初二数学第五章单元测试题

合集下载

八年级上册数学第五章相交线与平行线单元试卷检测题(WORD版含答案)

八年级上册数学第五章相交线与平行线单元试卷检测题(WORD版含答案)

八年级上册数学第五章相交线与平行线单元试卷检测题(WORD 版含答案)一、选择题1.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45°2.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个3.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°4.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒5.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°6.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个7.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( )A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED8.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以29.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定10.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个 11.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线12.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A.34°B.36°C.38°D.68°二、填空题13.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a <4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.14.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.15.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM 的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.16.已知:如图放置的长方形ABCD和等腰直角三角形EFG中,∠F=90°,FE=FG=4cm,AB=2cm,AD=4cm,且点F,G,D,C在同一直线上,点G和点D 重合.现将△EFG沿射线FC向右平移,当点F和点C重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm2,则△EFG 向右平移了____cm.17.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.18.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔19.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.22.如图①,已知AB ∥CD ,一条直线分别交AB 、CD 于点E 、F ,∠EFB =∠B ,FH ⊥FB ,点Q 在BF 上,连接QH .(1)已知∠EFD =70°,求∠B 的度数;(2)求证: FH 平分∠GFD .(3)在(1)的条件下,若∠FQH =30°,将△FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH 与△EBF 的某一边平行?23.()1如图1,//,40,130AB CD AEP PFD ∠=︒∠=︒.求EPF ∠的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P 作//,PM AB140AEP ∴∠=∠=︒( )//,AB CD (已知)//,PM CD ∴( )2180PFD ∴∠+∠=.( )130,PFD ∠=︒218013050∴∠=︒-︒=.12405090∴∠+∠=︒+︒=.即90EPF ∠=.()2如图2,//,AB CD 点P 在,AB CD 外,问,,PEA PFC P ∠∠∠之间有何数量关系.请说明理由;()3如图3所示,在()2的条件下,已知,P a PEA ∠=∠的平分线和PFC ∠的平分线交于点,G 用含有a 的式子表示G ∠的度数是 ____.(直接写出答案,不需要写出过程)24.如图,已知:点A C 、、B 不在同一条直线,ADBE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.25.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数.26.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.27.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD . 拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .28.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过C 作CM ∥直线l 1,求出CM ∥直线l 1∥直线l 2,根据平行线的性质得出∠1=∠MCB =25°,∠2=∠ACM ,即可求出答案.【详解】过C 作CM ∥直线l 1,∵直线l 1∥l 2,∴CM ∥直线l 1∥直线l 2,∵∠ACB =60°,∠1=25°,∴∠1=∠MCB =25°,∴∠2=∠ACM =∠ACB -∠MCB =60°-25°=35°,故选:B .【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.2.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B .3.C解析:C【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.5.B解析:B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.6.A解析:A【解析】试题分析:根据题意可知:①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.故选:A7.C解析:C【解析】试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA,∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。

(北师大版)初中数学八年级上册 第五章综合测试试卷02及答案

(北师大版)初中数学八年级上册 第五章综合测试试卷02及答案

第五章综合测试一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的为()A .234351x y x y ì+=ïí-=ïîB .128xy x y =ìí+=îC .3134a b b a-=ìïí-=ïîD .34795a b a b +=ìí-=î2.方程组10216x y x y +=ìí+=î的解是()A .64x y =ìí=îB .56x y =ìí=îC .36x y =ìí=îD .28x y =ìí=î3.用加减法解方程组235327x y x y -=ìí-=î①,②,下列解法错误的是( )A .32´-´①②,消去xB .23´-´①②,消去yC . ()32´-+´①②,消去xD .()23´-´-①②,消去y4.已知2,3x m y m =ìí=î是二元一次方程214x y +=的解,则m 的值是()A .2B .2-C .3D .3-5.已知24,328,a b a b +=ìí+=î,则a b +等于()A .3B .83C .2D .16.实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( )A .4种B .3种C .2种D .1种7.一副三角尺按如图所示的方式摆放,且1Ð比2Ð大50°,若设1x Ð=°,2y Ð=°,则可得到的方程组为()A .50180x y x y =-ìí+=îB .50180x y x y =+ìí+=îC .5090x y x y =-ìí+=îD .5090x y x y =+ìí+=î(第7题)(第8题)(第10题)8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是()A .203210x y x y +-=ìí--=îB .2103210x y x y --=ìí--=îC .2103250x y x y --=ìí+-=îD .20210x y x y +-=ìí--=î9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为()A .530020015030x y x y +=ìí+=îB .530015020030x y x y +=ìí+=îC .302001505300x y x y +=ìí+=îD .301502005300x y x y +=ìí+=î10.为增强居民的节水意识,某市自2020年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (3m )的函数关系的图象如图所示.如果某个家庭2020年全年上缴水费1180元,那么该家庭2020年用水的总量是( )A .3240m B .3236m C .3220m D .3200m 二、填空题(每题3分,共24分)11.方程组2,21x y x y +=ìí-=î的解是________.12.在方程1354x y -=中,用含x 的代数式表示y 为________.13.用加减消元法解方程组31,421,x y x y +=-ìí+=î①②由2´-①②得________.14.若方程24323241a b a b x y +---+=是关于x ,y 的二元一次方程,则a =________,b =________.15.若关于x 、y 的二元一次方程31x ay -=有一个解是32x y =ìí=î,则a =________.16.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6km 的公路,如果平均每天的修建费y (万元)与修建天数x (天)之间在30120x ≤≤范围内,且具有一次函数的关系,如下表所示.x 506090120y40383226则y 关于x 的函数表达式为________(写出自变量x 的取值范围).17.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为________.18.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,25题11分,共66分)19.解下列方程组.(1)37,528;x y x y -=ìí+=î①②(2)25,24,2310.x y z x y z x y z +-=ìï-+=íï+-=î①②③20.根据要求,解答下列问题:(1)解下列方程组(直接写出方程组的解即可):①23,23x y x y +=ìí+=î的解为________;②3210,2310x yx y+=ìí+=î的解为________;③24,24x yx y-=ìí-+=î的解为________;(2)以上每个方程组的解中,x与y的大小关系为________;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.21.若方程组,ax y bx by a+=ìí-=î的解是1,1,xy=ìí=î求()()()2a b a b a b+--+的值.22.如图,直线11:l y x=+与直线2:l y mx n=+相交于点()1,P b.(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解.23.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.24.某市准备用灯笼美化红旗路,需用A,B两种不同类型的灯笼200个,且B灯笼的个数是A灯笼的2 3 .(1)求A,B两种灯笼各需多少个;(2)已知A,B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用?25.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?第五章综合测试答案一、1.【答案】D 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】A 6.【答案】C 7.【答案】D 8.【答案】D 9.【答案】C【解析】直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=ìí+=î.故选C.10.【答案】C【解析】当180x ≥时,设函数解析式为y kx b =+,将点()180,900,()260,1460代入,可得900180,1460260,k b k b =+ìí=+î解得7,360,k b =ìí=-î故函数解析式为7360y x =-.由题意,得73601180x -=,解得220x =,即该家庭2016年用水总量是3220m .二、11.【答案】1,1x y =ìí=î12.【答案】1220y x =-13.【答案】23x =-14.【答案】2 115.【答案】416.【答案】()150301205y x x =-+≤≤17.【答案】()()200115%110%174x y x y +=ìí-+-=î【解析】设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x 、y 的二元一次方程组,此题得解.解:设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意得:()()200115%110%174x y x y +=ìí-+-=î.故答案为:()()200115%110%174x y x y +=ìí-+-=î.18.【答案】20【解析】可设小强同学生日的月数为x ,日数为y ,根据等量关系:①强同学生日的月数减去日数为2,②月数的两倍和日数相加为31,列出方程组求解即可.解:设小强同学生日的月数为x ,日数为y ,依题意有2231x y x y -=ìí+=î,解得119x y =ìí=î,11920+=.故答案为20.三、19.【答案】(1)解:由①,得37.y x =-③,把③代入②,得56148x x +-=,解得2x =.把2x =代入③,得1y =-.所以原方程组的解为21x y =ìí=-î.(2)解:+①②,得39x z -=.④+②③,得4214x z -=.⑤将④⑤联立组成方程组为39,4214.x z x z -=ìí-=î解得2,3.x z =ìí=-î.将2x =,3z =-代入①,得()2235y +-´-=.解得3y =-.所以原方程组的解为2,3,3.x y z =ìï=-íï=-î.20.【答案】解:(1)①1,1x y =ìí=î②2,2x y =ìí=î③4,4x y =ìí=î(2)x y=(3)3225,2325,x y x y +=ìí+=î解为5,5.x y =ìí=î21.【答案】解:把1,1x y =ìí=î代入方程组,得1,1,a b b a +=ìí-=î可得1a b -=-,1a b +=.()()()()221112a b a b a b \+--+=--´=.22.【答案】解:(1)∵()1,b 在直线1y x =+上,∴当1x =时,112b =+=.(2)∵直线11:l y x =+与直线2:l y mx n =+相交于点()1,P b ,∴方程组10,0x y mx y n -+=ìí-+=î的解是1,2.x y =ìí=î23.【答案】解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,则5352x y x y +=ìí+=î,解得:1324724x y ì=ïïíï=ïî,答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.24.【答案】解:(1)设需A 种灯笼x 个,B 种灯笼y 个.根据题意,得200,2.3x y y x +=ìïí=ïî解得x 120,y 80.=ìí=î.答:A 种灯笼需120个,B 种灯笼需80个.(2)1204080609600´+´=(元).答:这次美化工程购置灯笼需9600元.25.【答案】解:(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:818170010201700300x y x y +=ìí+=+î,解得:19010x y =ìí=î.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果()120a -千克,根据题意得:()1020120102400w a a a =+-=-+.∵甲种水果不超过乙种水果的3倍,()3120a a \-≤,解得:90a ≤.100k =-Q <,∴w 随a 值的增大而减小,∴当90a =时,w 取最小值,最小值109024001500-´+=.∴月份该店需要支付这两种水果的货款最少应是1500元.。

【苏科版】八年级数学上册第五章《平面直角坐标系》单元检测卷(含答案)

【苏科版】八年级数学上册第五章《平面直角坐标系》单元检测卷(含答案)

【苏科版】八年级数学上册第五章《平面直角坐标系》单元检测卷(含答案)第五章《平面直角坐标系》单元检测卷(满分:100分时间:60分钟)一.选择题(每题2分,共16分)1.如图,P1,P2,P3这三个点在第二象限内的有( )A.P1,P2,P3B.P1,P2C.P1,P3D.P12.若将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)3.若点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )A.a<-1B.-1<a<3< p="">2C.-32<a</a24.甲.乙两位同学用围棋子做游戏,如图,现轮到黑棋下子,黑棋下子后白棋再下一子,使黑棋的5个旗子组成轴对称图形,白棋的5个旗子也成轴对称图形.[说明:棋子的位置用数对表示,如A点在(6,3)]则下列下子方法不正确的是( )A.黑(3,7),白(5,3)B.黑(4,7),白-(6,2)C.黑(2,7),白(5,3)D.黑(3,7),白(2,6)5.定义:平面内的直线l1与l2相交于点O,若对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( )A.2B.1C.4D.36.一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是( )A.前3h中汽车的速度越来越快B.3h后汽车静止不动C.3h后汽车以相同的速度行驶D.前3h汽车以相同的速度行驶7.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P的个数是( )A.2B.3D.58.图中反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为akm,小刚在青稞地除草比在菜地浇水多用了bmin,那么a,b的值分别为( )A.1,8B.0.5,12C.1,12D.0.5,8二.填空题(每题2分,共20分)9.一栋办公大楼共8层,每层有12个办公室,如果201室表示2楼的第1个办公室,那么611表示楼的第_______个办公室.10.如果B(n2-4,-n-3)在y轴上,那么n=_______.11.如图,把QQ笑脸放在直角坐标系中,若左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此QQ笑脸向右平移3个单位后,右眼B的坐标是_______.12.小明的父母出去散步,从家走了20min到一个离家300m的报亭,母亲随即按原速度返回家.父亲在报亭看了10min报纸后,用15min返回家.下列表示父亲.母亲离家距离与时间之间的关系的图像分别是_______.(只需填写序号)13.在平面直角坐标系中,若一只青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A'处,则点A'的坐标为_______.14.如图,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移到A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=_______.15.若点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_______.16.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P 的坐标为_______.17.如图所示是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),则你找到的密码钥匙是(_______),破译“正做数学”的真实意思是“_______”.18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2012个点的横坐标为_______.三.解答题(共64分)19.(本题6分)下表记录的是某天一昼夜温度变化的数据.请根据表格中的数据回答下列问题:(1)早晨6时和中午12时的气温各是多少度?(2)这一天的温差是多少度?(3)这一天内温度上升的时段是几时至几时?20.(本题8分)写出图中“小鱼”上所标各点的坐标,并回答下列问题.(1)点B,E的位置有什么特点?(2)从点B与点E.点C与点D的位置看,它们的坐标有什么特点?21.(本题6分)已知点M(3,2)与点N(x,y)在同一条平行于x 轴的直线上,且点N到y轴的距离为5,试求点N的坐标.22.(本题6分)写出图中△ABC各顶点的坐标并求出此三角形的面积.23.(本题9分)如图所示为一风筝的图案.(1)写出图中所标各个顶点的坐标;(2)若图中各点的纵坐标保持不变,横坐标分别乘2,所得各点的坐标分别是什么?所得图案与原来图案相比有什么变化?(3)若图中各点的横坐标保持不变,纵坐标分别乘-2,所得各点的坐标分别是什么?所得图案与原来(1)中的图案相比有什么变化?24.(本题12分)如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.25.(本题12分)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P的对应点P'.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A'B',其中点A,B的对应点分别为A',B'.如图1,若点A表示的数是-3,则点A'表示的数是_______;若点B'表示的数是2,则点B表示的数是_______;已知线段AB上的点E经过上述操作后得到的对应点E'与点E重合,则点E表示的数是_______.(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横.纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移挖个单位(m>0,n>0),得到正方形A'B,C,D'及其内部的点,其中点A,B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F 重合,求点F的坐标.参考答案一.选择题1.D2.D3.B4.C5.C6.B7.C8.D二.填空题9.6 11 10.±2 11.(3,3) 12.④,②13.(1,2) 14.2 15.25 16.(2,4)或(3,4)或(8,4) 17.x+1,y+2 祝你成功18.45三.解答题19.(1)-4℃,7.5℃(2)16.5℃(3)4时~14时20.A(-2,0),B(0,-2),C(2,-1),D(2,1),E(0,2).(1)点B,E关于x轴对称(2)横坐标相等,纵坐标互为相反数21.(3,-5),(3,5)22.9.523.(1)图中所标各顶点的坐标分别为A(0,4),B(-3,1),C (-3,-1),D(0,-2),E(3,-1),F(3,1) (2)所得各点的坐标分别为A(0,4),B(-6,1),C(-6,-1),D(0,-2),E(6,-1),F(6,1).与原图案相比,新图案在x轴方向上扩大到原来的2倍,在y轴方向上不变(3)所得各点的坐标分别为A(0,-8),B(-3,-2),C(-3,2),D(0,4),E(3,2),F(3,-2).与原图案相比,新图案在y轴方向上扩大到原来的2倍,方向相反,在x轴方向上不变24.D(0,5)25.(1)0,3,32(2)F(1,4)</a<3<>。

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
一、单选题
1.如图,在平面直角坐标系中,一次函数y=kx+b和y=mx+n相交于点(2,-1)则关于x、y的方程组 的解是()
A. B. C. D.
2.某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为 人,组数为 组,则列方程组为()
参考答案:
1.B
2.D
3.C
4.A
5.C
6.B
7.C
8.B
9.D
10.A
11. (答案不唯一)
12.2
13.2或
14.
15.
16.4
17.9
18.5 2或3
19.(1)h是x的一次函数
(2)9只
20.(1)
(2)
21.(1)30;(2)①小丽步行的速度为 ,小明步行的速度为 ;②点 ,点C表示:两人出发 时,小明到达甲地,此时两人相距 .
(1)丽丽所买皮衣与毛衣的单价各是多少元?
(2)丽丽可以到线上客服处领取多少元补贴?
24.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足 ,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、E三点的坐标;
(2)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.
22.1
23.(1)丽丽所买皮衣的单价是 元,毛衣的单价是 元
(2) 元
24.(1)A(0,3),B(-1,0),E(2,1),(2) (-4,1)(-3,4)(-2,2)
A. B. C. D.
9.若 是二元一次方程组 的解,则 的值为()

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。

1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。

八年级第五章相交线与平行线单元测试卷练习(Word版 含答案)

八年级第五章相交线与平行线单元测试卷练习(Word版 含答案)

八年级第五章相交线与平行线单元测试卷练习(Word 版 含答案)一、选择题1.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º2.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )A .1个B .2个C .3个D .4个3.如图,AD ∥CE ,∠ABC =95°,则∠2﹣∠1的度数是( )A .105°B .95°C .85°D .75° 4.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒5.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°6.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°7.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++- 8.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A .30°B .35°C .36°D .45°9.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100° 10.如图,直线a ∥b ,AC ⊥AB 于A ,AC 交直线b 于点C ,∠1=50°,则∠2的度数是( )A .50°B .40°C .25°D .20°11.下列命题中,其逆命题为真命题的是( )A .若a =b ,则a 2=b 2B .同位角相等C .两边和一角对应相等的两个三角形全等D .等腰三角形两底角不相等12.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4二、填空题13.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .14.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.15.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________16.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.17.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.18.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.19.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.(感知)如图①,AB ∥CD ,点E 在直线AB 与CD 之间,连结AE 、BE ,试说明∠BAE+∠DCE=∠AEC ;(探究)当点E 在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°; (应用)点E 、F 、G 在直线AB 与CD 之间,连结AE 、EF 、FG 和CG ,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.22.(1)问题发现如图①,直线AB ∥CD ,E 是AB 与AD 之间的一点,连接BE ,CE ,可以发现∠B +∠C =∠BEC .请把下面的证明过程补充完整:证明:过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC ( )∴∠C =∠CEF .( )∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C = (等量代换)即∠B +∠C =∠BEC .(2)拓展探究如果点E 运动到图②所示的位置,其他条件不变,求证:∠B +∠C =360°﹣∠BEC . (3)解决问题如图③,AB ∥DC ,∠C =120°,∠AEC =80°,则∠A = .(之间写出结论,不用写计算过程)23.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)25.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D证明如下:过E 点作EF ∥AB .∴∠B=∠1(两直线平行,内错角相等.) 又AB ∥CD(已知)∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.26.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”)(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。

(完整版)浙教版八年级下册数学第五章特殊平行四边形单元测试卷

(完整版)浙教版八年级下册数学第五章特殊平行四边形单元测试卷

第五章 特殊的平行四边形姓名:---------- 成绩:------ --- 一.选择题 (每小题4分,共40分)1. 若菱形ABCD 中,AE 垂直平分BC 于E,AE=1cm,则BC 的长是 A.1cm B.332cm C.3cm D.4cm 2. 如果a 表示一个菱形的对角线的平方和,b 表示这个菱形的一边的平方,那么 A.a =4b B.a =2b C .a =b D.b =4a3. .已知ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当AC ⊥BD 时,它是菱形 D.当∠ABC=90º时,它是矩形4. 如图,矩形ABCD 的边长AB=6,BC=8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是 A.7.5 B.6 C.10 D.55. 如图所示,过四边形ABCD 的各顶点,作对角线BD 、AC 的平行线,围城四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是A.菱形B.平行四边形 C.矩形 D.对角线相等的四边形6. 在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是. A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7. 图1中有8个完全相同的直角三角形,则图中矩形的个数是A. 5B. 6C. 7D. 8A E DB FC 图(2)图(1)MNN M 图1 图2A C8. 如图,正方形ABCD 中,∠︒=25DAF ,AF 交对角线BD 于点E ,那么∠BEC 等于A.︒45B.︒60C.︒70D.︒759. Rt △ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是 A.25 B.7C.12D.25或7 10. 下列图形中,不能..经过折叠围成正方形的是A. B C. D.第Ⅱ卷(非选择题 共8道填空题8道解答题)请将你认为正确的答案代号填在下表中1 2 3 4 5 6 7 8 9 10 二.简答题 (每小题3分,共24分)11. 如图矩形,ABCD 中,AC 、BD 相交于O,AE 平分∠BAD 交BC 于E,若∠CAE=15º,则∠BOE=_________ 12. M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC,PF ⊥MB,当AB 、BC 满足_________时,四边形PEMF 为矩形 13. 给定下列命题:(1)对角线相等的四边形是矩形;(2)对角相等的四边形是矩形;(3)有一个角是直角的平行四边形是矩形;(4)一个角为直角,两条对角线相等的四边形是矩形;(5)对角线相等的平行四边形是矩形;其中不正确的命题的序号是____________14. 如图,矩形ABCD 中,E 、F 分别为AD 、AB 上一点,且EF=EC,EF ⊥EC,若DE=2,矩形周长为16,则矩形ABCD 的面积为_________15. 现有一张长52cm,宽28cm 的矩形纸片,要从中剪出长15cm 宽、12cm 的矩形小纸片(不能粘贴),则最多能剪出__________张16. 已知矩形的周长是40cm,被两条对角线分成的相邻两个三角形的周长的差是8cm,则较长的边长为________17. 已知菱形ABCD 的边长为6,∠A=60º,如果点P是菱形内一点,切PB=PD=32,那么AP 的长为____________18. 矩形ABCD 的对角线AC 、BD 相交于点O,AB=4cm,∠AOB=60º,则这个矩形的对角线的长是_________cmA DERBC D B E C三.解答题(共56分)19. 如图,菱形AB CD中,点M、N分别在B C、CD上,且CM=CN,求证:(1)△AB M≌△A DN(2)∠A MN=∠A NM20. 如图,在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AC平分∠BAD,请你再添一个什么条件? 就能推出四边形ABCD是菱形,并给出证明.21. 某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示。

八年级上册数学单元测试卷-第五章 平面直角坐标系-苏科版(含答案)

八年级上册数学单元测试卷-第五章 平面直角坐标系-苏科版(含答案)

八年级上册数学单元测试卷-第五章平面直角坐标系-苏科版(含答案)一、单选题(共15题,共计45分)1、如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)2、已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1B.a>C.﹣<a<1D.﹣1<a<3、在平面直角坐标系中,有C(1,﹣2)、D(1,﹣1)两点,则点C可看作是由点D ()A.向上平移1个单位长度得到B.向下平移1个单位长度得到C.向左平移1个单位长度得到D.向右平移1个单位长度得到4、故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是()A.①②B.①③C.①④D.②③5、在平面直角坐标系中,点P在x轴上方,且点P到x轴的距离为2,到y轴的距离为3,则点P的坐标为()A.(2,3)B.(3,2)C.(﹣3,2)或(3,2)D.(﹣2,3)或(2,3)6、如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2)B.(4,1)C.(5,2)D.(5,1)7、P(3,﹣4)到y轴的距离是()A.4B.﹣4C.3D.58、若点P(m,n)在第二象限,则点Q(-m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限9、抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A. ≤a≤1B. ≤a≤2C. ≤a≤1D. ≤a≤210、若点P(m+3,m﹣1)在x轴上,则P点的坐标为()A.(0,﹣4)B.(4,0)C.(0,4)D.(﹣4,0)11、如图,点向右平移个单位后落在直线上的点处,则的值为()A.4B.5C.6D.712、若点P(a,b)在第四象限,则点P到x轴的距离是()A.aB.-aC.bD.-b13、在平面直角坐标系中,点P(-5,0)在()A.第二象限B.第四象限C.x轴上D.y轴上14、已知点P(a+1,2a-3)在第一象限,则a的取值范围是()A.a<-1B.-1<a<C.- <a<1D.a>15、下列说法正确的是()A.(2,3)和(3,2)表示的位置相同B.(2,3)和(3,2)是表示不同位置的两个有序数对C.(2,2)和(2,2)表示两个不同的位置 D.(m,n)和(n,m)表示的位置不同二、填空题(共10题,共计30分)16、抛物线y=﹣x2+(b+1)x﹣3的顶点在y轴上,则b的值为________.17、在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为________.18、点M(﹣3,4)到y轴的距离是________.19、如图,在棋盘中建立直角坐标系,三颗棋子,,的位置分别是,和.如果在其他格点位置添加一颗棋子,使,,,四颗棋子成为一个轴对称图形,请写出一个满足条件的棋子的位置的坐标________20、如果用(7,8)表示七年级八班,那么八年级六班可表示成________.21、写出一个平面直角坐标系中第三象限内点的坐标:(________ ).22、点A(0,3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C的坐标是________.23、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是________.24、在平面直角坐标系中,一只电子青蛙从原点O出发,按向上,向右,向下,向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,那么点的坐标是________.25、若点在第四象限,则的取值范围是________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学第五章单元测试题
姓名 班级
一、填空题(每空格3分,共27分)
1、用不等式表示下列关系:(1)x 的3倍与8的和比y 的2倍小: ;
(2)a 的2倍与-5的和是非负数 ;
2、当x_____时,代数式-3x+5的值不大于2.
3、不等式2x -1<3的非负整数解是 .
4、关于x 的方程x+3k=1的解是负数,则 k 的取值范畴是_______.
5、不等式⎩⎨⎧>->+0
102x x 的解集是 。

6、当a 时,不等式(a —1)x >1的解集是x <1
1-a . 7、小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,所列不等式为_________ 。

8、请你写出一个解集为1-≤x 的一元一次不等式: 。

二、选择题:(每题3分,共计24分)
1、若y x <成立,则下列不等式成立的是( )
A .y x 33-<-
B .22+-<+-y x
C .)2()2(--<--y x
D .22-<-y x
2、下列不等式解法正确的是( )
A .假如221>-
x ,那么1-<x . B .假如x x 3
223->,那么0<x . C .假如33-<x ,那么1->x . D .假如0311<-x ,那么0>x . 3、下列说法正确的是( )
A .x=-1是不等式1->x 的一个解
B .不等式1->x 的解是 x=-1
C .x=0是不等式1->x 的一个解
D .不等式1->x 的解是x=0
4、三个连续自然数的和小于11,如此的自然数组共有( )组
5、使不等式x-5>4x-1成立的最大整数是( ).
A.2
B.-1
C.-2
D.0
6、如图所示的不等式的解集是( )
A .a>2
B .a<2
C .a ≥2
D .a ≤2
7、不等式组⎩⎨⎧>-<+-m
x x x 62的解集是4>x ,那么m 的取值范畴是( )
A .4≥m
B .4≤m
C .4<m
D .4=m
8、某工厂现有甲种原料360公斤,乙种原料290公斤,打算用这两种原料生产
A 、
B 两种产品共50件。

已知生产一件A 种产品需要甲种原料9公斤,乙种原料3公斤;生产一件B 种产品需要甲种原料4公斤,乙种原料10公斤;安排 A 、两种产品的生产件数有方案( )
A . 4种 B. 3种 C. 2种 D . 1种
三、解下列不等式(组)(每小题7分,共28分)
(1)()()34518+-≥-x x ( 2) 16
510213-+≤-y y
(3)()()()
2131+≥-+x x x (4)⎪⎩
⎪⎨⎧+<--≤-)1(4)1(3,2253x x x x
四、1、一个长方形足球场的长为x m,宽为70m.假如它的周长大于370m,面
积小于75602
m,(1)求x的取植范畴;(8分)
(2)请你判定那个球场是否能够用作国际足球竞赛.(注:用于国际竞赛的足球场的长在100m到110m之间,宽在64m到75m之间.)(2分)
2、某校暑假预备组织该校的“三好学生”参加夏令营,由1名老师带队。

甲旅行社说:“若老师买全票一张,则学生可享受半价优待.”
乙旅行社说:“包括老师在内都6折优待”
若全票价是1200元,则:
(1)设三好学生人数为x人,则参加甲旅行社的费用是元;参加乙旅行社的费用是元。

(每空格2分)
(2)当学生人数取何值时,选择参加甲旅行社比较合算?(7分)
附加题:(1)阅读下面材料:
点A 、B 在数轴上分别表示实数a 、b,A 、 B 两点之间的距离表示为 |AB| . ①当A 、B 两点中有一点在原点时,不妨设点A 在原点,
如图1, |AB| =|OB|=|b| =|a-b|;
②当A 、B 两点都不在原点时,
如图2,点A 、B 都在原点的右边,
|AB|= |OB| –|OA| = |b |–|a| =b-a=|a-b| ;
③ 如图3,点A B 都在原点的左边,
|AB| = |OB| –|OA| =|b|–|a|=-b-(-a)= |a-b| ;
④如图4,点A B 两点在原点的两边,
|AB| =|OA|+|OB| =|a|+|b|=a+(-b)=|a-b |.
综上所述,数轴上A 、B 两点之间的距离|AB|=|a-b|.
(2)回答下列问题:
①数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;
②数轴上表示x 和-1的两点A 和B 之间的距离是 ,假如| AB| =2,那么x 为 ;
③当代数式|x+1|+|x-2| 取最小值时,相应的x 的取值范畴是 . O(A) B 0 b 图1 B O A b 0 a 图4 B A O b a o 图3 O A B 0 a b 图2。

相关文档
最新文档