高中数学联赛平面几何基础知识

合集下载

高中数学平面几何知识点总结

高中数学平面几何知识点总结

高中数学平面几何知识点总结平面几何是数学中的一个重要分支,也是高中数学中的重要部分。

平面几何主要研究平面上的点、线、角等基本概念及其相互关系。

平面几何是一门具有实际应用意义的数学,它的研究对象广泛,包括建筑、工程、艺术等诸多领域。

本文将对高中数学平面几何知识点进行总结。

一、基本概念1. 点:空间中没有大小和形状的基本对象,用大写字母表示。

2. 直线:由无数个点组成的、没有宽度和厚度的对象,用小写字母表示,或用两个点表示。

3. 射线:起点为一个确定的点,沿着一定方向无限延伸出去的对象,用一个点表示。

4. 线段:有两个端点的、有限长的直线部分,用两个点表示。

5. 角:由两条射线公共端点组成的图形,用大写字母表示公共端点,用小写字母表示两条射线,或用符号“∠”表示。

6. 垂线:与另一直线或平面垂直的直线。

二、图形的性质1. 三角形:三条边和三个角,有三个顶点的图形。

2. 直角三角形:其中一个角是90度的三角形。

3. 等腰三角形:两边长度相等的三角形。

4. 等边三角形:三边长度都相等的三角形。

5. 相似三角形:三角形的对应角相等,对应边成比例。

6. 平行四边形:具有两组对边平行的四边形。

7. 矩形:具有四个直角的平行四边形。

8. 正方形:具有四个直角和四边相等的矩形。

9. 梯形:具有一组对边平行的四边形。

三、角的性质1. 垂角:两条互相垂直的直线所形成的角。

2. 对顶角:两条直线交叉而形成的相对角。

3. 同位角:两条平行线与一条直线相交所形成的对应角。

4. 内角和定理:任意$n$边形的内角和为$(n-2)\times 180^\circ$。

5. 外角和定理:任意凸$n$边形的外角和为$360^\circ$。

四、圆的性质1. 圆:平面上所有到圆心距离相等的点所组成的图形。

2. 圆周角定理:圆周角等于圆心角的一半。

3. 切线:与圆相切的直线。

4. 弦:连接圆上两点的线段。

5. 弧:圆上两点之间的一段曲线。

6. 弧长公式:弧长等于圆周率$\pi$乘以弧所对圆心角的度数再除以180度。

平面几何基础知识基本定理

平面几何基础知识基本定理

高中数学联赛二试讲义(组编)平面几何1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理).角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R C cB b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半; (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABGS S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+;②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (CB A yC cy B b y A a C B A x C c x B b x A a H CB AC B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心; (4)设I 为△ABC 的内心,,,,c AB b AC a BC ===A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O CB AC B A ++++++++外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R . 28. 三角形面积公式:C B A R R abc C ab ah S a ABCsin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a=++===30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1. 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M . 35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P 向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line ). 39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q 关于该三角形的西摩松线互相垂直,其交点在九点圆上. 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +弧BQ +弧CR =0(mod2π) .49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点.50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P 的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB 的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点) 57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心. 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点. 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine -point circle 〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven 〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆. 九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.数论一、数学竞赛中数论问题的基本内容 主要有8个定义、15条定理.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b是a 的约数.定义2 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .定义 3 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .定理1 对任意的正整数,有()[],,a b a b ab ⋅=.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(以前也称为互质). 定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(以前也称为质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理2 素数有无穷多个,2是唯一的偶素数.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记(mod )a b c ≡作若则称,a b关于模c 不同余,记作a(mod )b c .定理3 (整除的性质)设整数,,a b c 为非零整数,(1) 若c b ,b a ,则c a ; (2) 若c a ,则bc ab ;(3) 若c a ,c b ,则对任意整数,m n ,有c ma nb +;(4) 若(),1a b =,且a bc ,则a c ; (5) 若(),1a b =,且,a c b c ,则ab c(6) 若a 为素数,且abc ,则a b 或a c .定理4 (同余的性质)设,,,,a b c d m 为整数,0,m > (1) 若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡;(2) 若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡. (3) 若(mod )ab m ≡,则对任意的正整数n 有(mod )n n a b m =,且(mod )an bn mn ≡; (4) 若(mod )ab m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 定理5 设,a b 为整数,n 为正整数, (1) 若a b ≠,则()()n na b a b --;(2) 若a b ≠-,则()()2121n n a b a b --++; (3) 若ab ≠-,则()()22n na b a b +-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理6 给定整数2k≥,对任意的正整数n ,都有唯一的k 进制表示.定理7 任意一个正整数n 与它的十进制表示中的所有数字之和关于模9同余.定理8 (分解唯一性)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的 1212k a a a k n p p p =.定理9 若正整数n的素数分解式为1212,k a a a k n p p p =则n的约数的个数为()()()()12111k d n a a a =+++,n 的一切约数之和等于121212111111k a a a k k p p p p p p ---⋅⋅⋅---. 定义8 对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理10 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦定理11 如果素数p 不能整除整数a ,则()11p p a --.定理12 设p 为素数,对任意的整数a ,有()mod p a a p ≡.定理13 设正整数1212.k a a a k n p p p =,则不大于n 且与n 互素的正整数个数()n ϕ为()12111111k n n a a a ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.定理14 整系数二元一次方程ax by c +=存在整数解的充分必要条件是(),c a b .定理15 若()00,x y 是整系数二元一次方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,.x x bt y y at =-⎧⎨=+⎩()t Z ∈ 二. 数学竞赛中数论问题的重点类型 主要出现8类问题.:1.奇数与偶数(奇偶分析法、01法);2.约数与倍数、素数与合数;3.平方数;4.整除;5.同余;6.不定方程;7.数论函数、[]x 高斯函数、()n φ欧拉函数;8.进位制(十进制、二进制). 三. 例题选讲例1 有100盏电灯,排成一横行,从左到右,我们给电灯编上号码1,2,…,99,100.每盏灯由一个拉线开关控制着.最初,电灯全是关着的.另外有100个学生,第一个学生走过来,把凡是号码为1的倍数的电灯的开关拉了一下;接着第2个学生走过来,把凡是号码为2的倍数的电灯的开关拉了一下;第3个学生走过来,把凡是号码为3的倍数的电灯的开关拉了一下,如此等等,最后那个学生走过来,把编号能被100整除的电灯的开关拉了一下,这样过去之后,问哪些灯是亮的?讲解 (1)直接计算100次记录,会眼花缭乱.(2)拉电灯的开关有什么规律:电灯编号包含的正约数(学生)才能拉、不是正约数(学生)不能拉,有几个正约数就被拉几次.(3)灯被拉的次数与亮不亮(开、关)有什么关系:灯被拉奇数次的亮!(4)哪些数有奇数个约数:平方数. (5)1~100中有哪些平方数:共10个:1,4,9,16,25,36,49,64,81,100.答案:编号为1,4,9,16,25,36,49,64,81,100共10个还亮. 例2 用[]x 表示不大于x 的最大整数,求122004366366366366⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦.讲解 题目的内层有2004个高斯记号,外层1个高斯记号.关键是弄清[]x 的含义,进而弄清加法谁与谁加、除法谁与谁除:(1)分子是那些数相加,求出和来;由36651830200421963666⨯=<<=⨯,知分子是0~5的整数相加,弄清加数各有几个。

高中数学竞赛基础平面几何知识点总结

高中数学竞赛基础平面几何知识点总结

⾼中数学竞赛基础平⾯⼏何知识点总结⾼中数学竞赛平⾯⼏何知识点基础1、相似三⾓形的判定及性质相似三⾓形的判定:(1)平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似;(2)如果⼀个三⾓形的两条边和另⼀个三⾓形的两条边对应成⽐例,并且夹⾓相等,那么这两个三⾓形相似(简叙为:两边对应成⽐例且夹⾓相等,两个三⾓形相似.);(3)如果⼀个三⾓形的三条边与另⼀个三⾓形的三条边对应成⽐例,那么这两个三⾓形相似(简叙为:三边对应成⽐例,两个三⾓形相似.);(4)如果两个三⾓形的两个⾓分别对应相等(或三个⾓分别对应相等),则有两个三⾓形相似(简叙为两⾓对应相等,两个三⾓形相似.).直⾓三⾓形相似的判定定理:(1)直⾓三⾓形被斜边上的⾼分成两个直⾓三⾓形和原三⾓形相似;(2)如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似.常见模型:相似三⾓形的性质:(1)相似三⾓形对应⾓相等(2)相似三⾓形对应边的⽐值相等,都等于相似⽐(3)相似三⾓形对应边上的⾼、⾓平分线、中线的⽐值都等于相似⽐(4)相似三⾓形的周长⽐等于相似⽐(5)相似三⾓形的⾯积⽐等于相似⽐的平⽅2、内、外⾓平分线定理及其逆定理内⾓平分线定理及其逆定理:三⾓形⼀个⾓的平分线与其对边所成的两条线段与这个⾓的两边对应成⽐例。

如图所⽰,若AM平分∠BAC,则该命题有逆定理:如果三⾓形⼀边上的某个点与这条边所成的两条线段与这条边的对⾓的两边对应成⽐例,那么该点与对⾓顶点的连线是三⾓形的⼀条⾓平分线外⾓平分线定理:三⾓形任⼀外⾓平分线外分对边成两线段,这两条线段和夹相应的内⾓的两边成⽐例。

如图所⽰,AD平分△ABC的外⾓∠CAE,则其逆定理也成⽴:若D是△ABC的BC边延长线上的⼀点,且满⾜,则AD是∠A的外⾓的平分线内外⾓平分线定理相结合:如图所⽰,AD平分∠BAC,AE平分∠BAC的外⾓∠CAE,则3、射影定理在Rt△ABC中,∠ABC=90°,BD是斜边AC上的⾼,则有射影定理如下:BD2=AD·CDAB2=AC·ADBC2=CD·AC对于⼀般三⾓形:在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA4、旋转相似当⼀对相似三⾓形有公共定点且其边不重合时,则会产⽣另⼀对相似三⾓形,寻找⽅法:连接对应点,找对应点连线和⼀组对应边所成的三⾓形,可以得到⼀组⾓相等和⼀组对应边成⽐例,如图中若△ABC∽△AED,则△ACD∽△ABE5、张⾓定理在△ABC中D为BC边上⼀点,则sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD6、圆内有关⾓度的定理圆周⾓定理及其推论:(1)圆周⾓定理指的是⼀条弧所对圆周⾓等于它所对圆⼼⾓的⼀半(2)同弧所对的圆周⾓相等(3)直径所对的圆周⾓是直⾓,直⾓所对的弦是直径(4)圆内接四边形对⾓互补(5)圆内接四边形的外⾓等于其内对⾓弦切⾓定理:顶点在圆上,⼀边和圆相交,另⼀边和圆相切的⾓叫做弦切⾓。

平面几何知识点归纳 高中

平面几何知识点归纳 高中

平面几何知识点归纳高中高中平面几何知识点归纳平面几何是数学中的一门基础学科,它研究的是平面上的点、线、角、面等几何图形及其性质和相互关系。

在高中阶段,平面几何是数学课程的重要组成部分,它包含了许多重要的知识点。

下面将对高中平面几何的知识点进行归纳和总结。

1. 点、线、面的基本概念在平面几何中,点是最基本的概念,它没有大小和形状。

线是由无数个点连在一起形成的,它没有宽度和厚度。

面是由无数个线连在一起形成的,它有长度和宽度。

在平面几何中,点、线和面是最基本的图形,其他的图形都是由它们组成的。

2. 直线和射线的性质直线是由无数个点连在一起形成的,它没有起点和终点。

射线是由一个起点和一个方向确定的,它有一个起点但没有终点。

直线上的任意两点可以确定一条直线,而射线上的任意两点可以确定一条射线。

直线和射线的性质包括平行、垂直和夹角等。

3. 角的概念和性质角是由两条射线共享一个端点形成的,它是用来度量两条射线之间的旋转程度。

角的度量单位是度或弧度。

角的性质包括角的大小、角的类型(锐角、直角、钝角)以及角的和等于360度等。

4. 三角形的性质三角形是由三条线段组成的闭合图形,它是平面几何中最基本的多边形。

三角形的性质包括内角和为180度、三边的关系(边长关系、角度关系)、三角形的分类(等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形)等。

5. 直角三角形的勾股定理和正弦定理、余弦定理直角三角形是一种特殊的三角形,其中一个角是直角(90度)。

直角三角形的勾股定理是一个重要的几何定理,它描述了直角三角形中两个直角边的平方和等于斜边的平方。

正弦定理和余弦定理是用来求解任意三角形的边长和角度的重要公式。

6. 平行线和平行四边形的性质平行线是在同一个平面内永远不相交的直线,它们的斜率相等。

平行四边形是具有两对平行边的四边形。

平行线和平行四边形的性质包括平行线的判定条件、平行四边形的性质(对边平等、对角线互相平分)等。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。

下面我们来详细总结一下这部分的重要知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。

当倾斜角为 90°时,直线的斜率不存在。

2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。

(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。

(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。

4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。

(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

高中数学竞赛中平面几何涉及的定理

高中数学竞赛中平面几何涉及的定理

1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法.2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理.3、几个重要的极值:到三角形三顶点距离之和最小的点——费马点。

到三角形三顶点距离的平方和最小的点—-重心。

三角形内到三边距离之积最大的点——重心.4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大. 在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小.6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像.三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用.4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理.7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质.三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图.四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴.五、其它抽屉原理。

容斤原理。

极端原理. 集合的划分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CF FA
1.
因为 AD BE CF 1,所以有 AD AD/ .由于点 D、D/都在线段 AB 上,所以点 D 与
DB EC FA
DB D/ B
D/重合.即得 D、E、F 三点共线.
注:证明方法与上面的塞瓦定理的逆定理如出一辙,注意分析其相似后面的规律.
四、托勒密定理
5.托勒密定理及其证明
4.梅涅劳斯定理的逆定理及其证明
定理:在 ABC 的边 AB、BC 上各有一点 D、E,在边
AC 的延长线上有一点 F,若 AD BE CF 1, DB EC FA
那么,D、E、F 三点共线.
证明:设直线 EF 交 AB 于点 D/,则据梅涅劳斯定理有
AD/ D/ B

BE EC

AD DE ,即 AD BC AC DE ————(1) AC BC
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
AB BE ,即 AB CD AC BE ————(2) AC CD
因此,
A/ B/

A/ D

B/C/

C/D .
AB BD BC BD
可得 A/ B/ B/C / AB A/ D BC C / D . BD
另一方面,
A/C /

A/ D ,即
A/C /

AC A/ D

AC CD
CD
AB A/ D BC C/ D AC A/ D
即证 CD C / D AD A/ D ,这是显然的.所以, A/ B/ B/C / A/C / ,即 A/、B/、C/
共线.所以 A/ B/ B 与 BB/C / 互补.由于 A/ B/ B DAB , BB/C/ DCB ,所以 DAB 与 DCB 互补,即 A、B、C、D 四点共圆.






从而得 AH DC .而 DC 2 OE ,所以 AH 2 OE .

因为 OE

1 2


OB

OC

,所以

AH


OB OC
——— ②

由①②得: OH OA OB OC ———— ③


另一方面, OG OA AG OA 2 GF OA GB GC .
定理:在 ABC 三边 AB、BC、CA 上各有一点 D、E、F,且 D、E、F 均不是 ABC 的顶点,
若 AD BE CF 1,那么直线 CD、AE、BF 三线共点. DB EC FA
证明:设直线 AE 与直线 BF 交于点 P,直线 CP 交 AB 于点 D/,则据塞瓦定理有
AB×CD + BC×AD AC×BD 所以 BE + DE BD,即得点 E 不在线段 BD 上,则据三角形的性质有 BE + DE > BD.所
以 AB×CD + BC×AD > AC×BD. 五、定理:从 ABC 外接圆上任意一点 P 向 BC、CA、AB 或其延长线引垂线,垂足分别为 D、
注:(1)采用同一法证明可以变被动为主动,以便
充分地调用题设条件.但需注意运用同一法证明时的唯一性.
(2)反复运用四点共圆的性质是解决此题的关键,要掌握好四点共圆的运用手法.
六、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC 的重心、外心、垂心分别用字母 G、O、 H 表示.则有 G、O、H 三点共线(欧拉线),且满足 OH 3OG .
且 AE AB ————(2) AD AC
则由 DAE CAB 及(2)可得 DAE ∽ CAB .于是 AD×BC = DE×AC ————(3)
由(1)+(3)可得 AB×CD + BC×AD = AC×( BE + DE ) 因为 A、B、C、D 四点不共圆,据托勒密定理的逆定理可知
且 AE AB AD AC
———(2)
则由 DAE CAB 及(2)可得 DAE ∽ CAB .于是有
AD×BC = DE×AC ———(3)
由(1)+(3)可得 AB×CD + BC×AD = AC×( BE + DE ).
据条件可得 BD = BE + DE,则点 E 在线段 BD 上.则由
欲证
=
,即证
BD
CD
AB CD A/ D BC CD C/ D AC BD A/ D
即 BC CD C/ D ( AC BD AB CD) A/ D . 据条件有 AC BD AB CD AD BC ,所以需证
BC CD C/ D AD BC A/ D ,
AD / D/B

BE EC
CF FA
1.
因为 AD BE CF 1,所以有 AD AD/ .由于点 D、
DB EC FA
DB D/ B
D/都在线段 AB 上,所以点 D 与 D/重合.即得 D、E、F 三
点共线.
注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证.
三、梅涅劳斯定理
BDA PBA BAD 180(ΔA B D 的内角和)
因此A ,B ,C ,D 四点共圆
特别地,当 ADB ACB =90 时,四边形 ABCD 有一外接圆哦鲕
二、塞瓦定理
1.塞瓦定理及其证明
定理:在 ABC 内一点 P,该点与 ABC 的三个顶点相连所在的三条直线分别交 ABC 三边 AB、BC、CA 于点 D、E、F,且 D、E、F 三点均不是 ABC 的顶点,则有
定理:如果凸四边形 ABCD 满足 AB×CD + BC×AD = AC×BD,那么 A、B、C、D 四点共
圆.
证法 1(同一法):
在凸四边形 ABCD 内取一点 E,使得 EAB DAC , EBA DCA ,则 EAB ∽ DAC .
可得 AB×CD = BE×AC ———(1)
所以
AD DB

SAPC SBPC
.同理可得 BE EC

SAPB SAPC
, CF FA

SBPC SAPB

三式相乘得 AD BE CF 1. DB EC FA
注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就 可以产生出“边之比”.
2.塞瓦定理的逆定理及其证明
所以, FEP = BCP,即 D/EP = D/CP,可得
C、D/、P、E 四点共圆.
所以, CD/P + CEP = 1800。而 CEP = 900, 所以 CD/P = 900,即 PD/ BC.
由于过点 P 作 BC 的垂线,垂足只有一个,所以点 D
与 D/重合,即得 D、E、F 三点共线.
AD BE CF 1. DB EC FA 证明:运用面积比可得 AD SADP SADC .
DB SBDP SBDC 根据等比定理有
SADP SADC SADC SADP SAPC , SBDP SBDC SBDC SBDP SBPC
定理:凸四边形 ABCD 是某圆的内接四边形,则有 AB·CD
+ BC·AD = AC·BD.
M
证明:设点 M 是对角线 AC 与 BD 的交点,在线段 BD 上找
一点,使得 DAE = BAM.
E
因为 ADB = ACB,即 ADE = ACB,所以 ADE∽
ACB,即得

而 GB GO OB,GC GO OC ,所以

OG


OA
2

GO

OC

OB


OG

1 3


OA

OB

OC

—— ④


由③④得: OH 3 OG .结论得证.
注:(1)运用向量法证明几何问题也是一种常用方法,而且有其独特之处,注意掌握向 量对几何问题的表现手法;
EBA DCA ,得 DBA DCA ,这说明 A、B、C、D 四点共
圆.
证法 2(构造转移法)
延长 DA 到 A/,延长 DB 到 B/,使 A、B、B/、A/四
点共圆.延长 DC 到 C/,使得 B、C、C/、B/四点共圆.(如
果能证明 A/、B/、C/共线,则命题获证)
那么,据圆幂定理知 A、C、C/、A/四点也共圆.
哦鲕
证明:如上图,连 CD,AB,设 AC 与 BD 交于点 P 哦鲕
因为 ADB ACB ,所以哦鲕
ΔC P B ∽ΔD P A
所以有 PC PB PD PA
再注意到CPD BPA
因此ΔCPD∽ΔBPA
因此PCD PBA
哦鲕
由此BCD BAD BCA PCD BAD
E、F,则 D、E、F 三点共线. 证明:如图示,连接 PC,连接 EF 交 BC 于点 D/,连接 PD/.
因为 PE AE,PF AF,所以 A、F、P、E 四点共圆,可得 FAE = FEP.
因为 A、B、P、C 四点共圆,所以 BAC = BCP, 即 FAE = BCP.
3.梅涅劳斯定理及其证明
定理:一条直线与 ABC 的三边 AB、BC、CA 所在直线分别交于点 D、E、F,且 D、E、F 均不是 ABC 的顶点,则有
相关文档
最新文档