多次相遇和追及问题

合集下载

奥数行程多次相遇和追及问题

奥数行程多次相遇和追及问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差知识框架多次相遇与追及问题三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。

通用版小学五年级奥数《多次相遇和追及问题》讲义(含答案)

通用版小学五年级奥数《多次相遇和追及问题》讲义(含答案)

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?例题精讲【例 2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。

奥数 行程 多次相遇和追及问题

奥数 行程 多次相遇和追及问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键知识框架多次相遇与追及问题多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

多人多次相遇与追及

多人多次相遇与追及

多人多次相遇与追及教师:__________ 科目; __________ 学生:________ 上课时间:________【专题知识点概述】本讲包含两个知识点,一是多次相遇追及问题,即两个对象在固定的长度上不断地往返运动,他们之间相遇追及问题;二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

【授课批注】多人多次是行程中重点,而画图是多人多次的重点,划出一个好的示意图,就等于问题已经解决三分之二了,剩下的三分之一才是解题技巧。

所以如何画图,如何画好图是行程问题的关键,需要反复练习,熟能生巧,做题才能得心应手,发挥自如。

一、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;。

,。

;第N次相遇,共走2N-1个全程;【授课批注】除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;。

,。

;第N次相遇,共走2N个全程;二、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差【重点难点解析】1.多人多次相遇追及的画图2.多次多次相遇追及的解题关键【竞赛考点挖掘】1.近两年来杯赛的热门考点2.常常与数论结合出题【习题精讲】【例1】〔难度级别※※〕甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例2】〔难度级别※※〕A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?【例3】〔难度级别※※〕甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【例4】〔难度级别※※〕小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【例5】〔难度级别※※※〕甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【例6】〔难度级别※※※〕小张与小王分别从甲、乙两村同时出发,在两村之间往返行走〔到达另一村后就马上返回〕,他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远〔相遇指迎面相遇〕?【例7】〔难度级别※※※〕快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分、9分、12分追上骑车人。

五年级奥数.行程 .多次相遇和追及问题(word文档良心出品)

五年级奥数.行程 .多次相遇和追及问题(word文档良心出品)

多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

多次相遇和追及问题详解

多次相遇和追及问题详解

多次相遇和追及问题教学目标1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题知识精讲板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.例1】(难度等级※)甲、乙两名同学在周长为300 米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4 米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?解析】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10 倍,为300 10 3000米,因为甲的速度为每秒钟跑 3.5 米,乙的速度为每秒钟跑 4 米,所以这段时间内甲共行了3.53000 3.5 1400米,也就是甲最后一次离开出发点继续行了200 米,可知甲还需行 3.5 4300 200 100米才能回到出发点.巩固】(难度等级※)甲乙两人在相距90 米的直路上来回跑步,甲的速度是每秒 3 米,乙的速度是每秒2 米.如果他们同时分别从直路两端出发,10 分钟内共相遇几次?解析】17巩固】(难度等级※)甲、乙两人从400米的环形跑道上一点 A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1 米,那么两人第五次相遇的地点与点 A 沿跑道上的最短路程是多少米?解析】176、运用倍比关系解多次相遇问题例2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家 4 千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8 千米,这时是几点几分?解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8 =12(千米)这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12 ÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8 ×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16 (千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16 千米需要16分钟. 8+8+16=32.所以这时是8 点32 分。

行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析

行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析

行程体系之多次相遇与追及问题知识点总结:1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题训练:【例1】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?解答:画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【例2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.解答:注意观察图形,当甲、乙第一次相遇时,甲乙共走完0.5圈的路程,当甲、乙第二次相遇时,甲乙共走完1+0.5=1.5圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300=1.5圈,解出此圆形场地的周长为480米.【例3】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?解答:第五次相遇时,共合走5各全程:400×5=2000(米)甲乙的速度和:2000÷8=250(米/分)甲乙的速度差:0.1×60=6(米/分)甲的速度(250+6)÷2=128(米/分)乙的速度:(250-6)÷2=122(米/分)8分钟时甲的路程跑的圈数:128×8÷400=2(周)余224米400-224=176(米)【例4】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?解答:从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300×10=3000米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3000÷(3.5+4)×3.5=1400米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300-200=100米才能回到出发点【例5】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解答:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分)爸爸骑行16千米需要16分钟,8+8+16=32.所以这时是8点32分。

多次追及问题公式和相遇问题公式

多次追及问题公式和相遇问题公式

多次追及问题公式和相遇问题公式在我们学习数学的旅程中,多次追及问题和相遇问题就像是两个调皮的小精灵,时不时地跳出来给我们一些挑战。

今天咱们就来好好聊聊这两个让人又爱又恨的小家伙。

先来说说多次追及问题公式。

多次追及问题啊,简单说就是两个或多个物体在不同的起点,按照不同的速度运动,然后一个追着另一个跑,跑了好几次。

这时候就需要用到专门的公式来计算它们什么时候能追上。

比如说,有甲、乙两个人,甲在前面跑,速度是V1,乙在后面追,速度是 V2。

他们一开始相距 S 米。

第一次追上的时候,所用的时间 t1 就可以用公式 t1 = S / (V2 - V1) 来计算。

那如果是多次追及呢?假设第一次追上之后,又出现新的情况,比如甲、乙到达某个地点后又重新出发,这时候就要根据新的初始条件和速度来计算下一次追上的时间。

我记得有一次,我在公园里散步,看到两个小朋友在玩追逐游戏。

小男孩跑在前面,小女孩在后面紧追不舍。

小男孩跑得挺快,速度大概每秒 3 米,小女孩速度每秒 4 米。

一开始小男孩领先小女孩 5 米。

小女孩一边跑一边喊:“等等我,我马上就追上你!”这场景就像我们数学里的追及问题。

我在旁边看着,心里默默计算,按照这个速度和距离,小女孩大概 5 秒钟就能追上小男孩。

果不其然,没一会儿小女孩就得意地抓住了小男孩的衣角,开心地笑了起来。

再讲讲相遇问题公式。

相遇问题就是两个物体从不同的地方出发,朝着对方前进,然后在途中相遇。

假设甲从 A 地出发,速度是 V3,乙从 B 地出发,速度是 V4,两地相距 L 米。

那么他们相遇所用的时间 t 可以用公式 t = L / (V3 + V4) 来计算。

就像有一次我坐火车,火车在途中会经过一些小站。

我从车窗往外看,看到一辆汽车在平行的公路上行驶。

火车的速度我大概能感觉到,汽车的速度通过它和路边树木的相对移动也能估算个大概。

我就在想,如果火车和汽车一直这样开下去,它们在某个点会不会相遇呢?这其实就是一个相遇问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 (难度等级 ※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.530001400 3.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【巩固】 (难度等级 ※)甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次? 【解析】 17一共六百秒,第一次相遇是两人总共跑一个90米,以后是180米相遇次。

相对速度每秒五米。

第一次相遇是18秒。

180米相遇需要36秒。

此后是582秒总共有16次。

所以相遇17次。

【巩固】 (难度等级 ※)甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【解析】 176甲乙每分钟速度和:400×5÷8=250米每分钟,甲比乙多:×60=6米甲每分钟:(250+6)÷2=128米128×8÷400=2 (224)相遇点与A 最短路程为400-224=176米二、运用倍比关系解多次相遇问题知识精讲 教学目标3-1-3多次相遇和追及问题【例 2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分。

【例 3】(难度等级※※)甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【解析】画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B 两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【巩固】(难度级别※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【解析】4×3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离.【解析】4千米【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B 多远.【解析】12千米【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了多少千米.【解析】90千米【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离.【解析】4千米【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【解析】41千米【例 4】(难度等级※※※)如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【解析】注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.【巩固】(难度等级※※※)如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.【解析】360【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【解析】340三、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差【例 5】 小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?【解析】 第一次相遇时,两人共跑完了一个全程,所用时间为:1006410÷+=()(秒).此后,两人每相遇一次,就要合跑2倍的跑道长,也就是每20秒相遇一次,除去第一次的10秒,两人共跑了126010710⨯-=(秒).求出710秒内两人相遇的次数再加上第一次相遇,就是相遇的总次数.列式计算为:1006410÷+=()(秒),1260101023510⨯-÷⨯=L ()(),共相遇35136+=(次)。

注:解决问题的关键是弄清他们首次相遇以及以后每次相遇两人合跑的路程长.【例 6】 A 、B 两地间有条公路,甲从A 地出发,步行到B 地,乙骑摩托车从B 地出发,不停地往返于A 、B 两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B 地时,乙追上甲几次?由上图容易看出:在第一次相遇与第一次追上之间,乙在1008020-=(分钟)内所走的路程恰等于线段FA 的长度再加上线段AE 的长度,即等于甲在(80100+)分钟内所走的路程,因此,乙的速度是甲的9倍(18020=÷),则BF 的长为AF 的9倍,所以,甲从A 到B ,共需走80(19)800⨯+=(分钟)乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB 全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB 全程,因此,追及时间也变为200分钟(1002=⨯),所以,在甲从A 到B 的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.【例 7】 (难度等级 ※※※)甲、乙两人分别从A 、B 两地同时出发相向而行,乙的速度是甲的23,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,A 、B 两地相距 千米.【解析】 由于甲、乙的速度比是2:3,所以在相同的时间内,两人所走的路程之比也是2:3.第一次相遇时,两人共走了一个AB 的长,所以可以把AB 的长看作5份,甲、乙分别走了2份和3份;第二次相遇时,甲、乙共走了三个AB ,乙走了236⨯=份;第三次相遇时,甲、乙共走了五个AB ,乙走了2510⨯=份. 乙第二次和第三次相距10-6=4(份)所以一份距离为:100÷4=25(千米),那么A 、B 两地距离为:5×25=125(千米)【巩固】 (难度等级 ※※※)小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为 千米. 【解析】 由于两人同时出发相向而行,所以第一次相遇一定是迎面相遇;由于本题中追上也算相遇,所以两人第二次相遇可能为迎面相遇,也可能为同向追及.①如果第二次相遇为迎面相遇,如下图所示,两人第一次在A 处相遇,第二次在B 处相遇.由于第一次相遇时两人合走1个全程,小王走了3千米;从第一次相遇到第二次相遇,两人合走2个全程,所以这期间小王走了326⨯=千米,由于A 、B 之间的距离也是3千米,所以B 与乙地的距离为(63)2 1.5-÷=千米,甲、乙两地的距离为6 1.57.5+=千米;②如果第二次相遇为同向追及,如上图,两人第一次在A 处相遇,相遇后小王继续向前走,小李走到甲地后返回,在B 处追上小王.在这个过程中,小王走了633-=千米,小李走了639+=千米,两人的速度比为3:91:3=.所以第一次相遇时小李也走了9千米,甲、乙两地的距离为9312+=千米.所以甲、乙两地的距离为7.5千米或12千米.【巩固】 (难度级别 ※※※)A ,B 两地相距540千米。

相关文档
最新文档