = CG,∠CGT=∠FGK=∠BGT=2α,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN ,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据22222=-=-,可得关于m的方程,解方程求得m的值即可求得答案. BC CN BN CE BE【详解】(1)如图,延长EF交CD延长线于点Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF 平分∠AEC ,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵点F是AD中点,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,∴CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,∵CQ=CE ,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四边形DFHP 是矩形,∴DF=HP ,∴FM= DF=HP ,∵∠CHG=∠BCE ,AD ∥BC ,FG ∥CD ,∴∠K=∠BCE=∠CHG=∠DCH ,又∵∠FMK=∠HPC=90°,∴△HPC ≌△FMK ,∴CH=FK ;(3)连接CN ,延长HG 交CN 于点T ,设∠DCF=α,则∠GC F=α,∵FG ∥CD ,∴∠DCF=∠CFG ,∴∠FCG=∠CFG ,∴FG=CG ,∵CF ⊥EF ,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG ,∴GF=FE ,∴FG=CG=GE ,∠CGT=2α,∵FG 是BC 的中垂线,∴BG = CG , ∠CGT=∠FGK=∠BGT=2α,∵∠CHG=∠BCE=90°-2α,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2α,∴HN ∥BG ,∴四边形HGBN 是平行四边形,∴HG=BN ,HN=BG = CG =FG ,∴△HNC ≌△KGF ,∴GK=CN ,∠HNC=∠FGK=∠NHT=2α,∴HT=CT=TN ,∵FH-HG=1,∴设GH=m ,则BN=m ,FH=m+1,CE=2FG=4m+2,∵GT=1122EN =,∴CN=2HT=11+2m , ∵22222BC CN BN CE BE =-=-,∴2222(112)(42)(11)m m m m +-=+-+∴1176m =-(舍去),27m =, ∴CN=GK=2HT=25.【点睛】 本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.(I) ;(II) 16或10;(III) .【解析】【分析】(I)根据已知条件直接写出答案即可.(II)分两种情况:或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I) ;(II)∵四边形是矩形,∴,.分两种情况讨论:(i)如图1,当时,即是以为腰的等腰三角形.(ii)如图2,当时,过点作∥,分别交与于点、.∵四边形是矩形,∴∥,.又∥,∴四边形是平行四边形,又,'⊥,∴□是矩形,∴,,即B H CD又,∴,,∵,∴,∴,在RtΔEGB'中,由勾股定理得:,∴,在中,由勾股定理得:,综上,的长为16或10.(III) . (或).【点睛】本题主要考查了四边形的动点问题.10.(1)254秒或252秒;(2)15秒【分析】(1)Q点必须在BC上时,A,Q ,F ,P 为顶点的四边形才能是平行四边形,分Q点在BF和Q点在CF上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q点在AB、BC、CD之间时逐个讨论即可求解.【详解】解:(1)∵以A、Q、F、P为顶点的四边形是平行四边形,且AP在AD上,∴Q点必须在BC上才能满足以A、Q、F、P为顶点的四边形是平行四边形∵四边形ABCD是平行四边形,∴AD=BC=30,AB=CD=10,∵点F是BC的中点,∴BF=CF=12BC=15,AB+BF=25,情况一:当Q点在BF上时,AP=FQ,且AP=t,FQ=35-3t,故t=25-3t,解得254t ;情况二:当Q点在CF上时,AP=FQ,且AP=t,FQ=3t-35,故t=3t-25,解得t=25 2;故经过254或252秒,以A、Q、B、P为顶点的四边形是平行四边形;(2)情况一:当Q点在AB上时,0<t<103,此时P点还未运动到AD的中点位置,故四边形AQFP面积小于平行四边形ABCD面积的一半,情况二:当Q点在BC上且位于BF之间时,1025 33t,此时AP+FQ=t+35-3t=35-2t,∵102533t,∴35-2t <30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况三:当Q点在BC上且位于FC之间时,2540 33t此时AP+FQ=t+3t-35=4t-35∵254033t,∴4t-35<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况四:当Q点在CD上时,4050 33t<<当AP=BF=15时,t=15,1122 APF ABFP PFQ DCFP S S S S且∴1+2APF PFQ AFPQ ABCDS S S S,∴当t=15秒时,以A、Q、F、P为顶点的四边形面积是平行四边形ABCD面积的一半,故答案为:15秒.【点睛】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.。

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。

平行四边形试题集含答案

平行四边形试题集含答案
20、菱形
∵四边形ABCD为平行四边形∴AD∥BC,∠2=∠3∵AB∥EF∴四边形ABED为平行四边形∵∠2=∠1∴∠1=∠3∴AB=BE∴四边形ABED为菱形
第五章平行四边形测试题
一、选择题(每小题3分,共24分)
1.在 ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()
(A)36°(B)108°(C)72°(D)60°
二、填空题(每小题3分,共分)
9.若一个多边形的内角和为1 080°,则这个多边形的边数是_______.
10.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是_______(填一个你认为正确的条件).
11.在 ABCD中,若∠A+∠C=120°,则∠A=_______,∠B=_________.
12.在 ABCD中,AB=4cm,BC=6cm,则 ABCD的周长为_______cm.
13.已知O是 ABCD的对角线交点,AC=24cm,BD=38cm,AD=28cm,则△AOD的周长是________.
14.已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为________.
16.9.6 CM 17、AC=4 cm , BD=4
18.证明:连结PC∵四边形ABCD为平行四边形∴AB=AC,∠ABD=∠DPC ∠BCD=90°∵BP=BP∴△ABP≌△CBP∴AP = CP∵PE⊥BC,PF⊥DC∴四边形PECF为矩形∴EF=PC∴EF=AP
19、证明:⑴连结AD∵AB=AC,D为BC的中点∴AD为∠BAC的平分线∵DE⊥AB,DF⊥AC ∴DE=DF ⑵∠BAC=90° DE⊥DF
求AC和BD的长.
图8
18、如图9,在正方形ABCD中,P为对角线BD上一点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19、证明:⑴连结AD∵AB=AC,D为BC的中点∴AD为∠BAC的平分线∵DE⊥AB,DF⊥AC∴DE=DF⑵∠BAC=90° DE⊥DF
20、菱形
∵四边形ABCD为平行四边形∴AD∥BC ,∠2=∠3∵AB∥EF∴四边形ABED为平行四边形∵∠2=∠1∴∠1=∠3∴AB=BE∴四边形ABED为菱形
初二数学平行四边形专题练习
1.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.
2.(08贵阳市)如图1,正方形 的边长为4cm,则图中阴影部分的面积为cm2.
3.若四边形ABCD是平行四边形,请补充条件
(写一个即可),使四边形ABCD是菱形.
4.在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=
5.以正方形ABCD的边BC 为边做等边△BCE,则∠AED的度数为.
6.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2 那么AP的长为.
7.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),
B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形
BD=6 cm, DH⊥AB于H,求:DH的长。
图7
18、已知:如图8,菱形ABCD的周长为16 cm,
∠ABC=60°,对角线AC和BD相交于点O,
求AC和BD的长.
图8
19、如图9,在正方形ABCD中,P为对角线BD上一点,
PE⊥BC,垂足为E, PF⊥CD,垂足为F,
求证:EF=AP
20、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,图9
则图中阴影部分的面积为 ( )
A.8B.6C.4D.3
12.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形 ( )
A.①③⑤ B.②③⑤ C.①②③D.①③④⑤
13.如图5所示,是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是 ( )
ABCD是平行四边形,那么点D的坐标是.
二、选择题(每题3分,共30分)
8.如图2在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=( )
A.110°B.30° C.50°D.70°
图2 图3 图4
9.菱形具有而矩形不具有的性质是 ( )
A.对角相等B.四边相等
AB∥CDBC∥AD AB=CD BC=AD
A.2组 B.3组 C.4组 D.6组
16、下列说法错误的是( )
A形.
B.每组邻边都相等的四边形是菱形.
C.对角线互相垂直的平行四边形是正方形.
D.四个角都相等的四边形是矩形.
三、解答题
17、如图7,四边形ABCD是菱形,对角线AC=8 cm ,
一、填空题
1.2 2.83、AC⊥BD4、225、150°或15°6、4 7、(2 ,5)
二 、选择题8.D 9.B 10.B 11.C 12.A 13.B 14.B 15.C
16.9.6 CM 17、AC=4 cm , BD=4
18.证明:连结PC∵四边形ABCD为平行四边形∴AB=AC ,∠ABD=∠DPC ∠BCD=90°∵BP=BP∴△ABP≌△CBP∴AP = CP∵PE⊥BC,PF⊥DC∴四边形PECF为矩形∴EF=PC∴EF=AP
A.88 mmB.96 mm C.80 mmD.84 mm
图5 图6
14、(08甘肃省白银市)如图6所示,把矩形 沿 对折后使两部分重合,若 ,则 =()
A.110°B.115°
C.120°D.130°
15、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?( )
DF⊥AC,垂足分别是E,F.
⑴试说明:DE=DF
⑵只添加一个条件,使四边形EDFA是正方形.
请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)
图10
21、如图11,ABCD中,AE平分∠BAD交BC于E,EF∥AB交AD于F,
试问:四边形ABEF是什么图形吗?
请说明理由.
图11
参考答案
C.对角线互相平分D.四角相等
10.如图3所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为 ( )
A.3 cm B.6 cm C.9 cmD.12 cm
11.已知:如图4,在矩形ABCD中,E、F、G、H分别为边
AB、BC、CD、DA的中点.若AB=2,AD=4,
相关文档
最新文档