实验三 自准直法测量透镜焦距实验
焦距测量实验报告

一、实验目的1. 理解透镜成像原理,掌握透镜焦距的定义。
2. 通过实验,学会使用不同方法测量透镜焦距。
3. 分析实验误差,提高实验数据处理能力。
二、实验原理透镜焦距是指透镜的光心到其焦点的距离。
根据透镜成像原理,当物体位于透镜的一倍焦距之外时,透镜在另一侧形成一个实像,此时实像的位置与物体到透镜的距离之间存在一定的关系。
本实验通过以下几种方法测量透镜焦距:1. 物距像距法:根据透镜成像公式,当物体位于透镜的一倍焦距之外时,有 1/f = 1/v - 1/u,其中 f 为透镜焦距,v 为像距,u 为物距。
2. 自准直法:利用透镜自准直特性,通过调整透镜与物体、像屏的距离,使物体在像屏上形成清晰的实像,此时物距与像距之和等于透镜焦距的两倍。
3. 平行光管法:利用平行光管产生平行光,通过测量平行光与透镜焦点的距离,得到透镜焦距。
三、实验仪器1. 凸透镜2. 凹透镜3. 平行光管4. 光具座5. 物距尺6. 像距尺7. 记录本四、实验步骤1. 物距像距法:将物体放置在凸透镜前,调整物距和像距,使物体在像屏上形成清晰的实像。
记录物距和像距,根据透镜成像公式计算焦距。
2. 自准直法:将物体放置在凸透镜前,调整透镜与物体、像屏的距离,使物体在像屏上形成清晰的实像。
记录物距和像距之和,得到透镜焦距。
3. 平行光管法:将平行光管对准透镜,调整平行光管与透镜的距离,使平行光束与透镜焦点相交。
记录平行光束与透镜焦点的距离,得到透镜焦距。
五、实验数据1. 物距像距法:物距 u = 30 cm,像距 v = 60 cm,焦距 f = 20 cm。
2. 自准直法:物距 u = 30 cm,像距 v = 90 cm,焦距 f = 60 cm。
3. 平行光管法:平行光束与透镜焦点的距离 d = 20 cm,焦距 f = 20 cm。
六、数据处理与分析1. 计算三种方法的实验误差:(1)物距像距法:误差Δf1 = |f1 - f理论| = |20 cm - 20 cm| = 0 cm。
薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告一、实验目的1、加深对薄透镜成像规律的理解。
2、学习几种测量薄透镜焦距的方法。
3、掌握测量薄透镜焦距的基本实验技能和数据处理方法。
二、实验原理1、薄透镜成像公式当物距为$u$,像距为$v$,焦距为$f$ 时,薄透镜成像公式为:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$2、测量薄透镜焦距的方法(1)自准直法当物与透镜之间的距离为无限远时,通过调节透镜的位置,使从物发出的光经过透镜后成为平行光,然后再经过一个与光轴垂直的平面镜反射回来,再次通过透镜后成像在物平面上,此时物与像重合,物距即为透镜的焦距。
(2)物距像距法当物距和像距都可以测量时,根据成像公式,通过测量物距$u$ 和像距$v$,可以计算出焦距$f$。
(3)共轭法移动透镜,在物屏和像屏之间分别得到放大和缩小的实像,根据透镜成像的共轭性质,分别测量出这两种情况下的物距$u_1$、$u_2$ 和像距$v_1$、$v_2$,然后利用公式:$f =\frac{D^2L^2}{4D}$计算焦距,其中$D =|v_1 u_1| =|v_2 u_2|$,$L = u_1 + v_1 = u_2 + v_2$ 。
三、实验仪器光具座、薄凸透镜、蜡烛、光屏、平面镜、毫米刻度尺等。
四、实验步骤1、自准直法(1)将凸透镜固定在光具座的一端,在凸透镜的另一侧放置一个平面反射镜,并使其与光轴垂直。
(2)在凸透镜的前方放置一个带十字叉丝的物屏,并使其与光轴垂直。
(3)打开光源,使物屏上的十字叉丝通过凸透镜和平面镜反射后成像在物屏上。
(4)前后移动凸透镜,直到物屏上的十字叉丝与反射回来的像重合,此时物屏与凸透镜之间的距离即为透镜的焦距。
(5)用毫米刻度尺测量物屏与凸透镜之间的距离,重复测量三次,取平均值作为焦距的测量值。
2、物距像距法(1)将蜡烛、凸透镜和光屏依次安装在光具座上,使它们的中心大致在同一高度。
(2)移动蜡烛,使蜡烛到凸透镜的距离大于两倍焦距,在光屏上得到一个清晰的倒立缩小的实像。
透镜焦距的测定实验报告

电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点:科技实验大楼104室 实验时间: 一、实验室名称:透镜焦距的测定 二、实验项目名称:透镜焦距的测定三、实验学时:3学时 四、实验原理:1.测凸透镜的焦距(1)自准直法如图1所示,用屏上“1”字矢孔屏作为发光物。
在凸透镜的另一边放置一平面反射镜,光线通过凸透镜后经平面反射镜返回孔屏上。
移动透镜位置可以改变物距的大小,当物距正好是透镜的焦距时,物上任意一点发出的光线经透镜折射后成为平行光,经平面镜反射后,再经透镜折射回到矢孔屏上。
这时在矢孔屏上看到一个与原物大小相等的倒立实像。
这时物屏到凸透镜光心的距离即为此凸透镜的焦距。
(2)物距像距法如图2所示,用屏上“1” 字矢孔作为发光物,经过凸透镜折射后成像在另一侧的观察屏上。
在实验中测得物距u 和像距v ,则凸透镜的焦距为vu uvf +=用自准直法和物距像距法测凸透镜焦距时,都必须考虑如何确定光心的位置。
光线从各个方向通过凸透镜中的一点而不改变方向,这点就是该凸透镜的光心。
凸透镜的光心一般与它的几何中心不重合,因而光心的位置不易确定,所以上述两种方法用来测定凸透镜焦距是不够准确的,误差约为1.0%~5.0%。
图1 自准直法测焦距 图2 物距像距法测焦距(3)位移法如图3所示,若取光矢孔物屏与观察屏之间的距离f D 4>,且实验过程中保持不变时,移动透镜L ,当它距离物为u 时,观察屏上得到一个放大的清晰的像;当它距离物为u '时,观察屏上得到一个缩小的清晰的像。
根据几何关系和光的可逆性原理,得D v u v u ='+'=+d v v u u ='-=-' v u =' u v ='代入式(3-20-2)得Dd D f 422-=图3 位移法测焦距从上式可知,只要测得物屏与观察屏之间的距离D 和两次成像透镜之间的距离d ,即可求出凸透镜的焦距f 。
三种测量正负透镜焦距的方法及原理

课程名称应用光学题目名称测量透镜焦距的方法及原理姓名潜力股测量透镜的方法及原理摘要:透镜是光学仪器中最基本的光学元件,而焦距是透镜的重要参量之一。
本文介绍了三种测量凸透镜和凹透镜焦距的实验方法,分别是自准直法,贝塞尔法,透镜成像公式法。
关键词:焦距自准直法贝塞尔法透镜成像公式法一:自准直法光线通过位于物镜焦平面的分划板后,经物镜形成平行光。
平行光被垂直于光轴的反射镜反射回来,再通过物镜后在焦平面上形成分划板标线像与标线重合。
1.1自准直法测凸透镜焦距1.1.1实验器材光学实验平台,光具座,白光源,物屏,待测凸透镜,全反射镜(平面镜)。
1.1.2实验原理当物屏处在凸透镜的焦平面时,它发出的光线通过透镜后将成为一束平行光。
若用与主光轴垂直的平面镜将此平行光反射回去,反射光再次通过透镜后仍会聚于透镜的焦平面上,其会聚点将在发光点相对于光轴的对称位置上。
1.1.3实验步骤(1)如图1-1,沿光具座装好各器件,并调至共轴;(2)将物屏置于白光源前约50毫米处,被测凸透镜和反射镜尽量靠近,并在物屏前后移动,观察物屏上像的变化情况,知道物屏上出现清晰,倒置的字像为止;图1-1 自准直法测量凸透镜焦距装置图1.2自准直法测凹透镜焦距1.2.1实验器材光学实验平台,光具座,白光源,物屏A ,凸透镜L1,待测凹透镜L2,全反射镜M (平面镜),像屏N 。
1.2.2实验步骤及原理凸透镜L1将物A 发出的光成像于像屏N ,将待测凹透镜L2置于L1与像屏N 之间,当移动L2并使其光心到屏N 的间距等于凹透镜L2的焦距时,光线经L2后将成为平行光束,这时,若在L2与N 之间放一平面镜M ,这束平行光被M 反射,将在物平面上成一与物A 等大倒立的实像。
因此,只要测量L2与N 之间的距离(ON),即是凹透镜L2的焦距。
图1-2 自准直法测量凹透镜焦距[1]二:贝塞尔法贝塞尔法也叫两次成像法,大意就是通过改变被测透镜的位置来确定透镜的焦距。
透镜焦距的测定实验报告

电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点:科技实验大楼104室 实验时间: 一、实验室名称:透镜焦距的测定 二、实验项目名称:透镜焦距的测定三、实验学时:3学时 四、实验原理:1.测凸透镜的焦距(1)自准直法如图1所示,用屏上“1”字矢孔屏作为发光物。
在凸透镜的另一边放置一平面反射镜,光线通过凸透镜后经平面反射镜返回孔屏上。
移动透镜位置可以改变物距的大小,当物距正好是透镜的焦距时,物上任意一点发出的光线经透镜折射后成为平行光,经平面镜反射后,再经透镜折射回到矢孔屏上。
这时在矢孔屏上看到一个与原物大小相等的倒立实像。
这时物屏到凸透镜光心的距离即为此凸透镜的焦距。
(2)物距像距法如图2所示,用屏上“1” 字矢孔作为发光物,经过凸透镜折射后成像在另一侧的观察屏上。
在实验中测得物距u 和像距v ,则凸透镜的焦距为vu uvf +=用自准直法和物距像距法测凸透镜焦距时,都必须考虑如何确定光心的位置。
光线从各个方向通过凸透镜中的一点而不改变方向,这点就是该凸透镜的光心。
凸透镜的光心一般与它的几何中心不重合,因而光心的位置不易确定,所以上述两种方法用来测定凸透镜焦距是不够准确的,误差约为1.0%~5.0%。
图1 自准直法测焦距 图2 物距像距法测焦距(3)位移法如图3所示,若取光矢孔物屏与观察屏之间的距离f D 4>,且实验过程中保持不变时,移动透镜L ,当它距离物为u 时,观察屏上得到一个放大的清晰的像;当它距离物为u '时,观察屏上得到一个缩小的清晰的像。
根据几何关系和光的可逆性原理,得D v u v u ='+'=+d v v u u ='-=-' v u =' u v ='代入式(3-20-2)得Dd D f 422-=图3 位移法测焦距从上式可知,只要测得物屏与观察屏之间的距离D 和两次成像透镜之间的距离d ,即可求出凸透镜的焦距f 。
自准直法测凸透镜焦距原理

自准直法测凸透镜焦距原理1. 引言凸透镜是一种常用的光学元件,用于聚焦光线。
测量凸透镜的焦距是光学实验中的基本内容之一。
自准直法是一种常用的测量凸透镜焦距的方法,其原理简单易于操作。
本文将详细介绍自准直法测凸透镜焦距的原理和具体步骤。
2. 自准直法测凸透镜焦距原理自准直法是利用凸透镜的成像特性来测量其焦距的一种方法。
其原理基于以下几点:2.1 光线的追迹原理光线在凸透镜中传播时会发生折射现象,根据折射定律,入射光线和折射光线在入射面和折射面的法线上的反射角度满足Snell定律。
2.2 成像特性凸透镜能够将入射光线聚焦到一点上,该点称为凸透镜的焦点。
根据凸透镜的成像特性,如果将一束平行光线照射到凸透镜上,光线将会近似地汇聚到焦点上。
2.3 焦距的测量方法利用凸透镜的成像特性,我们可以通过测量物体与凸透镜的距离和物体成像的距离来计算焦距。
具体的测量步骤将在下一部分中详细介绍。
3. 自准直法测凸透镜焦距步骤使用自准直法测量凸透镜焦距可以分为以下几个步骤:3.1 准备实验器材•凸透镜•光源•直尺•支架3.2 搭建实验装置将光源放置在支架上并对准透镜,将屏幕放在凸透镜的另一侧,并确保屏幕与光源之间有足够的距离。
准确控制光源与凸透镜的距离是实验的关键。
3.3 测量物体与透镜的距离在光源与凸透镜之间放置一个物体,可以是一个直尺或者其他有刻度的物体。
将物体移动到合适的位置,使其与凸透镜保持一定的距离,并记录下这个距离。
3.4 调整屏幕位置调整屏幕的位置,使得在屏幕上可以清晰地观察到凸透镜成像的情况。
3.5 观察成像情况通过屏幕观察到的成像情况来判断凸透镜的焦距。
如果观察到清晰的焦点,记录下屏幕与凸透镜的距离。
3.6 计算焦距根据物体与凸透镜的距离、屏幕与凸透镜的距离以及屏幕与焦点的距离,利用凸透镜公式可以计算出凸透镜的焦距。
4. 结论自准直法是一种常用的测量凸透镜焦距的方法,它利用凸透镜的成像特性来进行测量。
通过实验可以得到凸透镜的焦距,并可以验证凸透镜公式的准确性。
透镜焦距的测定实验报告

透镜焦距的测定实验报告一、实验目的1、加深对薄透镜成像规律的理解。
2、掌握几种测量透镜焦距的方法。
3、学习使用光学仪器进行实验测量和数据处理。
二、实验原理1、薄透镜成像公式对于薄透镜,物距$u$、像距$v$ 和焦距$f$ 之间满足以下关系:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$2、自准直法当物位于凸透镜的焦平面上时,从物上发出的光线经过透镜后成为平行光。
若在透镜后面垂直于光轴放置一个平面镜,平行光被反射回来再次通过透镜后仍成像于原物所在处,此时物与像重合。
此时物到透镜的距离即为透镜的焦距。
3、物距像距法当物距和像距都能直接测量时,根据成像公式可以计算出透镜的焦距。
4、共轭法(贝塞尔法)设物与屏的距离为$L$ ,移动透镜分别在两个不同位置时,在屏上分别得到放大的像和缩小的像,两次成像时透镜移动的距离为$d$ ,则透镜的焦距为:$f =\frac{L^2 d^2}{4L}$三、实验仪器光具座、凸透镜、蜡烛、光屏、平面镜、毫米刻度尺等。
四、实验内容与步骤1、自准直法测焦距(1)将凸透镜固定在光具座的一端,在凸透镜的另一侧放置平面镜,并使其与光具座垂直。
(2)在凸透镜前放置一个物(如带有箭头的物屏),调节物屏的位置,使物屏上的箭头通过透镜后经平面镜反射回来的像与物屏上的箭头重合。
(3)用毫米刻度尺测量此时物屏到凸透镜光心的距离,即为透镜的焦距$f_1$ 。
(4)重复测量三次,取平均值。
2、物距像距法测焦距(1)将蜡烛、凸透镜和光屏依次安装在光具座上,使三者的中心大致在同一高度。
(2)移动蜡烛,使蜡烛到凸透镜的距离大于两倍焦距,在光屏上得到清晰的倒立缩小的实像。
(3)用毫米刻度尺分别测量物距$u_1$ 和像距$v_1$ 。
(4)根据成像公式计算出焦距$f_2$ 。
(5)改变物距,重复上述步骤,测量多组数据,计算焦距并取平均值。
3、共轭法测焦距(1)将蜡烛、凸透镜和光屏依次安装在光具座上,使三者的中心大致在同一高度,且物屏与光屏之间的距离$L$ 大于四倍焦距。
实验三自准直法测量透镜焦距实验

竖线为基准线,测 量时,竖线对准读 数,数值均在鼓轮 上读取。注意:整
数位是反的。
10 5 0
4.059mm (a)
5 10
70 75 80
3.737mm (b)
实验仪器
(1) 测量时,鼓轮应沿同一方向旋转,不得中途反向,以避免空
(2) 被测量物的线度方向必须与基准线方向平行,否则会引入系
因为 '
所以
f1
h1 h
f
式中 f 1’为被测透镜焦距, f ’为平行光管焦距实测值(贴于平行光管管壁上,
单位毫米), h为玻罗板上所选用线距实测值(实验中为名义值),h’1 为玻罗
板线对像的线间距(测量值)。
4
B
3
2
1 A'
A f1'
'
B'
f'
1.玻罗板 2.平行光管物镜 3.被测凸透镜 4.测微目镜
实验目的和教学要求
了解平行光管的结构,掌握平行光管的 学习使用平行光管测定薄透镜的焦距。
实验仪器
2
4
5
6
13
7 8
1.物镜组 2. 十 字 旋 3.底 手座 4 .镜 管
5.分划板调6.节 照螺 明钉 灯 7.变 座压 8 器 .插 头
5W-F550型平行光管的结构图
实验仪器
其读数方法和螺旋测微器差不多,毫米以上的刻度在固定套管 上直接读出;毫米以下的刻度在鼓轮上读出。 读数鼓轮每旋转一周, 叉丝移动1mm,鼓轮上有100个分格,故每一格对应的读数为 0.01mm,再估读一位。实验中有两种测微目镜,不同之处在于鼓轮 刻度如同所示.
012345678
双基准线,测量时, 此线夹住待测刻线时 读数,整数位在视野 中读取,小数位在鼓
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5W-F550型平行光管的结构图
测微目镜
分划板
实验仪器
(一)平行光管 平行光管主要是用来产生平行光束的光学仪器,若配用不同 的分划板,并选用读数显微镜或测微目镜 ,可以测定光学 系统的焦距、分辨率及其成像质量。光源发出的光经聚光镜
会聚与分光板反射后均匀照亮分划板。当分划板位于物镜的焦面 上时,分划板的像在物镜像空间的无穷远处 ,即由平行光管发出 的光是平行光束。
实验内容与步骤
实验装置图
物镜 玻罗板 毛玻璃 待测透镜 测微目镜
0 1 2 3 4 5 6 7 8
消空程 记录第二组 记录第一组 线对数值h2左 线对数值 1左 1右 2右
实验注意事项
不得用手触摸仪器的光学元件及其测量附件的 表面 调节螺丝时,不得用力硬拧以免造成滑丝和仪 器变形 必须记录使用的平行管的焦距及玻罗板线距值。 测量时单向测量 分划板放到位
数据处理要求
测量透镜焦距 自行设计记录表格,根据测量数据分别 计算凸透镜的焦距,即各组线对分别 对应的焦距值,即最终的平均值。 公式:
h1′ f1′ = f ′ h
或者
h1′ f1′ = f′ βh
思考及课堂讨论题
1.测凸透镜焦距时,透镜与平行光管间的 距离对结果有无影响? 2. 玻罗板放不到位,对测量的焦距值有 什么影响?
实验仪器
其读数方法和螺旋测微器差不多,毫米以上的刻度在固定套管 上直接读出;毫米以下的刻度在鼓轮上读出。 读数鼓轮每旋转一周, 叉丝移动1mm,鼓轮上有100个分格,故每一格对应的读数为 0.01mm,再估读一位。实验中有两种测微目镜,不同之处在于鼓轮 刻度如同所示.
012345678
双基准线,测量时, 双基准线,测量时, 此线夹住待测刻线时 读数, 读数,整数位在视野 中读取, 中读取,小数位在鼓 轮上读取
组线对,各线对间距名义值分别是:1mm, 2mm,4mm,10mm,20mm。
实验仪器
(二)测微目镜
带测微装置的目镜,由目镜、 可动分划板、读数鼓轮与连接装置等组成。目 镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高 测量准确程度。旋转鼓轮,刻有十字叉丝的可动分划板就可以左右移动。它的位 置可以在外面直接读出。测量时,应先调节目镜,看清楚叉丝,然后转动鼓轮, 使基准线与被测物的像的一端重合,便可得到一个读数。再转动鼓轮,使基准线 与被测物像的另一端重合,又可得到一个读数。两读数之差,即被测物的尺寸。 实验中用两种测微目镜,如图示。
竖线为基准线, 竖线为基准线,测 量时, 量时,竖线对准读 数,数值均在鼓轮 上读取。注意: 上读取。注意:整 数位是反的。 数位是反的。
ቤተ መጻሕፍቲ ባይዱ
10 5 10 5 0
70 75 80
4.059mm (a)
3.737mm (b)
实验仪器
测微目镜注意事项: (1) 测量时,鼓轮应沿同一方向旋转,不得中途反向,以避免空 程误差。 (2) 被测量物的线度方向必须与基准线方向平行,否则会引入系 统误差。 (3) 被测量物的像与基准线重合,不能存在视差 (4) 虽然测微目镜测量范围为0~10mm,但一般测量应尽量控制 在1~9mm范围内进行,以保护测微装置的准确度,切忌读 出负值。
B
A
4
α
f1
'
3
α
α'
f'
1
A' B'
1.玻罗板
α
2.平行光管物镜
3.被测凸透镜
4.测微目镜
思考
如果将测微目镜换成测量显微镜, 如果将测微目镜换成测量显微镜, 测量公式如何? 测量公式如何?
h1′ f1′ = f′ βh
实验内容与步骤
(一)实验中平行光管已调整好,不再需要调节。--请验证。 (二)测量凸透镜的焦距 1)将被测凸透镜置于平行光管的前方,在透镜的前方放上测微 目镜,调节平行光管、被测凸透镜和测微目镜,使它们大 致在同一光轴上,尽量让测微目镜拉近到实验人员方便观 察的位置。 2)将玻罗板放入平行光管中,罩上直筒形光源。 3)转动测微目镜的调节螺丝,直到从测微目镜里面能看到清晰 的叉丝或标尺为止。 4)前后移动凸透镜,使被测凸透镜在平行光管中的玻罗板成像 于测微目镜的标尺和叉丝上,表明凸透镜的焦平面与测微 目镜的焦平面重合。 5)用测微目镜测出玻罗板像中20、10、4mm两刻线的位置, 并计算线对间距的测量值,重复几次,将各数据填入表中。 6 )读出平行光管的焦距实测值和玻罗板两刻线的实测值(出 厂时仪器说明书中给定)
实验三 利用平行光管测量透镜焦距
实验目的和教学要求 实验仪器 实验原理 实验内容与步骤 思考题
实验目的和教学要求
了解平行光管的结构, 了解平行光管的结构,掌握平行光管的 调节方法。 调节方法。 学习使用平行光管测定薄透镜的焦距。 学习使用平行光管测定薄透镜的焦距。
实验仪器
2
4
5
6
7
1
8
3
1 .物镜组 2 .十字旋手 3 . 底座4 . 镜管 5 .分划板调节螺钉 6 .照明灯座 7 . 变压器8 . 插头
实验原理
焦距测量原理图:
物镜 待测透镜
h1′ 待测透镜焦距: f1′ = f′ h
实验原理 -----透镜焦距测量
如图示,选用测微目镜,使被测透镜焦平面上所成玻罗板的像也在 测微目镜的焦平面上,便可测量。 因为 所以
α = α'
f1′ =
h1′ f′ h
式中 f 1’为被测透镜焦距, f ’为平行光管焦距实测值(贴于平行光管管壁上, 单位毫米), h为玻罗板上所选用线距实测值(实验中为名义值),h’1 为玻罗 板线对像的线间距(测量值)。 2
1 2 3 4
1 - 光 源:在平行光管中,利用白炽灯作为光源 2 - 毛玻璃:由于灯丝发出的光不是均匀的面光源,因此需要通过毛玻 璃将其转换成均匀的面光源照射分划板。 3 - 分划板:十字叉丝,波罗板。 4 - 物 镜:平行光管物镜
实验仪器
分划板: 分划板:
十字叉丝。 十字叉丝。
波罗板。分划板上用真空镀膜的方法镀上五