第3章 噪声与干扰

合集下载

3-移动通信的噪声和干扰

3-移动通信的噪声和干扰

作业
1、移动通信系统中主要干扰有哪些?
2、互调产物产生的原因是什么? 3、减小发射机和接收机互调干扰的措施是什么? 4、已知发射机T1T2输出功率为10W,发射机互调转效损耗为15dB, 已知单向器正向损耗(插入损耗)为1dB,反向隔离度为20dB, 混合电器正向损耗为3dB,隔离度为25dB,试求到达天线上的互调 产物的功率(dBw)。 5、给出一组工作频率:150.050MHz,150.275MHz,150.350MHz, 150.375MHz,150.525MHz,150.950MHz,试判断这组频率是否有 3阶互调分量落入有用频道之内?给出判断的方法。
3.1噪声和干扰的基本概念
噪声的来源及分类:
噪声是指使通信质量受到损害的,且与所传输的信号无关 的各种形式的寄生干扰的总称。
大气 噪声 自然 噪声 外部 噪声 人为 噪声 噪声 热噪 声 内部 噪声 散弹 噪声 电源 噪声 宇宙 噪声 热噪 声
3.1噪声和干扰的基本概念
噪声的来源及分类:
依据特征不同,噪声可分为单频噪声,脉冲噪声和起伏噪声三种。
耦合损耗Lc:发射机1的输出功率与进入发射机2的输出端的功率之 比,分用天线时垂直分离隔离度较大。一般大于30dB

互调转换损耗Li:在发射机2输出端上,来自发射机1的功率与来自 发射机 2 的信号产生的互调产物的功率之比,一般为 5~20dB ,典型值 为15dB,且与频距有关。

传输损耗Lp:发射机2输出端到被干扰接收机输入端间互调干扰信 号的传输损耗。
3.4互调干扰
1、互调干扰的产生原因
互调干扰:当两个或多个不同频率的信号同时输入到非线性电路时,
由于非线性的作用,会产生许多谐波和组合频率分量(互调产物),当

通信原理信道与讲义噪声第3章

通信原理信道与讲义噪声第3章

通信中常见的几种噪声
所谓白噪声是指它的功率谱密度函数在整个频率域(-∞<ω <+∞)内是常数,即服从均匀分布。我们称它为白噪声,因为它 类似于光学中包括全部可见光频率在内的白光。
理想的白噪声功率谱密度通常被定义为
Pn
()def
n0 2
( )
式中n0的单位是W/Hz 。
通常,若采用单边频谱,即频率在0到无穷大范围内时, 白噪声的功率谱密度函数又常写成
在通信理论分析中,常常通过求其自相关函数或方差来计算噪 声的功率。
高斯分布的密度函数
正态概率分布函数还经常表示成与误差函数相联系的形 式,所谓误差函数,它的定义式为
互补误差函数
er(fx) 2 xez2dz
π0
er(x f)c1er(xf)2 xez2dz
高斯型白噪声
所谓高斯白噪声是指噪声的概率密度函数满足正态分布 统计特性,同时它的功率谱密度函数是常数的一类噪声。
(a) 一对输入端, 一对输出端; (b) m对输入端,n对输出端
对于二对端的信道模型来说,它的输入和输出之间的关系 式可表示成
eo(t)f[ei(t) ]n(t)
式中, ei(t)——输入的已调信号; eo(t)——信道输出波形; n(t)——信道噪声(或称信道干扰); f[ei(t)]——表示信道对信号影响(变换)的某种函数关系
通信原理信道与噪声第3章
精品jin
3.1 信道特性
信道的定义 通俗地说,信道是指以Байду номын сангаас输媒介(质)为基础的信号通路。
具体地说,信道是指由有线或无线电线路提供的信号通路;抽 象地说,信道是指定的一段频带,它让信号通过,同时又给信 号以限制和损害。 信道的作用是传输信号。

干扰与噪声

干扰与噪声

串连电压源 形式
并连电流源
形式
4 从干扰对电路作用的形式分类 (续)
共模干扰:共模干扰又称共态干扰、同 相干扰、对地干扰及纵向干扰。
它是相对于公共的电位基准点(通常为接 地点),在检测系统的两个输入端子上同时出 现干扰。它虽不直接对测量结果造成影响, 但当信号输入电路不对称时,它会转化为差 模干扰,进而对测量产生影响。
共模干扰等效电路
4 从干扰对电路作用的形式分类 (续)
共模干扰抑制比:
式中: Kd——差增益;
Km——共模增益。
5.1.3 噪声形成干扰的三要素
噪声形成干扰必需具备三个条件,噪声 源、对噪声敏感的接收电路和噪声源到 接收电路之间的耦合通道。 噪声源 耦合通道 接收电路
差模干扰进入电路后使检测系统的一个信号输入端子相对于另一个信号输入端子的电位发生变化即干扰信号与有用信号按电势源串联起来作一起进入输入端
5.1 干扰与噪声
(1)噪声指在信号检测的领域内,检测 系统检测和传输的有用信号以外的一切 信号均被称为噪声。
(2)干扰指具有一定幅值和一定强度、 能够影响检测系统正常工作的噪声被称 为干扰。
差模干扰:差模干扰又称串模干扰、串 联干扰、正态干扰、常模干扰及横向干扰等。
差模干扰进入电路后,使检测系统的一 个信号输入端子相对于另一个信号输入端子 的电位发生变化,即干扰信号与有用信号按 电势源串联起来作一起进入输入端。因为这 种干扰和有用信号迭加起来直接作用于输入 端,所以它直接影响到测量结果。
3 从干扰出现的区域分类
(1) 内部干扰:来自检测系统内部的干 扰称为内部干扰。如电路的过渡过程、 寄生反馈、内部电磁场等引起的干扰, 都属于内部干扰。
(2)外部干扰。来自检测系统外部的 干扰称为外部干扰。如电网电压波动、 电磁辐射、高压电源漏电等,都属于 外部干扰。

环境噪声控制工程-第3章噪声的评价和标准

环境噪声控制工程-第3章噪声的评价和标准

n Ci Ci C1 C2 D ...... T1 T2 Ti i 1 Ti
Ci为Leqi声级下的实际暴露时间, Ti为标准允许暴露时间 D>1则表示超标
20 25 31.5 40 50 63 80 100 125 160
-50.5 -44.7 -39.4 -34.6 -30.2 -26.2 -22.5 -19.1 -16.1 13.4
200 250 315 400 500 630 800 1K 1.25K 1.60K
-10.9 -8.6 -6.6 -4.8 -3.2 -1.9 -0.8 0 +0.6 +1.0








3.1 噪声的评价量 3.1.1等响曲线.响度级和响度 响度和响度级实验证明,两个声源的声压相同若频率不同, 人耳的主观感觉是不一样的。亦即人耳对声音大小的感觉 不但与声压有关,并且与频率有直接关系。 例如大型离心压缩机与汽车的噪声,声压级均为90dB, 但人耳的感觉是前者比后者响得多、原因是前者的噪声以 高频成分为主,而后者则主要是低频声音。 由此可知,人耳对高频声音较为敏感,而对低频声则较为 迟钝。人们对人耳听觉与声压级及频率相互关系进行了大 量的实验和研究,得到了反映三者之间关系的曲线——等 响曲线,如图所示,纵坐标是声压级(或声压、声强), 横坐标是频率。 等响曲线是以1000Hz纯音作为基准声学信号,依照声压 级的概念提出一个“响度级”数,其单位称为“方” (phon),表示为LN。
哈斯(Hass)效应

人耳有声觉暂留现象,人对声音的感觉在声音消失后会暂 留一小段时间。 如果到达人耳的两个声音的时间间隔小于50ms,那么就 不会觉得声音是断续的。 直达声到达后50ms以内到达的反射声会加强直达声。直 达声到达后50ms后到达的“强”反射声会产生“回 声”——哈斯效应。 根据哈斯效应,人耳在多声源发声内容相同的情况下,判 断声源位置主要是根据“第一次到达”的声音。因此,剧 场演出时,多扬声器的情况下要考虑“声象定位”的问题。

第三章 声现象 第三节 制作隔音箱 (共36张PPT) 北师大版(2024) 八年级上册

第三章 声现象  第三节 制作隔音箱 (共36张PPT) 北师大版(2024)  八年级上册

听起来优美动听的声音
妨碍人们正常休息、学
物体按一定规律振动产生 的声音
物体做无规则振动产生 的声音

联系
乐音和噪声都是由物体振动产生的,并没有严格 的界限,有些声音从物理角度来看属于乐音,但 从环保角度来看却属于噪声
【例1】从物理学角度看,噪声和乐音的主要区别 是( D ) A.噪声的响度大,乐音的响度小 B.乐音是乐器发出的声音,噪声是机器发出的声音 C.乐音的音调低,噪声的音调高 D.乐音是发声体有规则振动发出的声音,噪声是 发声体无规则振动发出的声音
种植树木隔声
公路隔离墙
控制噪声的三种途径 3. 在接收处控制
放鞭炮时捂耳朵
直升机驾驶员戴耳罩
城市一般在主要街道、广场、
公园等公共场所设置噪声自动
检测和显示设施,以监控噪声
情况,加强管理;在一些路段禁
止机动车行驶或禁止使用喇叭等声响
装置,并设置相关标志、标线。
禁止 鸣笛 标志牌
噪声 显示牌
为了防治噪声污染, 我国于2021年12月颁布了 《中华人民共和国噪声污 染防治法》。这是用法律 的手段,保障公众健康, 保护和改善生活环境,维护社会和谐,推进生态文明 建设,促进经济社会可持续发展。我们应当增强噪声 污染防止意识,养成减少噪声产生的良好习惯,共同 维护声环境质量。
查找资料,了解不同材料的隔音或吸音效果, 为工厂车间的冲压机设计一个隔音箱。将你设计 的隔音箱制作成模型在班级进行展示,并从材料、 结构等方面交流你的设计方案。
比一比,看谁制作的隔音箱隔音效果最好, 并请同学们一起分析和讨论如何提升隔音效果, 为噪声污染治理贡献力量。
2. 设计隔音箱并制作模型
(1)设计:如图所示
观察与思考

移动通信中的噪声和干扰

移动通信中的噪声和干扰

移动通信中的噪声和干扰
移动通信中的噪声和干扰
移动通信中的噪声和干扰是影响通信质量和性能的重要因素。

在移动通信系统中,噪声是由各种源产生的随机波动,而干扰则是
指外部信号对通信系统的干扰。

噪声
噪声是由于电子元件的热运动和其他因素引起的无规律电磁波,它会对通信信号进行干扰和破坏。

在移动通信系统中,噪声主要包括:
1. 热噪声:由于传输介质和电子元件内部的热运动产生的电磁波;
2. 散弹噪声:由电子元件内电子的离散性引起的电磁波;
3. 交调噪声:由于不同频率的信号交叉混合而产生的电磁波。

噪声对通信系统的影响可以通过信噪比(信号与噪声的比值)
来衡量,信噪比越大,通信质量越好。

为了降低噪声的影响,通信
系统通常采用信号处理、误差检测和纠正等方法。

干扰
干扰是指环境中的其他电磁信号对通信系统的干扰。

在移动通信系统中,干扰主要来源于以下几个方面:
1. 邻近信道干扰:由于邻近频道的信号相互干扰导致的;
2. 同频干扰:由于系统内不同用户或不同基站之间的信号相互干扰导致的;
3. 多径干扰:由于信号在传播过程中发生多次反射、绕射、折射等导致的;
4. 外界干扰:来自于其他无线设备、电源设备、人造信号等的干扰信号。

干扰会导致通信信号的失真、丢失和误解等问题,降低通信的可靠性和性能。

为了减少干扰,通信系统通常采用多址技术、频率规划、功率控制和重复传输等方法。

,噪声和干扰是移动通信中不可避免的问题,对通信质量和性能产生重要影响。

通过合理的设计和优化,可以降低噪声和干扰对通信系统的影响,提高通信质量和性能。

通信原理(第3章)

通信原理(第3章)
随机过程在任意时刻的值是一个随机变量。
因此,随机过程看作是在时间进程中处于不同时刻的 随机变量的集合。
5
3.1 随机过程的基本概念
3.1.1 随机过程的分布函数
设 (t)表示一个随机过程,则它在任意时刻t1的值 (t1)是
一个随机变量,其统计特性可以用分布函数或概率密度函数来 描述。
➢ 随机过程 (t)的一维分布函数:(反应分布情况)
➢ | R(τ) | ≤ R(0)
【解】(1)先求(t)的统计平均值:
数学期望
a(t) E[ (t)]
2 0
A cos( c t
)
1
2
d
A
2
2
0 (cosct cos sin ct sin )d
A
2
[cos ct
2
cosd
0
sin ct
2
sind ]
0
0
21
3.2 平稳随机过程
自相关函数
R(t1,t2 ) E[ (t1 ) (t2 )]
第3章 随机过程
通信系统中用于表示信息的信号不可能是单一的 确定的, 而是各种不同的信号。信息就包含于出现这种 或那种信号之中.例如二元信息需用二种信号表示, 具 体出现哪个信号是随机的,不可能准确予测( 如能予测, 则无需通信了) 我们称这种具有随机性的信号为随机 信号。
通信系统中存在各种干扰和噪声,这些干扰和噪声 的波形更是各式各样,随机的不可予测的.我们称其为随 机干扰和随机噪声。 尽管随机信号和随机干扰(噪声)取何种波形是不可 预测的、随机的,但他们具有统计规律性。研究随机 信号和随机干扰统计规律性的数学工具是随机过程理 论。随机过程是随机信号和随机干扰的数学模型。 1

微弱信号检测第三章干扰噪声及其抑制

微弱信号检测第三章干扰噪声及其抑制

3.4 屏敝电缆的接地
3.4.1 电缆屏蔽层与芯线间的耦合 (1) 耦合模型
屏蔽层电 阻
is产生的磁通
屏蔽层与芯线间的互感
Lsis
定义
屏蔽层电感量
M
is
M Ls
3.4 屏敝电缆的接地
3.4.1 电缆屏蔽层与芯线间的耦合 (2) 屏蔽层截止频率 fc
is

Rs
s jLs
M Ls i jMis jLsis
n jLs Rs
3.4 屏敝电缆的接地
3.4.2 接地抑制电场耦合噪声 (1) 无屏敝导线间的容性耦合
u2

1
jRC jR(C
C2G
)
u1
R
1
(C C2G )
u2

C
C C2G
u1
与频率无关
u2
RC
u1
1 R(C C2G ) 2
R
1
(C C2G )
322 10lg r f 3r3r
磁场为主
RM

20 lg
4Zs
2π f 0r

14.6 10lg
r fr2 r
3.3 屏 敝
3.3.4 屏蔽效果 (1) 屏蔽总效果
S 20lg Ei Et
20lg Hi Ht

A R Bs
校正系数
Zs Zw 时
u2 jRCu1
与频率成线性
3.4 屏敝电缆的接地
3.4.2 接地抑制电场耦合噪声 (1) 无屏敝导线间的容性耦合
① 容性耦合的敏感度取决 于分布电容
② 放大器接收到的干扰噪 声强度正比于噪声源的强度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章噪声与干扰讲授内容:3.1 概述3.2 噪声3.3 额定功率和额定功率增益3.4 线性四端网络的噪声系数3.5 等效输入噪声温度3.6 接收灵敏度3.7 工业干扰与天电干扰3.1 概述噪声对有用信号的接收产生了干扰,当有用信号较弱时, 噪声的影响就更为突出, 严重时会使有用信号淹没在噪声之中而无法接收。

外部噪声:噪声从器件外部窜扰来。

噪声分为外部噪声和内部噪声。

内部噪声:噪声从器件内部生。

内部噪声源主要有电阻热噪声、晶体管噪声和场效应管噪声三种。

3.2 噪声3.2.1 电阻热噪声1、起伏噪声电流:电阻内部自由电子热运动在导体内形成微弱的电流, 由于这种电流呈杂乱起伏的状态,称为起伏噪声电流。

2、起伏噪声电压:起伏噪声电流流过电阻本身在其两端产生的电压称起伏噪声电压。

3、起伏噪声电压特征:起伏噪声电压的瞬时振幅和瞬时相位是随机的,且不规则地偏离平均值而起伏变化。

起伏噪声电压的平均值为零,均方值为一定值,即其功率频谱密度是一个常数,这种在整个无线电频段内具有均匀频谱的起伏噪声称为白噪声。

阻值为R的电阻产生的噪声电流功率频谱密度和噪声电压功率频谱密度分别为:其中:k=1.38×10-23J /K ;T 为电阻温度,以绝对温度计算。

在频带宽度为BW内产生的热噪声均方值电流和均方值电压分别为:一个实际电阻可以分别用噪声电流源和噪声电压源表示, 如图所示:例 2.5 试计算510k Ω电阻的噪声均方值电压和均方值电流各是多少?设T=290K ,BW=100k Hz。

解:I2n=4k ·T ·BW /R=4×1.38×10-23×290×105/510×103≈3.14×10-21A2U2n=4k·T·R·BW=4×1.38×10-23×290×510×103×105≈8.16×10-10V23.2.2 晶体管噪声晶体管噪声主要包括以下四部分。

1、热噪声⎪⎩⎪⎨⎧==kTRf s R kT f s U I4)(4)(()()⎪⎩⎪⎨⎧⋅=⋅=⋅=⋅=BWKTR BW f S U BW R KT BW f S I U nI n 4422构成晶体管的发射区、基区、集电区的体电阻和引线电阻产生的热噪声,其中以基区体电阻rbb ′的影响为主。

2、散弹噪声散弹噪声是晶体管的主要噪声源,它是由单位时间内通过PN结的载流子数目随机起伏而造成,本质上与电阻热噪声类似,属于均匀频谱的白噪声,其电流功率频谱密度为:其中:q=159×10-19库仑,I 0是通过PN 结的平均电流值。

说明:在I 0=0时,散弹噪声为零,但热噪声只要不是绝对零度总是存在。

3、分配噪声在晶体管中,由于基极电流与集电极电流的分配比例是随机的,从而造成集电极电流在静态值上下起伏变化,产生的噪声称为分配噪声。

分配噪声实际上也是一种散弹噪声,但它的功率频谱密度是随频率变化的, 频率越高,噪声越大。

4、闪烁噪声一般认为是晶体管表面清洁处理不好或有缺陷造成的,其特点是频谱集中在约1k Hz以下的低频范围,且功率频谱密度随频率降低而增大。

在高频工作时,可以忽略闪烁噪声。

3.2.3场效应管噪声沟道热噪声:场效应管的主要噪声源。

场效应管中沟道中多子的不规则热运动在场效应管的漏极电流中产生类似电阻的热噪声。

栅极漏电流散弹噪声:栅极漏电流随机起伏产生的类似散弹噪声的噪声。

场效应管的闪烁噪声在高频时同样可以忽略。

沟道热噪声和栅极漏电流散弹噪声的电流功率频谱密度为:其中:gm 是场效应管跨导,Ig 是栅极漏电流。

()02qI f S I =()()栅极漏电流散弹噪声沟道热噪声→=→⎪⎭⎫⎝⎛=g I m I qI f S g KT f S 23243.3额定功率和额定功率增益信号额定功率:指电压信号源 可能输出的最大功率。

当负载阻抗RL 与信号源阻抗Rs 匹配时,信号源输出功率最大,即:可见,额定功率是表征信号源的一个参量, 与其实际负载值无关。

电阻R 的噪声额定功率为:说明:(1)、电阻的噪声额定功率只与温度及通频带有关, 而与本身阻值和负载无关(注意, 实际功率是与负载有关的)。

(2)、 这一结论可以推广到任何无源二端网络。

额定功率增益GPA : 一个线性四端网络的输出额定功率 PAo 与输入额定功率PAi 的比值。

即: 例3.6 求图例所示四端网络的额定功率增益。

解:图示四端网络输入端额定功率: 输出端额定功率为: 额定功率增益: 说明:额定功率增益是表征线性四端网络的一个参量。

只要网络与其信号源电路确定,则额定功率增益就是一个定值,与该网络输入、输出电路是否匹配无关。

4422SS S S A R I R U P ==BWT K RBW f S R U P U n nA ⋅⋅=⋅==4)(42AiA pAP P G 0=S SAi R U P 42=)(420R R U P S SA +=)(2R R R P P G S Ai AO PA +==⋅SU3.4信噪比:指四端网络某一端口处信号功率与噪声功率之比。

信噪比SNR(Signal to Noise Ratio)通常用分贝数表示, 写作:其中:Ps 、Pn 分别为信号功率与噪声功率。

1 噪声系数定义放大器的噪声系数NF(Noise Figure)定义为输入信噪比与输出信噪比的比值, 即:上述定义可推广到所有线性四端网络。

通常规定:Pni :是输入信号源内阻Rs 的热噪声产生在放大器输入端的噪声功率。

T0:是Rs 的温度规定为290K时的标准噪声温度 。

Pno:是由Rs 的热噪声和放大器内部噪声共同在放大器输出端产生的总噪声功率。

系数” 。

如果用分贝数表示, 则写作:说明:从上定义式可以看出, NF 是一个大于或等于1的数。

其值越接近于1, 则表示该放大器的内部噪声性能越好。

2 噪声系数的计算式用额定功率来代替实际功率,即不考虑实际负载的大小, 仅考虑一种最佳情况。

则噪声系数可写成:根据GPA 定义, 上式又可写成:其中 dB p p SNR nslg10=00//n s nisi p P pP NF =dBp p p p NF noso nisi //lg10=00//nA sA nAi sAi P P P P NF =nAinAo PA P P G NF 1=BWkT P nAi 0= nAnpA nAi nA P G P p +=0PnAn 是放大器内部噪声额定功率。

把这两个式子代入式 可得:3由上式可得放大器内部噪声额定功率PnAn 的表达式, 即: PnAn=(NF-1)·GpA·K·T0·BW当NF=1时,PnAn =0,进一步表明噪声系数是衡量放大器内部噪声性能的参数。

4 级联噪声系数设n=2,两级放大器噪声系数和额定功率增益分别为NF1、NF2和GPA1、GPA2,且假定通频带也相同。

则总输出噪声额定功率 PnAo 由三部分组成, 即:PnA0=PnAi GPA1GPA2+ PnAn1GPA2+PnAn2其中: PnAn1=(NF1-1)·GPA1·k·T0·BW PnAn2=(NF2-1)·GPA2·k·T0·BW将有关等式代入PnA0=PnAi GPA1GPA2+ PnAn1GPA2+PnAn2中,再将PnAi 、PnA0表达式代入式:最后可求得两级放大器总噪声系数为:对于n 级放大器, 将其前(n-1)级看成是第一级,第n 级看成是第二级,可推导出n级放大器总的噪声系数为:说明:(1)、在多级放大器中, 各级噪声系数对总噪声系数的影响,前级的影响比后级的影响大, 且总噪声系数还与各级的额定功率增益有关。

所以, 降低前级放大器(尤其是第一级)的噪声系数, 增大前级放大器(尤其是第一级)的额定功率增益成为减小多级放大器的nAinAoPA P P G NF 1=BWT K G P P G P G P NF PA nAnnAi PA nAn PA nAi ⋅⋅⋅+=+=01nAinAoPA P P G NF 1=1211PA G NF NF NF -+=)1(11121211 (1)1--++-+-+=n PA PA n PA PA PA G G NF G G NF G NF NF NF噪声系数措施。

(2)、上述关于放大器噪声系数的分析结果适用于所有线性四端网络。

5 无源四端网络的噪声系数无源四端网络内部含有耗能电阻, 从噪声角度,可以等效为一个电阻网络。

根据PnA 表达式,电阻的噪声额定功率与阻值无关,均为k ·T ·BW ,即:PnAi=PnAo=k ·T ·BW由此得无源四端网络噪声系数:例2.7某接收机由高放、混频、中放三级电路组成。

已知混频器的额定功率增益GPA2=0.2,噪声系数NF2=10dB ,中放噪声系数NF3=6dB ,高放噪声系数NF1=3dB 。

如要求加入高放后使整个接收机总噪声系数降低为加入前的十分之一, 则高放的额定功率增益GPA1应为多少?解: 先将噪声系数分贝数进行转换。

3dB 、10dB 、6dB 分别对应为2、10、4。

因为未加高放时接收机噪声系数:加高放后接收机噪声系数应为:又:所以:说明:1、加入一级高放后使整个接收机噪声系数大幅度下降,其原因是整个接收机的噪声系数不是各级噪声系数的简单迭加,而是各有一个不同的加权系数。

2、未加高放前作为第一级的混频器噪声系数较大,额定功率增益小于1; 加入后的第一级高放噪声系数小, 额定功率增益大。

所PAG NF 1=252.014101232=-+=-+=PA G NF NF NF 5.2101=='NF F N 32312111PA PA PA G G NF G NF NF F N -+-+='12321/)1()1(NF F N G NF NF G PA PA -'-+-=dB8.164825.22.0/)14()110(==--+-=以 第一级采用低噪声高增益电路是极其重要的。

3.5 等效输入噪声温度等效输入噪声温度Te (以下简称噪声温度)是衡量线性四端网络噪声性能的另一个参数。

噪声温度Te 是将实际四端网络内部噪声看成是理想无噪声四端网络输入端信号源内阻Rs 在温度Te 时所产生的热噪声,此时,Rs 的温度变为T0+Te ,这种等效关系如上图 所示。

将PnAn 表达式代入下式可得:P nAo =P nAi G pA +P nAn =k·T 0·BW·G PA +(NF-1)·GpA·k·T0·BW = k·T 0·BW·G PA ·NF由上图(b )可得: PnAo =k·(T0+Te)·BW·GPA 由上两式可得Te 与NF 的关系式为:NF=1+ 或 Te=(NF-1)T0 可见Te值越大, NF 值越大,四端网络的噪声性能越差。

相关文档
最新文档