九年级数学下册高频考点小专题一反比例函数与其他函数的综合运用

合集下载

人教版九年级数学下册考点综合专题反比例函数与一次函数的综合.docx

人教版九年级数学下册考点综合专题反比例函数与一次函数的综合.docx

初中数学试卷 桑水出品考点综合专题:反比例函数与一次函数的综合类型一 同一坐标系中判断图象1. 在同一直角坐标系中,一次函数y =kx -k 与反比例函数y=k x (k ≠0)的图象大致是( )类型二 利用反比例函数的中心对称性求点的坐标或代数式的值2.(扬州中考)已知一个正比例函数的图象与一个反比例函数的图象的一个交点坐标为(1,3),则另一个交点坐标是 .3.直线y =kx (k >0)与双曲线y =2x交于A 、B 两点.若A 、B 两点的坐标分别为A (x 1,y 1)、B (x 2,y 2),则x 1y 2+x 2y 1的值为 .类型三 利用反比例函数的图象和一次函数的图象的交点求解4.如图所示,在平面直角坐标系中,反比例函数y 1=2x的图象与一次函数y 2=kx +b 的图象交于A 、B 两点,若y 1<y 2,则x 的取值范围是( )A .1<x <3B .x <0或1<x <3C .0<x <1D .x >3或0<x <1第4题图5.若反比例函数y =k x与一次函数y =x +2的图象没有交点,则k 的值可以是( ) A .-2 B .-1 C .1 D .26.如图,函数y =-x 的图象是第二、四象限的角平分线,将y =-x 的图象以点O 为中心旋转90°与函数y =1x的图象交于点A ,再将y =-x 的图象向右平移至点A ,与x 轴交于点B ,则点B 的坐标为 .第6题图7.如图,已知一次函数y 1=k 1x +b 的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数y 2=k 2x的图象分别交于C 、D 两点,点D 的坐标为(2,-3),点B 是线段AD 的中点. (1)求一次函数y 1=k 1x +b 与反比例函数y 2=k 2x的解析式; (2)求△COD 的面积;(3)直接写出y 1>y 2时自变量x 的取值范围.答案:考点综合专题:反比例函数与一次函数的综合1.A 解析:当k >0时,一次函数y =kx -k 的图象经过第一、三、四象限,反比例函数y =k x分布在第一、三象限,如图①所示;当k <0时,一次函数y =kx -k 的图象分布在第一、二、四象限,反比例函数y =k x的图象分布在第二、四象限,如图②所示.故选A.2.(-1,-3)3.-4 解析:由双曲线y =2x及y =kx 的中心对称性知x 1=-x 2,y 1=-y 2,所以x 1y 2+x 2y 1=-x 2y 2-x 2y 2=-2x 2y 2=-2×2=-4.4.B5.A 解析:依题意有k x=x +2,即x 2+2x -k =0.若两图象没有交点,则Δ=22+4k <0,∴k <-1,∴选项A 符合题意.故选A.6.(2,0) 解析:∵将y =-x 的图象以点O 为中心旋转90°与函数y =1x的图象交于点A ,∴直线AO 的解析式是y =x .又∵直线AO 与y =1x 相交于点A ,∴⎩⎪⎨⎪⎧y =x ,y =1x,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.∵点A 在第一象限,∴点A 的坐标为(1,1).∵将y =-x 的图象向右平移至点A ,得到直线AB ,∴可设直线AB 的解析式为y =-x +b .∵直线AB 过点A (1,1),∴1=-1+b ,解得b =2,∴直线AB 的解析式为y =-x +2.令y =0,则-x +2=0,解得x =2,∴直线AB 与x 轴的交点B 的坐标为(2,0).7.解:(1)∵D (2,-3)在y 2=k 2x 上,∴k 2=2×(-3)=-6,∴y 2=-6x.∵点D 的坐标为(2,-3),点B 是AD 的中点,且点B 的横坐标为0,∴点A 的坐标为(-2,0).∵A (-2,0),D (2,-3)在y 1=k 1x +b 的图象上,∴⎩⎪⎨⎪⎧-2k 1+b =0,2k 1+b =-3,解得⎩⎨⎧k 1=-34,b =-32.∴y 1=-34x -32;(2)联立⎩⎨⎧y =-34x -32,y =-6x ,解得⎩⎪⎨⎪⎧x 1=2,y 1=-3,⎩⎪⎨⎪⎧x 2=-4,y 2=32.∴点C 的坐标为⎝⎛⎭⎫-4,32.∴S △COD =S △AOC +S △AOD=12×2×32+12×2×3=92;(3)当x <-4或0<x <2时,y 1>y 2.。

(完整版)反比例函数与一次函数的综合应用

(完整版)反比例函数与一次函数的综合应用
例题讲解:
反比例函数的图象和性质:
(1)写出一个反比例函数,使它的图象经过第二、四象限.
(2)若反比例函数 的图象在第二、四象限,则 的值是( )
A、 -1或1; B、小于 的任意实数; C、-1; D、不能确定
(3)下列函数中,当 时, 随 的增大而增大的是( )
A. B. C. D. .
(4)已知反比例函数 的图象上有两点A( , ),B( , ),且 ,
(1)如图3,在反比例函数 (x<0)的图象上任取一点 ,过 点分别作 轴、 轴的垂线,垂足分别为M、N,那么四边形 的面积为.
(2)反比例函数 的图象如图4所示,点M是该函数图象上一点,MN⊥x轴,垂足为N.如果S△MON=2,这个反比例函数的解析式为______________
(3)如图5,正比例函数 与反比例函数 的图象相交于A、C两点,
(6)已知y与2x-3成反比例,且 时,y=-2,求y与x的函数关系式.
(7)已知函数 ,其中 与 成正比例, 与 成反比例,且当 =1时, =1;
=3时, =5.求:(1)求 关于 的函数解析式; (2)当 =2时, 的值.
(二)反比例函数的图象和性质:
知识要点:
1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时,双曲线分别位于第________象限内。
2.已知正比例函数 和反比例函授 的图像都经过点(2,1),则 、 的值分别为( )
A = , = B =2, = C =2, =2 D = , =2
3.反比例函数 与正比例函数 图像的一个交点的横坐标为1,则反比例函数的图像大致为()
A B C D
4.已知关于x的一次函数y=kx+1和反比例函数y= 的图象都经过点(2,m),则一次函数的解析式是________.

2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)

2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)

2024年中考数学高频考点专题复习——反比例函数的实际应用1.如图,利用已有的一面长为的墙,用篱笆围一个面积为的矩形花圃.设的长为,的长为.(1)求y 关于x 的函数表达式和自变量x 的取值范围.(2)边和的长都是整数,若围成的矩形花圃的三边篱笆的总长不超过,试求出满足条件且用料最省的方案.2.通过实验研究发现:初中生在数学课上听课注意力指标数随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散,学生注意力指标数y 随时间x (分)变化的函数图象如图所示,当和时,图象是线段;当时,图象是双曲线的一部分,根据函数图象回答下列问题:(1)点A 的注意力指标数是 ;(2)当时,求注意力指标数y 随时间x (分)的函数解析式;(3)张老师在一节课上讲解一道数学综合题需要21分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36?请说明理由.5m 220m ABCD AB ()m x BC ()m y AB BC ABCD 20m 010x ≤<1020x ≤<2040x ≤≤010x ≤<3.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线y =上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线y =x 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A( , )、B(  ,  )和C(  ,  );(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.4.某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时),时间x (小时)成反比例关系地慢慢减弱,结合风速与时间的图象,回答下列问题:(1)这场沙尘暴的最高风速是多少?最高风速维持了多长时间;(2)求出当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系?(3)在这次沙尘暴的形成过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻是“危险时刻”.问这次风暴的整个过程中,“危险时刻”一共有多长时间?4x5.为了做好新冠疫情防控工作,某学校要求全校各班级每天对各班教室进行消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量y (单位:mg )随时间x (单位:h )的变化情况如图所示,根据图中提供的信息,解决下面的问题.(1)如图反映的是那两个变量之间的关系?哪个是自变量?哪个是因变量?(2)什么时刻每立方米空气中药含量最多?此时药含量是多少?(3)在什么时间范围内,每立方米空气中药含量在增加?在什么时间范围内,每立方米空气中药含量在减少?(4)据测定,当空气中每立方米的药物含量降低到mg 以下时,才能保证对人身无害,若该校课间操时间为40分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.6.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100观察表中数据,发现可以用反比例函数刻画这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?1167.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作.已知该品牌运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示: 第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?写出用x表示y的函数表达式;(2)若商场计划每天的销售利润为3000元,则每双运动鞋的售价应定为多少元?8.心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y 随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 ,表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求 与 ( )的函数表达式;(2)若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?10.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y (克)与漂洗次数x (次)满足y=(k 为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k 的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x 次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?()C y ︒()h x AB BC CD y x 1024x ≤≤10C ︒ 2.5kv x+11.汛期到来,山洪暴发,下表记录了某水库 内水位的变化情况,其中 表示时间(单位:), 表示水位高度(单位: ),当 ( )时,达到警戒水位,开始开闸放水. 02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据画出水位变化图象,并写出水位高出16米的时间 的取值范围 ▲ .(精确到0.1)(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 .12.如图,直线与双曲线交于A ,两点,点A 的坐标为,点是双曲线第一象限分支上的一点,连结并延长交轴于点,且.(1)求的值,并直接写出点的坐标;(2)点是轴上的动点,连结,,求的最小值和点坐标;(3)是坐标轴上的点,是平面内一点,是否存在点,,使得四边形是矩形?若存20h x h y m 8x =h /h x /my x 6m 32y x =(0)ky k x=≠B (3)m -,C BC xD 2BC CD =k B G y GB GC GB GC +G P Q P Q ABPQ在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13.泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?14.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?P答案解析部分1.【答案】(1)解:由题意得:,,已有的一面墙长为,,,y 关于x 的函数表达式为(2)解:边和的长都是整数,且, 的值可以为4、5、10、20,围成的矩形花圃的三边篱笆的总长不超过,,的值可以为4、5,当时,,则,当时,,则,满足条件且用料最省的方案为,.2.【答案】(1)24(2)解:设线段(0≤x <10)∵,,∴{b =2410k +b =48 解之:{k =125b =24∴当0≤x <10时的函数解析式为(3)解:当时,代入和得 和∵,20xy =20y x∴=5m 205x∴≤4x ∴≥∴()204y x x=≥ AB BC ()204y x x=≥x ∴ ABCD 20m 220x y ∴+≤x ∴4x =5y =224513x y +=⨯+=5x =4y =225414x y +=⨯+=∴4m AB =5m BC =AB y kx b =+:(024)A ,(1048)B ,12245y x =+36y =12245y x =+960y x=15x =2803x =806552133-=>∴他能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36.3.【答案】(1)2;2;-2;-2;22 ;(2)解:作AD ⊥x 轴于D,连AC 、BC 和OC,∵A (2,2),∴∠AOD=45°,AO=2,∵C 在O 的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO ,∴AC=BC ,又∵∠BAC=60°,∴△ABC 为正三角形,∴AC=BC=AB=2AO=4,∴ ,由条件设教练船的速度为3m ,A、B 两船的速度都为4m ,则教练船所用时间为,A 、B 两船所用时间均为 = ,= , =,> ;∴教练船没有最先赶到.4.【答案】(1)解:0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,OC ==10~20时,风速不变,最高风速维持时间为20﹣10=10小时;答:这场沙尘暴的最高风速是32千米/时,最高风速维持了10小时(2)解:设y =, 将(20,32)代入,得32= ,解得k =640.所以当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系为y =(3)解:∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米, ∴4.5时风速为10千米/时,将y =10代入y = ,得10=,解得x =64,64﹣4.5=59.5(小时).故沙尘暴的风速从开始形成过程中的10千米/小时到最后减弱过程中的10千米/小时,共经过59.5小时.答:这次风暴的整个过程中,“危险时刻”一共经过59.5小时.5.【答案】(1)解:图象反应的是时间x 和每立方米空气中的药含量y 之间的关系;自变量为时间x ;因变量为每立方米空气中的药含量y ;(2)解:从函数图象可得:当x=h 时,空气中药含量最多,最多为1mg ;(3)解:从图象可得:当0<x<h 时,每立方米空气中药含量在增加;当x≥h 时,每立方米空气中药含量在减少(4)解:不能选用这种药物消毒,理由如下:由图象可得,当x=1时,y=,∴,∴学校不能选用这种药物用于教室消毒.6.【答案】(1)解:设 , ∵当x=400时y=30,∴k=400×30=12000,kxk 20640x640x640x151515116116048405⎛⎫-⨯=> ⎪⎝⎭ky x=∴函数解析式为 .(2)解:2104-(30+40+48+50+60+80+96+100)=1600.即8天试销后,余下的海产品还有1 600千克.当x=150时, =80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)解:1600-80×15=400(千克),设新确定的价格为每千克x 元. ,解得:x≤60,答:新确定的价格最高不超过60元/千克才能完成销售任务.7.【答案】(1)解:由表中数据得: ∴∴y 是x 的反比例函数,故所求函数关系式为 (2)解:由题意得: 把 代入得: 解得: 经检验, 是原方程的根;∴单价应定为240元8.【答案】(1)解:设DA 的函数关系式为y=kx+b (x≠0),∵y=kx+b 过(0,20),(10,40),∴{b =2010k +b =40,∴{b =20k =2,∴y=2x+20(0≤x≤10);当y=30时,30=2x+20,∴x=5;答:他应该复习5分钟;12000y x=12000150y =120002400x⨯≥6000xy =6000y x=6000y x =()1203000x y -=6000y x =()60001203000x x-=240x =240x =(2)解:设BC 的函数关系式(k 1≠0)(21≤x≤45),∵过B (21,40),∴,∴K 1=840,∴(21≤x≤45),当x=30时,,28﹣5=23,∵23>22,∴这位老师能在学生听课效果最好时讲完新课内容.9.【答案】(1)解:当 时,设 把 代入 得: 所以: (2)解:当 时,经检验: 是原方程的解,且符合题意,所以恒温系统最多可以关闭 小时,才能使蔬菜避免受到伤害.10.【答案】(1)解:∵使用5升水,漂洗1次后,衣服中残留洗衣粉2克,∴v=5,x=1,y=2,∴2=,∴k=-0.1.(2)解:∵v=5,∴y=, ∵反比例函数y=,在x>0的范围内y 随x 的增大而减少,∴当y<0.8时,漂洗的次数x>2.5,∴至少漂洗3次,衣服中残留的洗衣粉量小于0.8克.(3)解:由(1)得y=, 1k y x =14021k =840y x=8402830y ==1024x ≤≤k y x=()1020,k y x =,1020200k =⨯=,200.y x=10y =20010x =,20x ∴=,20x =201010∴-=,105 2.51k +0.15 2.52x x-⨯+=2x 0.1 2.5v x-+∴xy=-0.1v+2.5,即x 2y=-0.1vx+2.5x ,∵将20升水等分成x 次,∴vx=20,∴x 2y=-2+2.5x ,∵y=0.5,∴0.5x 2=-2+2.5x ,即x 2-5x+4=0,∴x 1=4,x 2=1(舍去,x >1),∴当x=4时,每次漂洗用水v=20÷4=5升.答:每次漂洗用水5升.11.【答案】(1)解:在平面直角坐标系中,根据表格中的数据水位变化图象如图所示,;4≤x <8.8(2)解:观察图象当0<x <8时,y 与x 可能是一次函数关系:设y=kx+b ,把(0,14),(8,18)代入得 {b =148k +b =18 解得: {k =12b =14 , y 与x 的关系式为: ,经验证(2,15),(4,16),(6,17)都满足 因此放水前y 与x 的关系式为: (0<x <8).观察图象当x >8时,y 与x 就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.1142y x =+1142y x =+1142y x =+因此放水后y 与x 的关系最符合反比例函数,关系式为:设 ,则 ,y 与x 的关系式为: .( )所以开闸放水前和放水后最符合表中数据的函数解析式为: (0<x <8)和 .( )(3)解:当y=6时, ,解得: , 因此预计24h 水位达到6m.12.【答案】(1)解:将点A 的坐标为代入直线中,得,解得:,,,B 的坐标为(2)解:如图,作轴于点E ,轴于点F ,则,,,,, ,,,,k y x =144k =144=y x8x ≥1142y x =+144=y x 8x ≥1446=x24x =()-3A m ,32y x =332m =﹣-2m =()2-3A ∴-,=-2(3)=6k ∴⨯-()23,BE x ⊥CF x ⊥BE CF BE CF DCF DBE ∴ ∽DC CF DB BE∴=2BC CD = 13DC CF DB BE ∴==()23B ,3BE ∴=1CF ∴=,作点B 关于y 轴的对称点,连接交y 轴于点G ,则即为的最小值,,设的解析式为,,,解得: ,解析式为,当时,,;(3)解:存在.理由如下:当点P 在x 轴上时,如图,设点 的坐标为 ,过点B 作轴于点M ,四边形是矩形,,()61C ∴,B 'B C 'B C 'BG GC +()()2361B C -' ,,,B C ∴=='=BG GC B C '∴+B C 'y kx b =+()()2361B C -' ,,,3216k b k b =-+⎧⎨=+⎩1452k b ⎧=-⎪⎪⎨⎪=⎪⎩∴B C '1542y x =-+0x =52y =502G ⎛⎫∴ ⎪⎝⎭,1P ()0a ,BM x ⊥ 11ABPQ 190OBP ∴∠=︒,,,,,,,,,经检验符合题意,∴点 的坐标为;当点P 在y 轴上时,过点B 作轴于点N ,如图2,设点 的坐标为,四边形是矩形,,,,,,,经检验符合题意,∴点的坐标为,1==90OMB OBP ∴∠∠︒1=BOM POB ∠∠1OBM OPB ∴ ∽1OB OM OP OB ∴=()23B ,OB ∴==2OM ==132a ∴=1P 1302⎛⎫ ⎪⎝⎭,BN y ⊥2P ()0b , 22ABP Q 290OBP ∴∠=︒2==90ONB P BO ∠∠︒ 2BON P OB ∠=∠2BON P OB ∴ ∽2OB ON OP OB∴==133b ∴=2P 1303⎛⎫⎪⎝⎭,综上所述,点P 的坐标为或.13.【答案】(1)解:停止加热 分钟后,设 , 由题意得: , 解得: ,, 当 时,解得: ,当 时, ,点坐标为 , 点坐标为 , 当加热烧水时,设 ,由题意将 点坐标 代入上式得 , 解得: ,当加热烧水时,函数关系式为 ;当停止加热时 与 的函数关系式为 ; ;(2)解:把 代入 ,得 , 因此从水壶中的水烧开 降到 可以泡茶需要等待 分钟.14.【答案】(1)解:根据题意可知:当时,设y 与x 的函数解析式为,∴,解得:,∴;当时,设y 与x 的函数解析式为,∴,解得:1302⎛⎫ ⎪⎝⎭,1303⎛⎫ ⎪⎝⎭,1k y x =5018k =900k =900y x∴=100y =9x =20y =45x =C ∴()9100,B ∴()8100,20y ax =+B ()8100,100820a =+10a =∴()102008y x x =+≤≤y x 100(89)y x =<≤900(945)y x x =<≤90y =900y x=10x =()100℃90℃1082-=030x ≤≤1y k x =112030k =14k =()4030y x x =≤≤30x ≥2k y x =212030k =23600k =∴综上所述,该商品上市以后销售量y (万件)与时间x (天数)之间的表达式为:;.(2)解:当时,令,解得:,∴,∴销量不到36万件的天数为8天;当时,令,解得: (不符合题意),∴上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数为8天;(3)解:当时,令,解得:∴,∴销量超过100万件的天数为6天,当时,令,解得:∴,销量超过100万件的天数为6天,综上所述,销售量不低于100万件,并且持续天数为12天,广告设计师可以拿到“特殊贡献奖”.()360030y x x=≥()4030y x x =≤≤()360030y x x=≥030x ≤≤436x <9x <09x ≤<30x ≥360036x<100x >030x ≤≤4100x ≥25x ≥2530x ≤≤30x ≥3600100x≥36x ≤3036x ≤≤。

人教版数学九年级下册《 反比例函数的图象和性质的的综合运用》PPT课件

人教版数学九年级下册《  反比例函数的图象和性质的的综合运用》PPT课件

x D.
Ox
探究新知
考点 2 通过函数图形确定字母的取值范围
如图是一次函数
y1=kx+b
和反比例函数
y2
m x
的图象,观察图象,当
y1﹥y2 时,x 的取值范围为 -2< x <0 或 x.>3 y
解析:y1﹥y2 即一次函数图象处于 反比例函数图象的上方时. 观察右 图,可知-2< x <0 或 x >3.
探究新知
【思考】根据反比例函数的部分图象,如何确定其完 整图象的位置以及比例系数的取值范围?
注:由于双曲线的两个分支在两个不同的象限内,因此 函数y随x的增减性就不能连续的看,一定要强调“在每 一象限内”,否则,笼统说k<0时,y随x的增大而增大, 从而出现错误.
巩固练习
如图,是反比例函数 y k 2 的图象的一个分支,对于
x
给出的下列说法:
y
①常数k的取值范围是 k 2 ;
②另一个分支在第三象限;
③在函数图象上取点 Aa1,b1 和 Ba2,b2 , O
x
当 a1 a2 时,b1 b2 ;
④在函数图象的某一个分支上取点Aa1,b1和Ba2,b2 ,
当 a1 a2 时,b1 b2. 其中正确的是___①___②__④____(在横线上填出正确的序号).
巩固练习
已知反比例函数
yk x
的图象经过点 A (2,3).
(1) 求这个函数的表达式;
解:∵ 反比例函数 y k 的图象经过点 A(2,3),
x
∴ 把点 A 的坐标代入表达式,得 3 k ,
2
解得 k = 6.

这个函数的表达式为
y6 x

九年级数学下册高频考点专训第2课时反比例函数的图象和性质的综合运用

九年级数学下册高频考点专训第2课时反比例函数的图象和性质的综合运用
3 6.y=- x
保证原创精品 已受版权保护
------------------------- 赠予 ------------------------
【幸遇•书屋】
你来,或者不来 我都在这里,等你、盼你
等你婉转而至 盼你邂逅而遇
你想,或者不想 我都在这里,忆你、惜你
忆你来时莞尔 惜你别时依依
你忘,或者不忘 我都在这里,念你、羡你
解:(1)反比例函数图象的分布只有两种可能,分布在第一、第三象限,或者分布在第二、第 四象限.这个函数的图象的一支在第一象限,则另一支必在第三象限.
∵函数的图象在第一、第三象限, ∴m-5>0.解得m>5. (2)∵m-5>0,在这个函数图象的任一支上,y随x的增大而减小, ∴当a>a′>0和0>a>a′时b<b′; 当a>0>a′时b>b′. 活动2 跟踪训练
.
k 设函数为y= x ,而P在图象上,所以k=mn,又阴影部分面积是|mn|=3,函数图象在第
3 二象限,所以k<0,即k=-3,所以函数关系是为y=- x .
课堂小结
保证原创精品 已受版权保护
反比例函数图象和性质的综合运用.
教学至此,敬请使用学案当堂训练部分.
【合作探究】 活动2 跟踪训练 1.-2 2.A 3.B 4.A 5.1
14 (2)点B(3,4)、C(-2 2 ,-4 5 )和D(2,5)是否在这个函数的图象上?
k 解:(1)设这个反比例函数为y= x ,
∵图象过点A(2,6),
保证原创精品 已受版权保护
k ∴6= 2 .解得k=12.
12 ∴这个反比例函数的表达式为y= x .
∵k>0, ∴这个函数的图象在第一、三象限.在每个象限内,y随x的增大而减小.

(完整)初三数学九下反比例函数所有知识点总结和常考题型练习题,推荐文档

(完整)初三数学九下反比例函数所有知识点总结和常考题型练习题,推荐文档

1.定义:一般地,形如y =反比例函数知识点k(k 为常数,k ≠o )的函数称为反比例函数。

y =k还x x可以写成y =kx -1 ,xy=k, (k 为常数,k ≠o ).2.反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为 1.⑵比例系数k ≠ 0⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3.反比例函数的图像⑴图像的画法:描点法① 列表(应以 O 为中心,沿 O 的两边分别取三对或以上互为相反的数)② 描点(有小到大的顺序)③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,y = k(k 为常数,k ≠ 0 )中自变量x ≠ 0 ,函数值xy ≠ 0 ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是y =x 或y =-x )。

k k⑷反比例函数y =(k ≠ 0 )中比例系数k 的几何意义是:过双曲线y =x x (k ≠ 0 )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

4.反比例函数性质与k 的符号有关:y = (m + 2)x 5. 反比例函数解析式的确定:利用待定系数法(只需一组对应值或图像上一个点的坐标即可求出 k )6. “反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反k比例函数 y = 中的两个变量必成反比例关系。

x一. 选择题反比例函数练习m 2 -2m -91. 函数是反比例函数,则 m 的值是( ) A. m = 4 或m = -2 B. m = 4 C. m = -2D. m = -12. 下列函数中,是反比例函数的是( )y = - xA. 2B. y = ky = - 12 x y = 1 - 1C. x y = 1D.x 2 3. 函 数y = -kx 与 x (k ≠ 0 )的图象的交点个数是( )A. 0B. 1C. 2D. 不确定y = k(kb ≠ 0)4. 函数y = kx + b 与 x 的图象可能是( )A B CD5. 若 y 与 x 成正比,y 与 z 的倒数成反比,则 z 是 x 的( )A. 正比例函数B. 反比例函数C. 二次函数D. z 随 x 增大而增大6. 下列函数中 y 既不是 x 的正比例函数,也不是反比例函数的是()y = - 1A. 9xB. 10 = - x :5y1C. y = 4x2D. 1xy = -257. 如图,直线 y =x -2 与 y 轴交于点 C ,与 x 轴交于点 B ,与反比例函数 的图象在第一象限交于点 A ,连接 OA ,若 S △AOB S △BOC = 1:2,则 k 的值为( )A .2B .3C .4D .6y = (a - 3)x(第8题)8. 如图,A 、B 是双曲线 y= 上的两点,过 A 点作 AC⊥x 轴,交 OB 于 D 点,垂足为 C .若△ADO 的面积为 1,D 为 OB 的中点,则 k 的值为()A .B .C . 3D . 49. 如图,△ AOB 是直角三角形, ∠AOB = 90︒ , OB = 2OA ,点 A 在反比例函数y = 1x 的图象上.若点 B 在反比例函数y = k x 的图象上,则k 的值为 A. - 4 二. 填空题B. 4C. - 2D. 21. 已知 y 是 x 的反比例函数,当 x >0 时,y 随 x 的增大而减小。

专题九-反比例函数与几何的综合应用

专题九-反比例函数与几何的综合应用
反比例函数在物理学中的应用
在物理学中,一些物理量之间可能存在反比例关系,如电阻与电流、压力与面积等。通过运用反 比例函数的性质,可以更好地理解和解决这些物理问题。
反比例函数在经济学中的应用
在经济学中,一些经济指标之间可能存在反比例关系,如价格与需求量、成本与产量等。通过运 用反比例函数的性质,可以对这些经济指标进行更准确的预测和分析。
如长度、面积等。
利用反比例函数性质建立关系
02
根据反比例函数的性质,结合几何图形的特点,建立所求最值
与相关量之间的关系。
求解最值
03
通过求解反比例函数的最值,得到所求几何量的最值。
判定存在性问题
根据题意列出方程或不等式
01
根据题目条件,列出与几何图形相关的方程或不等式

利用反比例函数性质分析解的情况
反比例关系在圆中的应用
在圆中,当一个圆的半径增加时,其 面积会按平方比例增加,但其周长只 会按线性比例增加。这种关系虽然不 是严格的反比例关系,但也可以用于 解决一些与圆相关的问题。
解题技巧与实例分析
通过利用圆的性质和上述关系, 可以求解一些与圆相关的问题。 例如,已知一个圆的半径和另一 个圆的面积或周长,可以求解未 知圆的半径或面积等。
仔细阅读题目要求,明确题意 ,避免答非所问。
合理安排答题顺序
先做易做的题目,确保会做的 题目不丢分,再攻克难题。
控制答题时间
每道题目分配合理的时间,避 免时间不够用或浪费过多时间

检查答案
做完题目后要认真检查答案, 确保没有遗漏或错误。
THANKS FOR WATCHING
感谢您的观看
解题技巧与实例分析
对于其他几何图形中的反比例关系问题,可以通过设定未知数、利用几何图形的性质和反比例关系来求解。 需要注意的是,在解题过程中要仔细分析题目条件和数据特点,选择合适的解题方法和思路。

数学人教版九年级下册反比例函数的图象及性质的综合应用

数学人教版九年级下册反比例函数的图象及性质的综合应用

k 1.反比例函数 y x ( k 0 ) 的图象经过点(-1, 2
称.
k 2.反比例函数 y x ( k 0 )
的图,则m= 2 ,反比例函数的解 y 析式为 x ,这两个图象的另一个交点坐标 是 (-1,-2) .
教学目标:
4 (1) (2) (3) A(1,4) (4)
o
B
1
x
(-4,-1)
(8)连OA、OB,设点C是直线AB 与y轴的交点, 求三角形AOB的面积;
y 4
C
A(1,4)
o
B (-4,-1)
1
x
小结: 本节课你学到了哪些知识点? 你掌握了哪些重点题型
y
B
o
P(m,n)
A
x
课后作业:
k 已知点A(3,4),B(-2,m)在反比例函数 y x
想一想
反 比 函 数 与 几 何 知 识
k y x

S1 S2 P (x1,y1)
R (x2,y2)
S1、S2有什么关系?为什么?
反比例函数k的几何意义:面积性质(一)
(1)过P分别作x轴,y轴的垂线,垂足分别为A ,B , 则S 矩形OAPB OA AP | m | | n || k | (如图所示).
o
1
x
( 4 )若过A点作AP⊥x轴于点P,并连接OA,求三角形AOP 的面积。
y
4 A(1,4)
B
o
1 P
x
(5)若D、E、F是此反比例函数在第三象限图象上的三个
点,过D、E、F分别作x轴的垂线,垂足分别为M,N、K, 连接OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积 分别为S1、S2、S3,则下列结论成立的是 ( D ) S3 A 、S1﹤S2 ﹤ S3 B、 S1﹥S2 ﹥ y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1 B.2 C.3 D.4 三、求自变量的取值范围 5.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于A、B两点.
(1)求出这两个函数的解析式; (2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,y1<y2.
四、求图形的面积 6.如图,一次函数y=ax-1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且 点A的坐标为(2,1),点B的坐标为(-1,n).
6.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的可能是( )
A
B
C
D
保证原创精品 已受版权保护
题组训练二 反比例函数与一次函数的综合运用 一、求交点坐标 1.已知一次函数y=kx-1的图象与反比例函数y=的图象的一个交点坐标为(2,1),那么另 一个交点的坐标是( ) A.(-2,1) B.(-1,-2) C.(2,-1) D.(-1,2) 二、求参数的值或取值范围 2.函数y=的图象与直线y=x没有交点,那么k的取值范围是( ) A.k>1 B.k<1 C.k>-1 D.k<-1 3.若正比例函数y=2kx与反比例函数y=(k≠0)的图象交于点A(m,1),则k的值是( ) A.或- B.或- C. D. 4.如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为( )
保证原创精品 已受版权保护 九年级数学下册考点专题训练 小专题(一) 反比例函数与其他函数的综合运用
题组训练一 反比例函数与其他函数图象的“友好会晤” 一、反比例函数与一次函数 1.在同一直角坐标系中,函数y=(k≠0)与y=kx+k(k≠0)的图象大致是( )
2.如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx-k的图象大致是( )
(1)分别求两个函数的表达式; (2)求△AOB的面积.
保证原创精品 已受版权保护
参考答案
题组训练一 反比例函数与其他函数 1.C 2.B 3.B 4.D 5.C 6.B
题组训练二 反比例函数与一次函数的综合运用 1.B 2.A 3.B 4.C 5.(1)由图象知反比例函数y2=的图象经过点B(4,3),∴3=,即m =12.∴反比例函数解析式为y2=.由图象知一次函数y1=kx+b的图象经过点A(-6,- 2),B(4,3),∴解得∴一次函数解析式为y1=x+1.(2)当0<x<4或x<-6时,y1<y2. 6.(1)一次 函数y=ax-1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标 为(2,1),解得∴一次函数的表达式是y=x-1,反比例函数的表达式是y=.(2)设AB与y轴交于 点C,当x=0时,y=-1,∴S△AOB=S△BOC+S△AOC=×|-1|×2+×|-1|×|-1|=1+=.
二、反比例函数与二次函数 3.函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是( )
4.满足函数y=ax2+c(c>0)和y=(a<0)的图象是( )
三、反比例函数、一次函数与二次函数
保证原创精品 已受版权保护
5.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx+与反比例函数y=在同一坐标系内的大致图象是( )
保证原创精品 已受版权保护
------------------------- 赠予 ------------------------
【幸遇•书屋】
你来,或者不来 我都在这里,等你、盼你
等你婉转而至 盼你邂逅而遇
你想,或者不想 我都在这里,忆你、惜你
忆你来时莞尔 惜你别时依依
你忘,或者不忘 我都在这里,念你、羡你
被你拥抱过,览了 被你默诵过,懂了 被你翻开又合起 被你动了奶酪和心思
不舍你的过往 和过往的你 记挂你的现今 和现今的你 遐想你的将来 和将来的你 难了难了 相思可以这一世
------------------------- 谢谢喜欢 ------------------------
念你袅娜身姿 羡你悠然书气
人生若只如初见 任你方便时来 随你心性而去 却为何,有人
为一眼而愁肠百转 为一见而不远千里
晨起凭栏眺 但见云卷云舒
风月乍起
保证原创精品 已受版权保护
春寒已淡忘 如今秋凉甚好 几度眼迷离
感谢喧嚣 把你高高卷起 砸向这一处静逸 惊翻了我的万卷 和其中的一字一句 幸遇只因这一次
相关文档
最新文档