2.8.2 边界层分离
边界层理论及边界层分离现象

边界层理论及边界层分离现象一.边界层理论1.问题的提出在流体力学中,雷诺数Re∝惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。
但对于工程流动问题,绝大多数的Re很大。
这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。
突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。
”究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力≈粘性力,这才令人满意地解决了大Re数的流动的阻力问题。
2.边界层的划分Ⅰ流动边界层(速度边界层)以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<δ(边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。
(2)y>δ(层外主流层):壁面影响很弱,法向速度基本不变,du/dy≈0。
所以可忽略粘性力(即忽略法向动量传递)。
可按理想流体处理,Euler方程适用。
这两个区域在边界层的外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y=δ处),ux=0.99u∞,δ为流动边界层厚度,且δ=δ(x)。
Ⅱ传热边界层(温度边界层)当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y<δt(传热边界层):受壁面影响,法向温度梯度dt/dy很大,不可忽略,即不能忽略法向热传导。
(2) y>δt(层外区域):法向温度梯度dt/dy≈0,可忽略法向热传导。
通常约定:在传热边界层的外缘处(即y=δt处),ts-t=0.99(ts -t0) ≈ ts-t0,δt为温度边界层厚度,且δt=f(x);ts为壁面温度;t0为热边界层外(主流体)区域的温度。
边界层分离

如前所述,当不可压缩黏性流体纵向流过平板时,在边界层 外边界上沿平板方向的速度是相同的,而且整个流场和边界层内 的压强都保持不变。当黏性流体流经曲面物体时,边界层外边界 上沿曲面方向的速度是改变的,所以曲面边界层内的压强也将同 样发生变化,对边界层内的流动将产生影响。曲面边界层的计算
外部流动
尾迹 外部流动 边界层
外部流动
尾迹
外部流动 边界层 (a)流线形物体;(b)非流线形物体 图5-4 曲面边界层分离现象示意图
一、边界层的分离
1、从D到E流动加速,为顺压梯度区;
流体压能向动能转变,不发生边界层分离 2、从E到F流动减速, 为逆压梯度区; E到F段动能只存在损耗,速度减小很快 3、在S点处出现粘滞 ,由于压力的升高产生
fd Sr V
(5-12)
根据罗斯柯(A.Roshko)1954年的实验结果,当 Re大于1000 时,斯特劳哈数 Sr 近似地等于常数,即Sr =0.21。 根据卡门涡街的上述性质,可以制成卡门涡街流量计
测定卡门涡街脱落频率的方法有热敏电阻丝法、超音波束法等
3.分离的条件 — 逆压梯度 4.分离的实际发生 — 微团滞止和倒流
2.分离实例
从静止开始边界层发展情况
扩张管
(上壁有抽吸)
2.分离实例
2.分离实例
二、卡 门 涡 街
圆柱绕流问题:随着雷诺数的增大边界层首先出现分离,分 离点并不断的前移,当雷诺数大到一定程度时,会形成两列几乎 稳定的、非对称性的、交替脱落的、旋转方向相反的旋涡,并随 主流向下游运动,这就是卡门涡街 卡门对涡街进行运动分析得出了阻力、涡释放频率以及斯特 罗哈数的经验公式
边界层分离介绍

探究边界层的分离现象李强(西安交通大学化工学院化工21,陕西西安710049)摘要:边界层分离理论化工流体输送和流体力学的研究应用方面具有非常重要的作用。
对边界层,边界层分离现象,边界层分离的机理,条件,以及如何控制边界层的分离进行一系列的介绍。
最后通过若干实例介绍了人类如果对边界层分离的一些控制方法。
关键词:边界层;分离点;边界层分离;机理;条件;边界层分离的控制;应用0 引言当流体流经曲面物体,或者在化工输送过程中流体流经管件,阀门,管路突然扩大和缩小以及管路进出口等局部地方,都会出现边界层的分离现象。
目前对于因边界层分离的有关计算主要是依靠经验方法,理论知识比较匮乏。
1边界层分离的机理1.1边界层的概念边界层学说是Ludwig Prandtl于1904年提出的,其理论要点为:当实际流体沿固体壁面流动时,紧贴壁面的一层流体由于粘性的作用将粘附在壁面上而不“滑脱”,即在壁面上的流速为零;而由于流动的Re数很大,流体的流速将由壁面处的零值沿着与流动相垂直的方向迅速增大,并在很短的时间内趋于一定值。
换言之,在壁面附近区域存在着一薄的流体层。
在该层流体中与流体相垂直的方向上的速度梯度很大。
这样的一层流体称为边界层。
【1】在边界层内,流体的速度从固壁处的零(无滑移)逐渐增加到相应的无摩擦外流原有的值。
【2】现以一黏性流体沿平板壁面的流动说明边界层的形成过程。
如下图1所示,一流体以均匀的来流速度u0流近壁面,当他流到平板前缘时,紧贴壁面的流体将停滞不动,流速为零,从而在垂直流动的方向上建立起一个速度梯度。
与此速度梯度相应的剪应力将促使靠近壁面的一层流体的流速减慢,开始形成边界层。
由于剪应力对其外的流体持续作用,促使更多的流层速度减慢,从而使边界层的厚度增加,靠近壁面的流体的流速分布如图1所示。
由图可以看出,速度梯度大的薄层流体即构成了边界层。
随着流体沿平板的向前运动,边界层在壁面上逐渐加厚。
在平板前部的一段距离内,边界层厚度较小,流体维持层流流动,相应的边界称为层流边界层。
优秀工程流体力学题库答案(理工大学修正版)

流体力学题库一. 填空题1. 根据流体的组成分为均质流体和非均质流体。
2. 流体静力学基本方程为pz C gρ+=或00()p p g z z ρ=+-。
3. 两种描述流体运动的方法是拉格朗日法和欧拉法。
4. 流体运动的基本形式有平移、旋转和变形。
5. 对于不可压缩流体,连续性方程的表达式为0y x zu u u x y z∂∂∂++=∂∂∂(或0∇⋅=u )。
6. 粘性流动中存在两种不同的流动型态是层流和湍流(紊流)。
7. 无旋流动是指旋度为零的流动。
8. 边界层分离是指边界层流动脱离物体表面的现象。
9. 恒定的不可压缩流体的一维流动,用平均速度表示的连续性方程为22110v A v A -=(或1122v A v A =)。
10. 水头损失w h 包括沿程水头损失和局部水头损失。
11. 流体根据压缩性可分为不可压缩流体流体和可压缩流体流体。
。
12.从运动学的角度来判断流动能否发生的条件是看其是否满足连续性方程. 13.在边界层的厚度定义中,通常将0.99x u U =处的y 值定义为名义厚度。
14. 连续性方程是依据质量守恒导出的,对于恒定流动而言,其积分形式的连续性方程为0CSd ρ⋅=⎰u A (或n n CS CS u dA u dA ρρ=⎰⎰流入流出) 。
15. 作用于静止流体上的力包括质量力和表面力。
16. 已知速度场(,,)u x y z ,(,,)v x y z ,(,,)w x y z ,在直角坐标系下某一时刻的流线微分方程式为dx dy dz uv w == 。
17. 圆管层流流动中沿程阻力系数λ和雷诺数Re 的乘积Re λ⋅= 64 。
18 某段管路上流体产生的总的能量损失用公式表示为f h =h h λξ+∑∑ 。
19. 湍流运动中时均速度的定义式为u = 01TudtT⎰。
20. 湍流中总的切应力由粘性切应力和附加切应力两部分组成。
21. 根据孔口断面上流速分布的均匀性为衡量标准,孔口出流可分为大孔口 和小孔口两种。
边界层分离介绍

探究边界层的分离现象强(交通大学化工学院化工21, 710019)摘要:边界层分离理论化工流体输送和流体力学的研究应用方面具有非常重要的作用。
对边界层,边界层分离现象,边界层分喜的机理,条件,以及如何控制边界层的分离进行一系列的介绍。
最后通过若干实例介绍了人类如果对边界层分离的一些控制方法。
关镀词:边界层;分吏点;边界层分离;机理:条件:边界层分离的控制:应用0引言当流体流经曲面物体,或者在化工输送过程中流体流经管件,阀门,管路突然扩大和缩小以及管路进出口等局部地方,都会出现边界层的分离现象。
目前对于因边界层分离的有关计算主要是依靠经验方法,理论知识比较匮乏。
1边界层分离的机理1・1边界层的概念边界层学说是Ludwig Prandtl于1904 年提出的,其理论要点为:当实际流体沿固体壁面流动时,紧贴壁面的一层流体由于粘性的作用将粘附在壁面上而不"滑脱”,即在壁面上的流速为零;而由于流动的Re数很大,流体的流速将由壁面处的零值沿着与流动相垂直的方向迅速增大,并在很短的时间趋于一定值。
换言之,在壁面附近区域存在着一薄的流体层。
在该层流体中与流体相垂直的方向上的速度梯度很大。
这样的一层流体称为边界层。
⑴在边界层,流体的速度从固壁处的零(无滑移)逐渐增加到相应的无摩擦外流原有的值。
⑵现以一黏性流体沿平板壁面的流动说明边界层的形成过程。
如下图1所示,一流体以均匀的来流速度5流近壁面,当他流到平板前缘时,紧贴壁面的流体将停滞不动,流速为零,从而在垂直流动的方向上建立起一个速度梯度。
与此速度梯度相应的剪应力将促使靠近壁面的一层流体的流速减慢,开始形成边界层。
由于剪应力对其外的流体持续作用,促使更多的流层速度减慢,从而使边界层的厚度增加,靠近壁面的流体的流速分布如图1所示。
由图可以看出,速度梯度大的薄层流体即构成了边界层。
随着流体沿平板的向前运动,边界层在壁面上逐渐加厚在平板前部的一段距离,边界层厚度较小,流体维持层流流动,相应的边界称为层流边界层。
激波诱导边界层分离的研究

振等问题,除了造成大量旋涡,大大增加机械能消耗【42】;当边界层分离发生在火箭芯级表面时,将显著加大飞行阻力,当激波与边界层的相互作用加剧时,会引起分离区的扩大,导致火箭的抖振I”l;如果边界层分离发生在冲压发动机的进气道内时,将会弓l起流场的畸变,流量系数减小,还会加大气流总压损失,使总压恢复系数降低I“l。
清楚地掌握流动分离的机理,有效地预测和控制分离是十分重要的,且具有重大的实用价值。
研究激波与边界层的相互作用,既是边界层分离基础研究的一项重要内容,也是为解决航天航空和军事作业中一些工程实验问题提供理论基础。
由此可见,分离现象的研究,对于推进航空科技发展,具有一定的现实指导意义。
激波与边界层的相互作用的研究,是当今流体力学、气体动力学和工程热物理学科发展前沿的重大应用基础理论课题,也是航空航天领域的几大亟待解决的问题之一。
1.2物理现象及研究方法激波与边界层相互作用(Shock.Wave/Boundary-LayerInteracti蚰),一股简称为“SWBLI”【1l’主要体现在激波冲击边界层诱导其发生分离的现象,见图1.3。
由于边界层内贴近壁面的总是一层亚音速流,而激波只能在超音速流中形成,因此从主流区射向平板壁面激波,只能伸到边界层内的声速处,不能直接伸展到壁面上,而平板边界层不能承受较大的逆压梯度,这对,激波后面的突跃高压使得流场质点通过这一亚音速层往前移动,流线凸起,出现了边界层分离。
图1.3激波与边界层作用的X光照片【2】分离区的出现使得流线的凸起更加显著,呈凸包状。
于是在激波入射点上游,形成一个压缩波区并汇聚成一道激波,称为第一道反射激波,第激波形成过程和边界层形成过程之间存在着强烈的相互干扰,由此导致极为复杂的现象,至今尚未完全了解这些现象。
由于激波常常引起边界层的分离,所以对于物体的阻力来说,激波的出现有重要的影响。
激波及相应流场的理论计算是非常困难的,在这不作讨论。
因为边界层的特性主要取决于Reynolds数,而激波中的条件则主要取决于Mach数。
边界层分离案例

边界层分离案例
那我给你讲个边界层分离的超有趣案例。
就拿飞机的机翼来说吧。
你看飞机在空中飞的时候,机翼周围的空气流动就涉及到边界层的事儿。
正常情况下,空气沿着机翼表面流动,就像一群乖乖听话的小蚂蚁沿着一条既定的路线爬行一样。
这个时候边界层是好好附着在机翼上的。
但是呢,要是飞机的飞行姿态突然变得很奇怪,比如说突然来个大仰角飞行,这就相当于给那些小蚂蚁(空气分子)来了个大惊吓。
机翼上表面的空气就开始不听话啦,靠近机翼表面的空气流动速度越来越慢,而外面的空气还在呼呼地往前冲。
这就好比一群小伙伴一起跑步,靠里面的小伙伴突然没力气了,外面的小伙伴还在奋力向前,这样就会出现一个断裂的情况。
在机翼这里呢,这个断裂就意味着边界层开始分离了。
一旦边界层分离,机翼上面的气流就变得乱七八糟的,就像一群没头的苍蝇到处乱撞。
这可就麻烦了,机翼能产生的升力会突然减小,飞机就可能失速,就像本来被托着稳稳飞的飞机突然失去了向上的力量,那可就危险喽。
还有一个例子就是汽车。
汽车在高速行驶的时候,车身周围也有空气的边界层。
当汽车突然经过一个障碍物,比如说一个大坑,车身突然震动或者形状突然有点变化的时候,车身表面的空气边界层也可能出现类似机翼那种分离的情况。
这时候汽车受到的空气阻力就会突然变得很奇怪,可能比正常行驶的时候大很多,就好像突然有个无形的大手在拖住汽车不让它好好跑了。
这就是边界层分离在汽车上的一个小表现啦。
2.8.2边界层分离

像圆柱这样具有凸形的物体所产生的阻力都主要来 自自由压差所引起的形体阻力,只有在低Re下才考 虑摩擦阻力。
物体表面为流线型或平壁时,总阻力则以摩擦阻力 为主,形体阻力反而可以忽略不计。
不同形状物体表面上的边界层特征各不相同。
对于平壁板面,其边界层以外的流动是均匀的, 无速度梯度,也无压力梯度的。其边界层内压力在垂 直于流动方向上的变化可以忽略,所以,在同一x距离 处,边界层内外的压力均相同。
若在流动方向上的通道截面积发生变化(收缩或 者扩张),则边界层外的速度和压力沿流动方向均会 发生变化,它将对边界层内的流动有显著影响。正是 由于边界层内的压力沿流动方向的急剧变化,引起了 边界层分离这一重要现象。
2.8.2.2边界层分离条件
如上所诉,在边界层分离点前流线图形与理想流体基本相 似,而分离点后则发生了实质性的改变。相应的压力分布也发 生了很大变化,它转而又影响到产生边界层分离的条件。
最终分离点的位置将取决于最终的压力分布和速度分布, 而不是取决于最初的流线图形。
如图2-29,在分离点P处,速度分布曲线在壁面处的切线正 好与壁面垂直。
边界层分离(Boundary Layer Separation)
在某些情况下,边界层内流体发成倒流,引起边界层与 固定壁面的分离,并同时产生涡旋的现象。
边界层分离是造成流体能量损失的主要原因之一。
2.8.2.1 边界层分离的形成过程
理想流体流经无限长圆柱体
因流体无黏性,其在整个流场均无能 量损失,在圆柱四周的压力分布和速度分 布完全对称
边界层分离
通常将上述边界层脱离壁面的现象称为——边界层分离。 点P称为分离点——紧靠边壁的边界层中顺流和倒流之间的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边界层分离
通常将上述边界层脱离壁面的现象称为——边界层分离。 点P称为分离点——紧靠边壁的边界层中顺流和倒流之间的 分界线。 在P点有: u x y
0
y 0
在分离点之后,顺流和倒流两区间必然存在一个分界面—— 分离面。它是不稳定的,任何微小的扰动,都会造成它的破 裂,而发展成涡旋。
2.8.2 边界层分离
不同形状物体表面上的边界层特征各不相同。 对于平壁板面,其边界层以外的流动是均匀的, 无速度梯度,也无压力梯度的。其边界层内压力在垂 直于流动方向上的变化可以忽略,所以,在同一x距离 处,边界层内外的压力均相同。 若在流动方向上的通道截面积发生变化(收缩或 者扩张),则边界层外的速度和压力沿流动方向均会 发生变化,它将对边界层内的流动有显著影响。正是 由于边界层内的压力沿流动方向的急剧变化,引起了 边界层分离这一重要现象。
决不会出现边界层的分离,只有在压力升高区内流
动(减速流动),才有可能出现分离,形成漩涡。 尤其是在主流减速足够大的情况下,边界层的分离
就一定会发生。
2.8.2.2边界层分离条件
如上所诉,在边界层分离点前流线图形与理想流体基本相
似,而分离点后则发生了实质性的改变。相应的压力分布也发
生了很大变化,它转而又影响到产生边界层分离的条件。 最终分离点的位置将取决于最终的压力分布和速度分布, 而不是取决于最初的流线图形。
物体表面为流线型或平壁时,总阻力则以摩擦阻力 为主,形体阻力反而可以忽略不计。
分离实例
如图2-29,在分离点P处,速度分布曲线在壁面处的切线正 好与壁面垂直。 若流体速度较小,在圆柱体壁面形成的边界层为层流边界层 时,分离点将逐渐向上游移。如图2-30(a) 若流速较大,在在圆柱体壁面形成的边界层为湍流边界层时, 分离点位置更加靠后。如图2-30(b)
在分离点之后,会形成尾涡区,同时在物体后端还 会出现具有涡旋运动的尾流,从而导致了物体形体 阻力Fdf的产生。 由于湍流边界层分离点较层流边界层靠后,故形成 尾流较小,形体阻力也较小,但并不意味着总阻力 较层流小。 像圆柱这样具有凸形的物体所产生的阻力都主要来 自自由压差所引起的形体阻力,只有在低Re下才考 虑摩擦阻力。
过了B点,流速开始减慢,主流体和
边界层流体均处于减速、增加状态,称 为 dp du x 0 0 逆向压力梯度,即 dx ,dx 。
在剪应力和逆向压力梯度的双重作
用
下,边界层流体的动能逐渐消耗殆尽, 而 形成一个新的停滞点P,在该点处后续 流体到达P点时,在高压作用下被迫离 开壁面和原流线方向,将自身部分静 压能转变为动能,脱离壁面并沿另一 条新流线方向向下游流去。 这样,在P点的下游就形成了空白 区,在逆向压力梯度的作用下,必有 一股倒流的流体补充进来,但它们又 不能靠近处于高压下的点P而被迫退回, 形成涡旋。
边界层分离(Boundary Layer Separation)
在某些情况下,边界层内流体发成倒流,引起边界层与 固定壁面的分离,并同时产生涡旋的现象。
边界层分离是造成流体能量损失的主要原因之一。
2.8.2.1 边界层分离的形成过程
理想流体流经无限长圆柱体
因流体无黏性,其在整个流场均无能 量损失,在圆柱四周的压力分布和速度分 布完全对称 停滞点A的速度为零,压力最大;从A 到B,流速逐渐增加,压力逐渐减小,至B 点,速度达到最大值,压力则为最小值。
对比理想流体和不可压缩流体经过圆柱体
总结:
1、分离过程:在顺压梯度区(B点前):流体加速 在逆压梯度区(B点后):BP段减速→P点停止→P点后倒流。
2、分离的原因 — 黏性 3、分离的条件 — 存在逆压梯度,且压力梯度与剪应力梯度相比足够大。
4、分离的实际发生 — 微团滞止和倒流
粘性流体在压力降低区内流动(加速流动),