用频率估计概率试卷(含答案)
2022年《用频率估计概率》专题练习(附答案)

3.2 用频率估计概率一、填空题1.“抛出的蓝球会下落〞,这个事件是 事件.〔填“确定〞或“不确定〞〕 2.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 的概率最大,抽到和大于8的概率为 .3.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,那么她在该次预测中达标的概率是 .4.两位同学进行投篮,甲同学投20次,投中15次;乙同学投15次,投中9次,命中率高的是 ,对某次投篮而言,二人同时投中的概率是 .5.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过屡次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%.25%和40%,估计口袋中黄色玻璃球有 个.6.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是31,那么摸出一个黄球的概率是 .7.一只不透明的布袋中有三种小球〔除颜色以外没有任何区别〕,分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 .8.甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规那么:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规那么公平吗?并说明理由._________________________________.9.一个口袋中有12个白球和假设干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球.10.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影局部铺黑色石子,其余局部铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过屡次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为 米2〔精确到2〕.二、选择题11.以下模拟掷硬币的实验不正确的选项是 〔 〕A .用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C .在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D .将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上12.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 〔 〕A .21B .51C .361D .3611 13.有6张反面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,假设将这六张牌反面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为〔 〕〔第10题〕〔第16题〕 A .32 B .21 C .41 D .31 14.如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是〔 〕A .21B .31C .41 D .015.如图,两个用来摇奖的转盘,其中说法正确的选项是〔 〕A .转盘〔1〕中蓝色区域的面积比转盘〔2〕中的蓝色区域面积要大,所以摇转盘〔1〕比摇转盘〔2〕时,蓝色区域得奖的可能性大B .两个转盘中指针指向蓝色区域的时机一样大C .转盘〔1〕中,指针指向红色区域的概率是31 D .在转盘〔2〕中只有红.黄.蓝三种颜色,指针指向每种颜色的概率都是3116.把一个沙包丢在如下图的某个方格中〔每个方格除颜色外完全一样〕,那么沙包落在黑色格中的概率是〔 〕A .21B .31C .41 D .5117.中央电视台“幸运52”栏目中的“百宝箱〞互动环节,是一种竞猜游戏,游戏规那么如下:在20个商标中,有5个商标牌的反面注明了一定的奖金额,其余商标的反面是一张苦脸,假设翻到它就不得奖.参加这个游戏的观众有三次翻牌的时机,某观众前两次翻牌均得假设干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是〔 〕A .41B .61C .51D .203 18.如图,高速公路上有A 、B 、C 三个出口,A 、B 之间路程为a 千米,B 、C 之间的路程为b 千米,决定在A 、C 之间的任意一处增设一个效劳区,那么此效劳区设在A 、B 之间的概率是〔 〕A .a b B .b a C .b a a + D .b a b +小明家 公园 〔第14题〕 〔第15题〕 A BC〔第18题〕三、解答题19.小明、小华用四张扑克牌玩游戏〔方块2、黑桃4、红桃5、梅花5〕,他俩将扑克牌洗匀后,反面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.〔1〕假设小明恰好抽到黑桃4.①请绘制这种情况的树状图;②求小华抽的牌的牌面数字比4大的概率.〔2〕小明、小华约定:假设小明抽到的牌的牌面数字比小华的大,那么小明胜,反之那么小明负;假设牌面数字一样,那么不分胜负,你认为这个游戏是否公平?说明你的理由.20.某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一次转动转盘的时机,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.〔1〕计算并完成表格;〔2〕请估计,当n很大时,频率将会接近多少?〔3〕假设你去转动该盘一次,你获得洗衣粉的概率约是多少?〔4〕在该转盘中,表示“洗衣粉〞区域的扇形的圆心角约是多少?〔精确到1°〕21.某篮球队在平时训练中,运发动甲的3分球命中率是70%,运发动乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻时机了,假设你是这个球队的教练,问:〔1〕最后一个3分球由甲、乙中谁来投,获胜的时机更大?〔2〕请简要说说你的理由.22.王强与李刚两位同学在学习“概率〞时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数 1 2 3 4 5 6出现次数 6 9 5 8 16 10 〔1〕请计算出现向上点数为3的频率及出现向上点数为5的频率.〔2〕王强说:“根据实验,一次试验中出现向上点数为5的概率最大.〞李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.〞请判断王强和李刚说法的对错.〔3〕如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.23.有一个“摆地摊〞的赌主,他拿出2个白球和2个黑球,放在一个袋子里,让人摸球中奖,只要交1元钱,就可以从袋里摸2个球,如果摸到的2个球都是白球,可以得到4元的回报,请计算一下中奖的时机,如果全校一共2400人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?24.六个面上分别标有1、1、2、3、3、5六个数字的均匀立方体的外表展开图如图6所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.按照这样的规定,每掷一次该小立方体,就得到平面内一个点的坐标.〔1〕掷这样的立方体可能得到的点有哪些?请把这些点在如下给定的平面直角坐标系中表示出来.〔2〕小明前两次掷得的两个点确定一条直线l,且这条直线经过点P〔4,7〕,那么他第三次掷得的点也在直线l上的概率是多少?参考答案一、填空题1.确定 2.6,325 3.25 4.甲,9205.18 6.25 7.15 8.不公平 9.48 10. 二、选择题11.D 12.D 13.D 14.B 15.B 16.B 17.B 18.D三、解答题19.〔1〕①图略,②23;〔2〕这个游戏公平 20.〔1〕0.;;;〔4〕252︒ 21.都可以.最后一个三分球由甲来投,因甲在平时训练中3分球的命中率较高;最后一个3分球由乙来投,因为在本场比赛中乙的命中率更高,投入最后一个球的可能性更大 22.〔1〕出现向上点数为3的频率为554,出现向上点数为5的频率为827;〔2〕都错;〔3〕1323.400元 24.〔1〕〔1,1〕、〔1,1〕、〔2,3〕、〔3,2〕、〔3,5〕、〔5,3〕;〔2〕通过描点和计算可以发现,经过〔1,1〕,〔2,3〕,〔3,5〕三点中的任意两点所确定的直线都经过点P 〔4,7〕,所以小明第三次掷得的点也在直线l 上的概率是46=23第2课时 比例的性质一、填空题1.a :b :c=2:3:5,那么cb b a -- =________. 2.〔a-b 〕:b=2:3,那么a :b=_______ 3.实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,那么x :y :z=________.4.设实数x ,y ,z 使│x -2y│+ 〔3x-z 〕2=0成立,求x :y :z 的值________. 5、3)(4)2(y x y x -=+,那么=y x : ,=+x y x 6、543z y x ==,那么=++xz y x ,=+-++z y x z y x 53232 7、如果3:1:1::=c b a ,那么=+--+cb ac b a 3532二、选择题8、dc b a =,那么以下等式中不成立的是〔 〕 A.cd a b = B. d d c b b a -=- C. d c c b a a +=+ D. b a c b d a =++ 9、53=y x ,那么在①41=+-y x y x ②5353=++y x ③1332=+y x x ④38=+x y x 这四个式子中正确的个数是〔 〕A. 1个B. 2个C. 3个D. 4个三、解答题10、7532=b a ,求b ab a 3423+的值。
用频率估计概率(习题)

3.2用频率估计概率分层训练提分要义【基础题】1.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个2.某农科所在相同条件下做某作物种子发芽率的试验,结果如表所示:有下面四个推断:①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;②随着种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);③种子个数最多的那次试验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中正确的是()A.①②B.③④C.②③D.②④3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.人数60 260 550 130 根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.874.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数50 100 150 200 500 800 1000 (件)合格频数48 98 144 193 489 784 981 A.12 B.24 C.1188 D.11765.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.25 D.306.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于77.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100 100 100 100 100 100 100 100 100 100摸到白球的次数41 39 40 43 38 39 46 41 42 38请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个8.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是().类型健康亚健康不健康数据(人)32 7 1A.32 B.7 C.710D.459.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球10.如图,已知不透明的袋中装有红色、黄色、蓝色的乒乓球共120个,某学习小组做“用频率估计概率”的摸球实验(从中随机摸出一个球,记下颜色后放回),统计了“摸出球为红色”出现的频率,绘制了如图折线统计图,那么估计袋中红色球的数目为()A.20 B.30 C.40 D.6011.从淄博汽车站到银泰城有甲,乙,丙三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从淄博汽车站到银泰城的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/公交车用时的30≤t≤35 35≤t≤40 40≤t≤45 45≤t≤50 合计频数/公交车用时甲59 151 166 124 500乙50 50 122 278 500丙45 265 167 23 500早高峰期间,乘坐线路上的公交车,从淄博汽车站到银泰城“用时不超过45分钟”的可能性最大.()A.甲B.乙C.丙D.无法确定12.某位篮球爱好者进行了三轮投篮试验,结果如下表:轮数投球数命中数命中率第一轮10 8 0.8则他的投篮命中率为()A.45B.23C.34D.不能确定13.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x (cm)统计如下:根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm 的人数是()A.28500 B.17100 C.10800 D.1500【中档题】14.一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球______个.15.某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)16.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:估计从该批次口罩中任抽一只口罩是合格品的概率为_____.17.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有6个黑球,从袋中随机摸出一球,记下其颜色,称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是____.【综合题】18.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?19.在不透明的口袋中装有1个白色、1个红色和若干个黄色的乒乓球(除颜外其余都相同),小明为了弄清黄色乒乓球的个数,进行了摸球的实验(每次只摸一个,记录颜色后放回,搅匀后重复上述步骤),下表是实验的部分数据:(1)请你估计:摸出一个球恰好是白球的概率大约是(精确到0.01),黄球有个;(2)如果从上述口袋中,同时摸出2个球,求结果是一红一黄的概率.20.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).21.新冠疫情期间,某校有“录播”和“直播”两种教学方式供学生自主选择其中一种进行居家线上学习.为了了解该校学生线上学习参与度情况,从选择这两种教学方式的学生中,分别随机抽取50名进行调查,调查结果如表(数据分组包含左端值不包含右端值).0~20% 20%~50% 50%~80% 80%~100%录播 5 18 14 13 直播2152112(1)从选择教学方式为“录播”的学生中任意抽取1名学生,试估计该生的参与度不低于50%的概率;(2)若该校共有1200名学生,选择“录播”和“直播”的人数之比为3:5,试估计选择“录播”或“直播”参与度均在20%以下的共有多少人?22.某超市经营某品牌的一种乳制品,根据往年销售经验,每天销售量与当天最高气温t (单位:C ︒)有关.为了制定六月份的订购计划,统计了前三年六月份每天的最高气温、销售量与最高气温的关系得到下表: 最高气温t(单位:C ︒)天数每天销售量(瓶)20t < 15 240 2025t ≤< 30 300 25t ≥45500(1)估计超市今年六月份某一天这种乳制品的销售量不超过300瓶的概率; (2)估计超市这种乳制品今年六月份平均每天的销售量;(3)设进货成本为每瓶4元,售价为每瓶6元,结合前三年六月份的销售数据,估计超市今年六月份经营这种乳制品的总利润.23.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频率表如下:(1)计算表中a,b的值并估计任抽一件衬衣是合格品的概率.(2)估计出售2000件衬衣,其中次品大约有几件.24.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,随着摸球次数的增多,摸到白球的频率在一个常数附近摆动,请直接写出这个常数(精确到0.01),由此估出红球有几个?(2)在这次摸球试验中,从袋中随机摸出1个球,记下颜色后放回,再从中随机摸出1个球,利用画树状图或列表的方法表示所有可能出现的结果,并求两次摸到的球恰好1是个白球,1个是红球的概率.。
九年级数学上25.3用频率估计概率最新最好试题期中复习考试选用周末练习含答案

九年级数学上25.3用频率估计概率最新最好试题期中复习考试选用周末练习含答案一.选择题(共7小题)1.(2019春•杏花岭区校级月考)如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上2.(2019春•市南区期末)下面四个实验中,实验结果概率最小的是()A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率3.(2019春•东明县期末)某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是()A.掷一枚质地均匀的硬币,落地时结果是“正面向上”B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6C.在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球4.(2019•曲靖一模)如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.2.4m2B.3.2m2C.4.8m2D.7.2m2 5.(2018秋•密云区期末)2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.6.(2019春•城固县期末)某林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中成活情况的一组数据统计结果.下面三个推断:①当移植棵数是1500时,该幼树移植成活的棵数是1356,所以“移植成活”的概率是0.904;②随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880;③若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率是0.875.其中合理的是()A.①③B.②③C.①D.②7.(2019•江岸区校级模拟)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③二.填空题(共5小题)8.(2019•丰台区二模)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性“凹面向上”的可能性.(填“大于”,“等于”或“小于”).9.(2019春•海淀区校级月考)小瑶同学在学习概率知识后做了一个随机事件的试验.她把100粒米随机撒到如图所示的一张画有正方形及其内切圆的白纸上,经计数,恰好落在圆内的米粒数为79粒,由此他估计圆周率π的值约为.10.(2019•北京一模)如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为cm2.11.(2018秋•丹江口市期末)如图为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为5m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,由此可估计不规则区域的面积是m2.12.(2018秋•慈溪市期末)如图,显示的是用计算机模拟随机投掷一枚图钉的某次试验的结果.小明根据试验结果推断:随着重复试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,就可以估计“钉尖向上”的概率是0.618.你认为小明的推断是(填写“正确”或“错误”)的.三.解答题(共3小题)13.(2019春•铜山区期末)某批乒乓球的质量检验结果如下:(1)填写表中的空格;(2)画出这批乒乓球优等品频率的折线统计图;(3)这批乒乓球优等品概率的估计值是多少?14.(2018秋•莲湖区期中)李爱数同学发现操场中有一个不规则的封闭图形ABC如图所示,为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圆内掷石子,结果记录如下:请根据以上信息,回答问题:(1)求石子落在圆内的频率;(2)估计封闭图形ABC的面积.15.(2018春•太原期末)随机掷一枚图钉,落地后只能出现两种情况:“钉尖朝上”和“钉尖朝下”.这两种情况的可能性一样大吗?(1)求真小组的同学们进行了实验,并将实验数据汇总填入下表.请补全表格:①,②,③(2)为了加大试验的次数,老师用计算机进行了模拟试验,将试验数据制成如图所示的折线图.据此,同学们得出三个推断:①当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的概率是0.616;②随着试验次数的增加,“钉尖朝上”的频率在0.618附近摆动,显示出一定的稳定性,据此估计“钉尖朝上”的概率是0.618;③若再次用计算机模拟实验,当投掷次数为1000时,则“钉尖朝上”的次数一定是620次.其中合理的是.(3)向善小组的同学们也做了1000次掷图钉的试验,其中640次“钉尖朝上”.据此,他们认为“钉尖朝上”的可能性比“钉尖朝下”的可能性大.你赞成他们的说法吗?请说出你的理由.九年级数学上25.3用频率估计概率最新最好试题期中复习考试选用周末练习答案一.选择题(共7小题)1.(2019春•杏花岭区校级月考)如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上【解答】解:A、抛一枚硬币,出现正面朝上的频率是0.5,故本选项错误;B、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是0.33,故本选项正确;C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是0.25,故本选项错误;D、掷一个正六面体的骰子,出现3点朝上的频率约为:0.17,故本选项错误;故选:B.2.(2019春•市南区期末)下面四个实验中,实验结果概率最小的是()A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率【解答】解:A、如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率为0.4.B、如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率为0.33.C、如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率为0.2.D、有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率为0.28,因为0.2最小,故选:C.3.(2019春•东明县期末)某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是()A.掷一枚质地均匀的硬币,落地时结果是“正面向上”B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6C.在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球【解答】解:A、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为,不符合题意;B、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为,符合题意;C、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;D、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率,不符合题意;故选:B.4.(2019•曲靖一模)如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.2.4m2B.3.2m2C.4.8m2D.7.2m2【解答】解:∵骰子落在世界杯图案中的频率稳定在常数0.4左右,∴估计骰子落在世界杯图案中的概率为0.4,∴估计宜传画上世界杯图案的面积=0.4×(4×2)=3.2(m2).故选:B.5.(2018秋•密云区期末)2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是.故选:A.6.(2019春•城固县期末)某林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中成活情况的一组数据统计结果.下面三个推断:①当移植棵数是1500时,该幼树移植成活的棵数是1356,所以“移植成活”的概率是0.904;②随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880;③若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率是0.875.其中合理的是()A.①③B.②③C.①D.②【解答】解:当移植棵数是1500时,该幼树移植成活的棵数是1356,所以此时“移植成活”的频率是0.904,但概率不一定是0.904,故①错误,随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880,故②正确,若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率也不一定是0.875,因为某一次或几次的频率太高或太低会影响估计概率,概率是一件事情发生的可能性,故③错误,故选:D.7.(2019•江岸区校级模拟)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.二.填空题(共5小题)8.(2019•丰台区二模)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性小于“凹面向上”的可能性.(填“大于”,“等于”或“小于”).【解答】解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,∴凸面向上”的可能性小于“凹面向上”的可能性.,故答案为:小于.9.(2019春•海淀区校级月考)小瑶同学在学习概率知识后做了一个随机事件的试验.她把100粒米随机撒到如图所示的一张画有正方形及其内切圆的白纸上,经计数,恰好落在圆内的米粒数为79粒,由此他估计圆周率π的值约为 3.16.【解答】解:设正方形的边长为2a,则圆的半径为a,由题意可得,,解得,π=3.16故答案为:3.16.10.(2019•北京一模)如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为 2.8cm2.【解答】解:正方形二维码的边长为2cm,∴正方形二维码的面积为4cm2,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,∴黑色部分的面积占正方形二维码面积的70%,∴黑色部分的面积约为:4×70%=2.8,故答案为:2.8.11.(2018秋•丹江口市期末)如图为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为5m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,由此可估计不规则区域的面积是5 m2.【解答】解:∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,∴小石子落在不规则区域的概率为0.2,∵正方形的边长为5m,∴面积为25m2,设不规则区域的面积为s,则0.2,解得:s=5,故答案为:5.12.(2018秋•慈溪市期末)如图,显示的是用计算机模拟随机投掷一枚图钉的某次试验的结果.小明根据试验结果推断:随着重复试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,就可以估计“钉尖向上”的概率是0.618.你认为小明的推断是正确(填写“正确”或“错误”)的.【解答】解:由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故小明的推断是正确的,故答案为:正确.三.解答题(共3小题)13.(2019春•铜山区期末)某批乒乓球的质量检验结果如下:(1)填写表中的空格;(2)画出这批乒乓球优等品频率的折线统计图;(3)这批乒乓球优等品概率的估计值是多少?【解答】解:(1)176÷200=0.88,364÷400=0.91,450÷500=0.9,故答案为:0.88,0.91,0.9,(2)折线统计图如图所示:(3)根据频率,当抽取的数量逐渐增多时,优等品的频率越稳定在0.9左右,因此这批乒乓球优等品概率的估计值大约为0.9.14.(2018秋•莲湖区期中)李爱数同学发现操场中有一个不规则的封闭图形ABC如图所示,为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圆内掷石子,结果记录如下:请根据以上信息,回答问题:(1)求石子落在圆内的频率;(2)估计封闭图形ABC的面积.【解答】解:(1)观察表格得:随着投掷次数的增大,石子落在圆内的频率值稳定在;(2)设封闭图形的面积为a,根据题意得:,解得:a=3π,则封闭图形ABC的面积为3π平方米.15.(2018春•太原期末)随机掷一枚图钉,落地后只能出现两种情况:“钉尖朝上”和“钉尖朝下”.这两种情况的可能性一样大吗?(1)求真小组的同学们进行了实验,并将实验数据汇总填入下表.请补全表格:①0.625,②0.6,③0.62(2)为了加大试验的次数,老师用计算机进行了模拟试验,将试验数据制成如图所示的折线图.据此,同学们得出三个推断:①当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的概率是0.616;②随着试验次数的增加,“钉尖朝上”的频率在0.618附近摆动,显示出一定的稳定性,据此估计“钉尖朝上”的概率是0.618;③若再次用计算机模拟实验,当投掷次数为1000时,则“钉尖朝上”的次数一定是620次.其中合理的是②.(3)向善小组的同学们也做了1000次掷图钉的试验,其中640次“钉尖朝上”.据此,他们认为“钉尖朝上”的可能性比“钉尖朝下”的可能性大.你赞成他们的说法吗?请说出你的理由.【解答】解:(1)①的频率为0.625、②的频率为0.6、③的频率为0.62,故答案为:0.625、0.6、0.62;(2)合理的是②.①项,当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的频率是0.616,不能得其概率.故①项不符合题意.②项,从图象可知,随着试验次数的增加,“钉尖朝上”的频率在0.618附近摆动,显示出一定的稳定性,据此估计“钉尖朝上”的概率是0.618.故②项符合题意.③项,由图可知,用计算机模拟实验,当投掷次数为1000时,则“钉尖朝上”的频率是0.62,由此可得当投掷次数为1000时,则“钉尖朝上”的频率在0.62左右,但不代表还是0.62,每次试验都具有偶然性,故③项不符合题意.故答案为:②;(3)赞成.理由:随机投掷一枚图钉1000次,其中“针尖朝上”的次数为640次,“针尖朝上”的频率为0.64,试验次数足够大,足以说明“钉尖朝上”的可能性大,赞成他们的说法.。
考点10 用频率估计概率(解析版)

考点10用频率估计概率一.选择题(共12小题)1.(2020·广东深圳市·九年级期末)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是()A.14B.12C.6D.4【答案】C【分析】根据红球出现的频率和球的总数,可以计算出红球的个数.【解析】解:由题意可得,20×0.3=6(个),即袋子中红球的个数最有可能是6个,故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出红球的个数.2.(2020·全国九年级课时练习)某射击运动员在同一条件下的射击成绩记录如下:则该运动员“射中9环以上”的概率约为(结果保留一位小数)()A.0.7B.0.75C.0.8D.0.9【答案】C【分析】用频率估计概率解答即可.【解析】解:∵从频率的波动情况可以发现频率稳定在0.8附近,∵这名运动员射击一次时“射中9环以上”的概率大约是0.8.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.3.(2020·东莞市南开实验学校九年级月考)在一个不透明的口袋中装有5个白球,若干个黑球,它们除颜色外其它完全相同,已知摸到白球概率为0.2,则袋子中黑球有多少个?()A.15B.10C.5D.20【答案】D【分析】由摸到白球的频率稳定在0.2附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【解析】解:设黑球个数为x个,∵摸到白色球的频率稳定在0.2左右,∵口袋中得到白色球的概率为0.2,∵50.25x=+,解得:x=20,经检验,x=20是原方程的解故黑球的个数为20个.故选:D.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.4.(2020·四川省成都市新都第四中学九年级期中)下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是()A.0.55B.0.60C.0.70D.0.50【答案】B【分析】根据频率估计概率的方法结合表格可得答案.【解析】由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.60附近,这名球员投篮一次,投中的概率约是0.60.故选择:B.【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.5.(2020·湖南长沙同升湖实验学校九年级期中)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.25个C.35个D.45个【答案】C【分析】利用频率估计概率得到摸到黄球的概率为0.3,根据概率公式计算即可.【解析】∵小红通过多次摸球试验后发现,估计摸到黄球的概率为0.3,∵黄球的个数为50×0.3=15,则白球可能有50-15=35个.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.6.(2020·宁波市镇海区骆驼中学九年级期中)在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( ) A .12个 B .14个C .18个D .28个【答案】B 【分析】设需要往盒子里再放入x 个黄球, “在大次数的实验中,当某事件发生的频率逐渐稳定下来,在某个常数周围作小幅波动时,摸到黄球的频率稳定在0.35左右,利用公式P=mn即可求出.【解析】设布袋中黄球可能为x 个,0.3540xP ==, x=0.35×40=14个, 故选择:B . 【点睛】熟悉某事件发生的概率与频率间的关系:“在大次数的实验中,当某事件发生的频率逐渐稳定下来,在某个常数周围作小幅波动时,我们就说这个常数是该事件发生的概率”是解答本题.7.(2020·广东茂名市·九年级期中)做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A.0.50B.0.21C.0.42D.0.58【答案】C【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【解析】解:∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,∵抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42,故选:C.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.8.(2020·四川双流中学九年级月考)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同.小刚每次换出一个球后放回,通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是()A.8个B.15个C.12个D.16个【答案】C【分析】根据利用频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率=1-40%=60%,然后用60%乘以总球数即可得到白色球的个数.【解析】解:∵摸到黄球概率为40%, ∵摸到白球概率为140%60%-=, ∵白球个数为2060%12⨯=(个). 故选C 【点睛】此题主要考查了利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例,再计算其个数.9.(2020·山东省平邑县第一中学九年级月考)在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球400次,其中100次摸到黑球,请估计盒子中白球的个数是( ) A .10个 B .15个C .20个D .25个【答案】B 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解. 【解析】解:∵共试验400次,其中有100次摸到黑球,∵白球所占的比例为1﹣100400=0.75, 设盒子中共有白球x 个,则5xx +=0.75, 解得:x =15.故选:B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.10.(2020·渝中区·重庆巴蜀中学八年级开学考试)在一个不透明的袋中,有若干个白色乒乓球和4个黄色乒乓球,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回袋中,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,那么,估计袋中白色乒乓球的个数为()A.6B.8C.10D.12【答案】A【解析】试题解析:∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,∵根据题意任意摸出1个,摸到黄色乒乓球的概率是40%,设袋中白色乒乓球的个数为a个,则4 40%.4a=+解得:a=6,∵白色乒乓球的个数为:6个,故选A.11.(2020·山东青岛市·七年级期末)甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率【答案】C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(2020·广东佛山市·九年级月考)某服装厂对一批服装进行质量抽检结果如下:则这批服装中,随机抽取一件是优等品的概率约为()A.0.92B.0.89C.0.91D.0.90【答案】D【分析】用优等品数除以抽取的服装数得到优等品的频率,即可估计随机抽取一件是优等品的概率.【解析】解:∵46+89+182+450+900=1667,50+100+200+500+1000=1850,1667÷1850≈0.90,∵从这批服装中随机抽取一件是优等品的概率约为0.90,故选:D.二.填空题(共6小题)13.(2020·湖北武汉市·九年级月考)某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率(结果保留两位小数)约是_____.【答案】0.82【分析】根据利用频率估计概率的方法及表格可直接进行求解.【解析】解:由题意得:根据频率的稳定性,这名运动员射击一次时“射中九环以上”的概率约为0.82;故答案为0.82.【点睛】本题主要考查频率估算概率,熟练掌握频率估算概率的方法是解题的关键.14.(2020·全国九年级课时练习)某种绿豆在相同条件下发芽的实验结果如下表,根据表中数据估计这种绿豆发芽的概率约是____(保留三位小数).【答案】0.931【分析】根据大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即可解答.【解析】根据表格可知实验批次为3000粒绿豆的实验粒数最多,发芽频率为0.931,所以根据频率和概率的关系得:这种绿豆发芽的概率为0.931.故答案为:0.931.【点睛】本题考查用频率估计概率,了解大量反复试验下频率的稳定值即为概率是解答本题的关键.15.(2020·甘州中学九年级期末)在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.【答案】20.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出球个数即可.【解析】解:设球个数为x个,∵摸到红色球的频率稳定在0.25左右,∵口袋中得到红色球的概率为0.25,∵514x,解得:20x,经检验,x=20是原方程解,所以,球的个数为20个,故答案为:20.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16.(2020·杭州市采荷中学九年级期中)对一批衬衣进行抽检,统计合格衬衣的件数,得到如下的频数表,根据表中数据,那么出售10件衬衣,合格大约有____件.【答案】9【分析】根据题目中的数据可以估计合格衬衣的频率,从而可以解答本题.【解析】解:计算频率填入表格如下:∵衬衣合格的频率趋近于0.9,∵衬衣合格的概率为:0.9,所以出售10件衬衣,合格品大约有:10×0.9=9(件)故答案为:9.【点睛】本题考察频数(率)分布表,解答本题的关键是明确题意,求出合格衬衣的频率.17.(2020·昆明市呈贡区第一中学九年级期中)数学课上老师准备了一个不透明的袋子,袋子里装着形状、大小相同的红球和白球,同学们以小组为单位进行摸球实验:将球搅匀后从中任意抽出1个球,记下颜色并放回,搅匀,不断重复这个过程.经过试验同学们发现:摸到红球的频率在一个稳定的常数附近摆动,估计摸到红球的概率是________(精确到0.01).【答案】0.33【分析】通过表格中数据,随着次数的增多,摸到红球的频率越稳定在0.33左右,估计得出答案.【解析】解:观察表格发现,随着摸球次数的增多,摸到红球的频率逐渐稳定在0.33附近,由此估出摸到红球的概率为0.33.故答案为:0.33.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.18.(2020·浙江台州市·九年级期末)某商场设立了一个可以自由转动的转盘,并规定:顾客购物30元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:假如你去转动该转盘一次.你获得签字笔的概率约是______.(精确到0.1)【答案】0.6【分析】频率=频数 总数,根据概率公式计算即可.【解析】落在“签字笔”区域的次数=65+122+190+306+601=1284转动转盘的总次数=100+200+300+500+1000=21001284≈,故获得签字笔的概率约是0.6,0.62100故答案为:0.6.三.解析题(共6小题)19.(2020·山东青岛市·胶州六中九年级月考)从一大批水稻种子中抽取若干粒,在同一条件下进行发芽试验,结果如下表:(1)计算各批种子发芽频率;(2)画出发芽频率的折线统计图;(3)这些频率具有什么样的稳定性?(4)根据频率的稳定性,估计水稻种子的发芽概率.(精确到0.01)【答案】(1)见解析;(2)见解析;(3)频率稳定在0.92附近;(4)0.92【分析】(1)根据表格中数据分别求出种子发芽频率即可;(2)根据表格中数据画出发芽频率的折线统计图即可;(3)利用(1)中所求的频率可以看出种子发芽频率的稳定性;(4)利用(1)中所求直接估计得出种子的发芽概率.【解析】解:()1如下表:()2频率的折线统计图如下:()3这些频率稳定在0.92附近;()4根据频率的稳定性,估计水稻种子的发芽概率为0.92.【点睛】此题主要考查了利用频率估计概率,根据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进而求出是解题关键.20.(2020·浙江杭州市·)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频率表如下:(1)计算表中a,b的值并估计任抽一件衬衣是合格品的概率.(2)估计出售2000件衬衣,其中次品大约有几件.【答案】(1)a =0.88,b =0.90,P =0.90 ;(2)其中次品大约有 200件【分析】(1)根据频数÷总数=频率,分别求出a 、b 即可,再根据频率可靠性可知总数越大时频率越稳定,故总数为1000时所得频率即为每一件衬衣的合格率;(2)利用一件衬衣的合格率×总数=频数,即可合格的衬衣数量,再用总量-合格的衬衣数量=次品数量.【解析】解:(1)881000.88a =÷=,90110000.90b =÷=,0.90p =,故答案为:0.88a =,0.90b =,0.90p =.(2)由(1)可知每一件衬衣的合格率为0.90p =,∵次品数量=()200010.90200⨯-=,故答案为:次品大约有200件.【点睛】此题主要考查了利用频率估计概率的应用,解答此题关键是估计出任取1件衬衣是次品的概率.21.(2020·山西晋中市·七年级期末)某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).(1)a的值为,b的值为;(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是;(结果精确到0.01)(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)【答案】(1)0.74、0.705;(2)0.70;(3)108°.【分析】(1)根据频率mn,计算即可;(2)由表可知,随着转动次数越大,频率逐渐稳定在0.70附近,可估计概率;(3)在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是360°×0.3.【解析】解:(1)a=111÷150=0.74、b=564÷800=0.705,故答案为0.74、0.705;(2)由表可知,随着转动次数越大,频率逐渐稳定在0.70附近,所以获得“10元兑换券”的概率约是0.70,故答案为0.70;(3)在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是360°×0.3=108°.【点睛】本题考核知识点:用频率表示概率. 解题关键点:理解频率的意义.22.(2020·浙江杭州市·杭州外国语学校九年级月考)对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少?【答案】(1)见解析;(2)0.9【分析】(1)根据表格中所给的样本容量和频数,由频率=频数:样本容量,得出“优等品”的频率,然后填入表中即可;(2)用频率来估计概率,频率一般都在0.9左右摆动,所以估计概率为0.9,这是概率与频率之间的关系,即用频率值来估计概率值.【解析】解:(1)“优等品”的频率分别为45÷50=0.9,92÷100=0.92,455÷500=0.91,890÷1000=0.89,4500÷5000=0.9.填表如下:(2)由于“优等品”的频率都在0.9左右摆动,故该厂生产的羽毛球“优等品”的概率约是0.9.【点睛】本题是一个统计问题,考查样本容量,频率和频数之间的关系,这三者可以做到知二求一,本题是一个基础题,可以作为选择题和填空题出现.23.(2020·江苏淮安市·八年级期末)在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?【答案】(1)0.59,116.(2)0.6. (3)8个.【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率即可求出摸到白球概率.根据口袋中白球的数量和概率即可求出口袋中球的总数,用总数减去白颜色的球数量即可解答.【解析】(1)a=59100=0.59,2000.58116b=⨯=.(2)由表可知,当n很大时,摸到白球的频率将会接近0.6;.(3)120.6128÷-=(个).答:除白球外,还有大约8个其它颜色的小球.【点睛】本题考查如何利用频率估计概率,解题关键是要注意频率和概率之间的关系. 24.(2020·四川巴中市·七年级期末)2020年新冠肺炎疫情期间,我市学生停课不停学,坚持在家自学,并开展了丰富多彩的业余文体活动,小明根据统计,对某校七年级(8)班同学开展业余文体活动的情况绘制了如下两个统计图,请解决下列问题:(1)该班共有学生多少名?(2)若从该班任选一名学生参加学校书法比赛,选出的学生恰好是书法爱好者的概率是多少?(3)扇形统计图中,诗词对应扇形的圆心角度数是多少?(4)计算诗词爱好者的人数并补全条形统计图【答案】(1)50;(2)10%;(3)21.6︒;(4)3,详见解析.【分析】(1)读懂统计图,得出书法爱好者一共5人,占全班人数的10%,从而计算出全班总人数;(2)用书法爱好者的人数除以全班总人数计算即可;(3)用360°依次减去乐器、书法、影视欣赏对应的扇形的圆心角的度数即可;(4)先利用诗词对应的的扇形的圆心角的度数计算出诗词爱好者占全班总人数的百分比,再乘以全班总人数即可.【解析】÷=名,解:(1)510%50答:该班共有学生50名;÷=,(2)55010%答:选出的学生恰好是书法爱好者的概率是10%;︒-︒-⨯︒-÷⨯︒=︒(3)36086.410%360305036021.6答:扇形统计图中,诗词对应扇形的圆心角度数是21.6︒;÷⨯=人,(4)诗词爱好者的人数为:21.6360503补全图形如下:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
(试题4)25.3利用频率估计概率

与《利用概率解决实际问题》有关的中考题集锦第1题. (2006 梅州课改)小明与小华在玩一个掷飞镖游戏,如图甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷).(1)不考虑其他因素,你认为这个游戏公平吗?说明理由.(2)请你在图乙中,设计一个不同于图甲的方案,使游戏双方公平.答案:解:(1)这个游戏公平.根据图甲的对称性,阴影部分的面积等于圆面积的一半, ∴这个游戏公平.(2)把图乙中的同心圆平均分成偶数等分,再把其中的一半作为阴影部分即可.(图略)第2题. (2006 成都课改)含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张. 答案:9第3题. (2006 济南课改)小明和小丽用形状大小相同、面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封.游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值和是奇数,则小丽赢,请你判断这个游戏对双方是否公平,并说明理由.答案:游戏对双方是公平的.通过列表或树状图等方法,求得()12P =小明赢. ()12P =小明赢. 因为()()P P =小明赢小明赢,所以游戏对双方是公平的.图甲 图乙第4题. (2006 青岛课改)小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方公平吗?请说明理由;若不公平,请你修改规则使游戏对双方公平.答案:从表中可以得到:P (小明获胜)59=,P (小亮获胜)49=. ∴小明的得分为55199⨯=,小亮的得分为44199⨯=.5499>∵,∴游戏不公平. 修改规则不惟一,如若两次转出颜色相同或配成紫色,则小明得4分,否则小亮得5分.第5题. (2006 湖北十堰课改)小莉和小慧用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,则小莉胜;若两次数字和为偶数,则小慧胜.这个游戏对双方公平吗?试用列表法或树状图加以分析.红黄蓝红 (红,红) (红,黄) (红,蓝) 黄 (黄,红) (黄,黄) (黄,蓝) 蓝(蓝,红)(蓝,黄)(蓝,蓝)红黄蓝第二次第一次答案:解:这个游戏对双方公平.理由如下:12 3 4 2 213+= 224+= 235+= 246+= 3 314+= 325+= 336+= 347+= 4 415+= 426+= 437+= 448+=从表中可以看出,总共有12种结果,每种结果出现的可能性相同,而两数和为奇数的结果有6种. 61122P ∴==小莉.因此,这个游戏对双方公平.第6题. (2006 佛山课改)小明、小华用牌面数字分别为1,2,3,4的4张扑克牌玩游戏.他俩将扑克牌洗匀后,背面朝上放置在桌面.若一次从中抽出两张牌的牌面数字之和为奇数,则小明获胜;反之,小华获胜. 这个游戏公平吗?请说明理由.答案:解:这个游戏不公平.理由:因为一次抽出两张牌的组合共有(12)(13)(14)(23)(24)(34),,,,,,,,,,,,六种情况,其中有4组中的两数和是奇数. 所以421()()633P P ===小明获胜小华获胜,. 因此,这个游戏不公平.第7题. (2006 广州课改)如图,甲转盘被分成3个面积相等的扇形、乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转). (1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少?(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.答案:解:(1)按照小夏设计的游戏规则,小夏获胜的可能性是23,而小秋获胜的可能性是13. (2)公平的游戏规则不唯一,只要正确,均得分.解法1:如果两转盘各转动1次,两个指针所指区域内的数之和为5或6,则小夏获胜;否则小秋获胜. 理由如下:甲转盘指针所指区域的数 乙转盘指针所指区域的数 两数和从树状图可以看出,两数和为5或6的机会与两数和为7或8的机会是相等的,所以,两人获胜的机会均为12,即设计的游戏规则是公平的. 解法2:如果两转盘各转动1次,两个指针所指区域内的数之和为奇数,则小夏获胜;否则小秋获胜,此时,两人获胜的可能性均为12.(理由略) 解法3:如果两转盘各转动1次,两个指针所指区域内的数之积为4的倍数,则小夏获胜;否则小秋获胜,此时,两人获胜的可能性均为12.(理由略) 解法4:如果两转盘各转动1次,两个指针所指区域内的数之差为奇数,则小夏获胜;否则小秋获胜,此时,两人获胜的可能性均为12.(理由略) 等等.第8题. (2006 镇江课改)小颖为九年级1班毕业联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.4 5 4 5 4 5 5 6 6 7 7 8 123答案:解:方法一:用表格来说明 或方法二:用树状图来说明红色 蓝色 红1 (红1,红) (红1,蓝)红2 (红2,红) (红2,蓝)蓝色 (蓝,红) (蓝,蓝)所以,配成紫色的概率为P (配成紫色)3162==. 所以游戏者获胜的概率为12.第9题. (2006 白银课改)某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A B C ,,三种不同的型号,乙品牌计算器有D E ,两种不同的型号,新华中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.(1)写出所有的选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号计算器被选中的概率是多少?(3)现知新华中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1000元人民币,其中甲品牌计算器为A 型号计算器,求购买的A 型号计算器有多少个?答案:解:(1)树状图表示如下:转盘 转 盘 12 开始 红1 红2 蓝色 蓝(红1,蓝) 红(红1,红) 蓝(红2,蓝)红(红2,红) 蓝(蓝,蓝) 红(蓝,红)⨯⨯公司 计算器单价 (单位:元) A 型:60 B 型:40 C 型:25 D 型:50 E 型:20A BC甲品牌列表表示如下:有6种可能结果:()()()()()()AD AE B D B E C D C E ,,,,,,,,,,,. 说明:用其它方式表达选购方案且正确者,只给1分.(2)因为选中A 型号计算器有2种方案,即()()A D A E ,,,,所以A 型号计算器被选中的概率是2163=. (3)由(2)可知,当选用方案()A D ,时,设购买A 型号,D 型号计算器分别为x y ,个, 根据题意,得4060501000.x y x y +=⎧⎨+=⎩,解得100140.x y =-⎧⎨=⎩,经检验不符合题意,舍去;当选用方案()A E ,时,设购买A 型号、E 型号计算器分别为x y ,个, 根据题意,得4060201000.x y x y +=⎧⎨+=⎩,解得535.x y =⎧⎨=⎩,所以新华中学购买了5个A 型号计算器.第10题. (2006 衡阳课改)A B ,两个口袋中均有3个分别标有数字1,2,3的相同的球,甲、乙两人进行玩球游戏.游戏规则是:甲从A 袋中随机摸一个球,乙从B 袋中随机摸一个球,当两个球上所标数字之和为奇数时,则甲赢,否则乙赢.问这个游戏公平吗?为什么?答案:解:不公平.下面列举所有可能出现的结果:123甲 A BC D()D A , ()D B , ()D C , E()E A , ()E B , ()E C , 乙 A和 B1 2 3 42 3 4 53 4 5 6 由此可知,和为奇数有4种,和为偶数有5种.∴甲赢的概率为49,乙赢的概率为59.∴不公平.第11题. (2006济宁课改)甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由..答案:不公平.因为出现偶数的概率为59,而出现奇数的概率为49第12题. (2006南京课改)某校有A B,两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.答案:解:所有可能出现的结果如下:甲乙丙结果AAA(A,A,A)AAB(A,A,B)ABA(A,B,A)ABB(A,B,B)BAA(B,A,A)BAB(B,B,B)BBA(B,B,A)BBB(B,B,B)(1)甲、乙、丙三名学生在同一个餐厅用餐的概率是14;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率是78.第13题. (2006安徽课改)田忌赛马是一个为人熟知的故事,传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,蠃得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强……(1)如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)【解】答案:解:(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上双方马的对阵中,总有一种对抗情况田忌能赢,所以田忌获胜的概率16P=.与《利用概率解决实际问题》有关的中考题集锦(二)第14题. (2006大连课改)小明为了检验两枚六个面分别刻有点数1,2,3,4,5,6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20000次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.答案:解:两枚骰子质量不都合格.同时抛两枚骰子两个朝上面点数和有以下情况:234567345678456789567891067891011789101112,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.∴出现两个朝上面点数和为7的概率为610.167 366=≈.试验20000次出现两个朝上面点数和为7的频率为200.001 20000=.因为大数次试验的频率接近概率,而0.001和0.167相差很大.∴两枚骰子质量不都合格.第15题. (2006菏泽课改)将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中,摇匀后甲、乙二人做如下游戏:每人从袋子中各摸出一个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜.请问:这样的游戏规则对甲、乙双方公平吗?请用概率的知识说明理由.答案:答:这种游戏规则对甲、乙双方不公平.理由如下:不妨设甲先摸,则甲、乙所摸得球的情况如下:总共有12种情况,每种情况发生的可能性相同,其中积为奇数的情况有2种,积为偶数的情况有10种,所以甲获胜的概率为21126=,乙获胜的概率为105126=. 因1566<,所以这样的游戏规则对甲、乙双方不公平.第16题. (2006 宜昌课改)某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相同的球(球上分别标有数字1,2,…,100)的箱子中随机摸出一个球(摸后放回).若球上的数字是88,则返购物券500元;若球上的数字是11或77,则返购物券300元;若球上的数字能被5整除,则返购物券5元;若是其它数字,则不返购物券.第二种是顾客在商场消费每满200元直接获得购物券15元.估计促销期间将有5000人次参加活动.请你通过计算说明商家选择哪种促销方案合算些?答案:解:获得500元购物券的概率是0.01,, 获得300元购物券的概率是0.02, 获得5元购物券的概率是0.2摸球一次获得购物券的平均金额为:()0.015000.023000.2512⨯+⨯+⨯=(元) 如果有5000人次参加摸球,商场付出的购物券的金额是:()50000.015000.023000.2560000⨯⨯+⨯+⨯=元若直接获得购物券,需付金额:50001575000⨯=元 商场选择摸球的促销方式合算.开始2 3 4 1 2 3 4 1 3 4 1 2 4 1 2 3 甲: 乙: (2)(3)(4) (2)(6)(8) (3)(6)(12) (4)(8)(12) 积:第17题. (2006 株洲课改)如图,是从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张. (1)用列举法列举所有可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率.答案:(1)所有可能出现的结果可用下表表示: 1231 (11), (12),(13),2 (21), (22), (23), 3(31), (32), (33),(2)由上表可知牌面的数字之和不小于5的概率为:3193=.第18题. (2006 山西吕梁课改)有一块表面是咖啡色、内部是白色、形状是正方体的烤面包.小明用刀在它的上表面、前面面和右侧表面沿虚线各切两刀(如图1),将它切成若干块小正方体形面包(如图2).(1)小明从若干块小面包中任取一块,求该块面包有且只有两个面是咖啡色的概率; (2)小明和弟弟边吃边玩.游戏规则是:从中任取一块小面包,若它有奇数个面为咖啡色时,小明赢;否则,弟弟赢.你认为这样的游戏规则公平吗?为什么?如果不公平,请你修改游戏规则,使之公平.答案:解:(1)按上述方法可将面包切成27块小面包,有且只有两个面是咖啡色的小面包有12块,124279=.所以,所求概率是49.红桃方块(图1) (图2)(2)27块小面包中有8块是有且只有3个面是咖啡色,6块是有且只有1个面是咖啡色. 从中任取一块小面包,有且只有奇数个面为咖啡色的共有14块,剩余的面包块共有13块. 小明赢的概率是1427,弟弟赢的概率是1327. 所以,按照上述规则弟弟赢的概率小于小明赢的概率,游戏不公平.游戏规则修改举例:任取一块小面包,恰有奇数个面为咖啡色时,哥哥得13分;恰有偶数个面为咖啡色时,弟弟得14分.积分多者获胜.第19题. (2006 鄂尔多斯课改)如图,有两个可以自由转动的均匀转盘A B ,.转盘A 被平均分成3等份,分别标上123,,三个数字;转盘B 被平均分成4等份,分别标上3456,,,四个数字.有人为甲、乙两人设计了一个游戏规则;自由转动转盘A 与B ,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则为乙获胜. 你认为这样的游戏规则是否公平?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?答案:解:不公平. P ∵(和为6)31124==,甲、乙获胜的概率不相等 ∴不公平.(无列表或树状图不扣分) 规则改为:和是6或7,甲胜;否则乙胜.(和为奇数,甲胜;和为偶数,乙胜;或和小于7,甲胜;和大于等于7,乙胜.答案不唯一.) 列 表3 4 5 6 1 4 5 6 7 2 5 6 7 8 36789第20题. (2006 辽宁十一市课改)在一个不透明的口袋中,装有若干个除颜色不同其余213 A4 35 6B A都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个D.3个答案:A第21题. (2006 漳州课改)根据天气预报,明天降水概率为20%,后天降水概率为80%,假如你准备明天或后天去放风筝,你选择 天为佳. 答案:明第22题. (2006 山西临汾课改)某市举办“2008拥抱北京”迎奥运长跑活动,参加长跑活动的市民约有10000人,为了解参加长跑活动人员的年龄分布情况,从中随机抽取了一部分人的年龄作为样本,进行数据处理后,得到如图所示不完整的频数分布直方图.(1)若所抽取年龄在60 岁以上的人数占样本总人数的15%,请求出样本容量,并补全频数分布直方图;(2)请估计参加这次长跑活动的市民中,20岁以下的约有多少人? (3)根据统计图提供的信息,请再写出两条正确的结论.答案:解:(1)1515%100÷=, ∴样本容量是100. 补图正确. (2)1000028%2800⨯=(人), ∴参加这次长跑活动的市民中20岁以下 的约有2800人. (3)答案不唯一,例如所得的信息可以是: ①参加这次长跑活动的市民中20岁以下的人最多;②参加这次长跑活动的市民中41—50岁之间的人最少;③参加这次长跑活动的市民中20—30岁之间的人大约是15%;人数 年龄 30 252015 10 50 20岁以下 20| 30岁 31| 40岁 41| 50岁 51| 60岁 60岁以上 2815 12 10 15 人数年龄30 252015 10 5 0 20岁以下 20| 30岁 31| 40岁 41| 50岁 51|60岁60岁以上28 15 12 101520第23题. (2006山西临汾课改)小明和小乐做摸球游戏.一只不透明的口袋里只放有3个红球和5个绿球,每个球除颜色外都相同,每次摸球前都将袋中的球充分搅匀,从中任意摸出一个球,记录颜色后再放回,若是红球小明得3分,若是绿球小乐得2分.游戏结束时得分多者获胜.(1)你认为这个游戏对双方公平吗?(2)若你认为公平,请说明理由;若你认为不公平,也请说明理由,并修改规则,使该游戏对双方公平.答案:解:(1)不公平.(2)P(摸出红球)38=,P(摸出绿球)58=.小明平均每次得分39388=⨯=(分),小乐平均每次得分55284=⨯=(分).9584<,∴游戏对双方不公平.游戏规则可修改为:①口袋里只放2个红球和3个绿球;②摸出红球小明得5分,摸到绿球小乐得3分;说明:修改游戏规则对双方公平即可得2分.第24题. (2006钦州课改)袋中装有除颜色外其余都相同的红球和黄球共25个,小明通过多次模拟实验后,发现摸到的红球、黄球的概率分别是25和35,则袋中黄球有个.答案:15第25题. (2006南充课改)在三个相同乒乓球上分别写上1,2,3,放入布袋中供甲、乙两人做游戏.规则是:(1)每轮游戏两人各摸一个球,一人摸出记录编号后放回袋中另一人再摸.(2)如果两球的编号之和为奇数,则甲胜;如果两球的编号之和为偶数,则乙胜.你认为这是否是一个公平的游戏?如果不公平,谁获胜的可能性较大?答案:解:编号之和的可能性列表如下:1 2 3 1 2 3 4 23453 4 5 6由表可知,编号之和为奇数的可能性有4种,编号之和为偶数的可能性有5种. 即P (编号之和为奇数)49=,P (编号之和为偶数)59=. 因此,这不是一个公平的游戏.乙获胜的可能性较大. 注:不列表画树状图亦可第26题. (2006 郴州课改)甲、乙两超市同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外,其它全部相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券的多少(如下表). 甲超市 球两红一红一白 两白 礼金券(元) 5 10 5 乙超市如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.答案:去甲超市购物一次摸奖获10元礼金券的概率是P (甲)1111266663=+++= 去乙超市购物一次摸奖获10元礼金券的概率是P (乙)111663=+=所以我选择去甲超市购物.球两红一红一白两白礼金券(元) 10 5 10乙摸甲摸 编号之和。
(完整版)中考数学真题解析频率估计概率方法来求概率(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编频率估计概率的方法来求概率一、选择题1.(2011•南充,12,3分)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为件.考点:用样本估计总体。
分析:首先可以求出样本的不合格率,然后利用样本估计总体的思想即可求出这一万件产品中不合格品约为多少件.解答:解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,∴不合格率为:5÷100=5%,∴估计该厂这一万件产品中不合格品为10000×5%=500件.故答案为:500.点评:此题主要考查了利用样本估计总体的思想,解题时首先求出样本的不合格率,然后利用样本估计总体的思想即可解决问题.二、填空题1.(2011江苏淮安,16,3分)有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为 .考点:利用频率估计概率。
专题:应用题。
分析:因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.解答:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为摸到红球的频率约为0.6,红球所占的百分比是60%,从而可求出解.2.“Welcomc to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字3.(2011湖北黄石,12,3分)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛.组委会现定:任问一名参赛选手的成绩x满足:60≤x<100,赛后整理所有参赛选手的成绩如表(一)表(一)根据表(一)提供的信息n= 0.3 .考点:频数(率)分布表。
人教版九年级数学上册第二十五章《用频率估计概率》课时练习题(含答案)

人教版九年级数学上册第二十五章《25.3用频率估计概率》课时练习题(含答案)一、单选题1.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.242.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.14B.13C.12D.233.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个4.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个5.如图,电路连接完好,且各元件工作正常.随机闭合开关1S,2S,3S中的两个,能让两个小灯泡同时发光的概率为()A.16B.12C.23D.136.王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为()随机抽取的零件个数n20 50 100 500 1000合格的零件个数m18 46 91 450 900零件的合格率mn0.9 0.92 0.91 0.9 0.9A.0.9 B.0.8 C.0.5 D.0.17.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是78.数学社团的同学做了估算π的实验.方法如下:第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x<1,0<y<1;第二步:统计收集上来的有效数据,设“以x,y,1为三条边长能构成锐角三角形”为事件A;第三步:计算事件A发生的概率,及收集的本校有效数据中事件A出现的频率;第四步:估算出π的值.为了计算事件A的概率,同学们通过查阅资料得到以下两条信息:①如果一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在区域D中一个小区域M中”这个事件,那么事件A发生的概率为P(A)=MD;②若x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1.根据上述材料,社团的同学们画出图,若共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,则可以估计π的值为()A.42n mm+B.2nmC.4nmD.44m nm-二、填空题9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.10.如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm2.11.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.12.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).三、解答题(共0分)13.某种油菜籽在相同条件下的发芽试验的结果如下:试验的粒数n20 80 100 200 400 800 1000 1500 发芽的粒数m14 54 67 132 264 532 670 1000发芽的频率mn0.7 0.675 0.67 0.66 0.66 0.665 a0.667(1)填空:上表中a=_________;(2)根据上表,请估计,当n很大时,发芽的频率将会接近多少?(结果保留两位小数)(3)根据上表,这种油菜籽发芽的概率的估计值是多少?(结果保留两位小数)14.一工厂生产某种型号的节能灯的质量抽检结果如表:抽检个数50 100 200 300 400 500次品个数 1 3 5 6 7 9(1)根据表格中的数据求任抽1件是次品的概率;(2)厂家承诺:顾客买到次品包换.如果卖出这批节能灯800个,那么要准备多少个兑换的节能灯?15.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:a________;b=________;(1)按表格数据,表中的=(2)请估计:当次数s很大时,摸到白球的频率将会接近________(精确到0.1);(3)试估算:这一个不透明的口袋中红球有多少个?16.对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.(1)完成上表.(2)估计任意抽一件衬衣是合格品的概率.(3)估计出售1200件衬衣,其中次品大约有几件.17.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是13.(1)求盒子中球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率为14.若能,请写出如何调整白球数量;若不能,请说明理由.18.据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率。
人教版九年级数学上册《25-3 用频率估计概率》作业同步练习题及参考答案

25.3 用频率估计概率1.下面说法合理的是( )A.小明在10 次抛图钉的试验中发现3 次钉尖朝上,由此他说钉尖朝上的概率是310B.抛掷一枚均匀的正方体骰子,“掷得6”1的概率是的意思是每66 次就有1 次掷得6C.某彩票的中奖机会是2%,则买100 张彩票一定会有2 张中奖D.在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48 和0.512.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A.掷一枚均匀的正方体的骰子,出现1 点的概率B.从一个装有2 个白球和1 个红球的袋子中任取一球,这3 个球除颜色外无其他差异,取到红球的概率C.抛一枚均匀硬币,出现正面的概率D.任意写一个整数,它能被2 整除的概率3.在一次质检抽测中,随机抽取某摊位20 袋食盐,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 ~501.5 g 之间的概率为( )A.15 B.14C.310D.7204.一个口袋中有红球、白球共10 个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100 次球,发现有71 次摸到红球.请你估计口袋中红球的数量为个.5.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30 条鱼做上标记,然后放归鱼塘,经过一段时间, 等有标记的鱼完全混合于鱼群中,再打捞200 条鱼,发现其中带标记的鱼有5 条,则鱼塘中估计有条鱼.6.在“抛掷质地均匀的正六面体”的试验中,已知正六面体的六个面上分别标有数字1,2,3,4,5,6,随着试验次数的增多,出现数字“1”的频率的变化趋势是接近.7.为了解学生的体能情况,随机选取了1 000 名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率.(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率.(3)如果某同学喜欢长跑,那么该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?8.在一次大规模的统计中发现英文文献中字母E 的使用频率在0.105 附近,而字母J 的使用频率大约在0.001 附近,如果这次统计是可信的,那么下列说法可信吗?试说明理由.(1)在英文文献中字母E 出现的频率在10.5%左右,字母J 出现的频率在0.1%左右;(2)如果再去统计一篇约含200 个字母的英文文章时,那么字母E 出现的频率一定非常接近10.5%.9.一个袋子中装有12 个完全相同的小球,每个球上分别写有数字1~12.现在用摸球试验来模拟6 人中有2 人生肖相同的概率,在此过程中,下面有几种不同的观点,其中正确的是( )A.摸出的球一定不能放回B.摸出的球必须要放回C.由于袋子中的球多于6 个,因此摸出的球是否放回无所谓D.不能用摸球试验来模拟此事件10.一个不透明的袋中装有除颜色外均相同的8 个黑球、4 个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中有红球个.11.儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8 个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸1 个球,摸到1 个红球就得到一个玩具.已知参加这种游戏的儿童有40000 人,公园游戏场发放玩具8000 个.(1)求参加此次活动得到玩具的频率. (2)请你估计袋中白球的数量接近多少?★12.小颖和小红两位同学在学习“概率”时,做抛掷骰子(质地均匀的正方体)试验,她们共做了60 次试验,试验的结果如下:朝上的点数123456出现的次数796820 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验,一次试验中出现5 点朝上的概率最大”;小红说:“如果抛掷600 次,那么出现6 点朝上的次数正好是100 次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各抛掷一枚骰子,用列表的方法求出两枚骰子朝上的点数之和为3 的倍数的概率.★13. 小红和小明在操场做游戏,他们先在地上画了半径分别为2 m 和3 m 的同心圆(如图),蒙上眼在一定距离外向大圆内掷小石子,掷中阴影部分小红胜,否则小明胜,未掷入大圆内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)20参考答案夯基达标1.D2.B3.B 在随机抽取的 20 袋食盐中,质量在 497.5 ~501.5 g 之间的有 5 袋,由此可以估计任买一袋该摊位的食盐,质量在 497.5 ~501.5 g 之间的概率为 5= 1.44.75.1 2006.1 67.解 (1)同时喜欢短跑和跳绳的概率为 3001 000= 3 .10(2)同时喜欢三个项目的概率为200+150 = 7.1 000 20(3) 同时喜欢短跑的概率为150= 3,同时喜欢跳绳的概率为200+150+200= 11,同时喜欢跳远的概率为200 1 000= 1. 51 000201 0002011 > 1 > 3 , 20520∴该同学同时喜欢跳绳的可能性大.8.分析 根据试验频率近似地等于概率的前提条件进行判断.解 (1)正确.理由:本次大规模的统计是可信的,故试验频率近似地等于概率.(2)不正确.理由:含 200 个字母的英文文章中的字母 E 的使用频率与英文文献中字母 E 的使用频率不是等价的,只能用试验的方法去求得. 培优促能 9.B10.8 设袋中有红球 x 个,则袋中三种颜色的球共计(x+8+4)个, 根据题意可得� =0.4,解这个方程得 x=8,�+8+4经检验,x=8 是方程的解,且符合题意.11. 解 (1)参加此项游戏得到玩具的频率�= 8 000 ,即� = 1.�40 000�5∵(2)设袋中共有x 个球,则摸到红球的概率P(红球)=8.从而8 = 1,解得x=40,�� 5故白球接近40-8=32(个).12.解(1)“3点朝上”出现的频率是6 = 1 ;“5点朝上”出现的频率是20 = 1.60 10 60 3(2)小颖的说法是错误的.这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.小红的说法也是错误的,因为事件发生具有随机性,故“6 点朝上”的次数不一定是100 次.(3)列表如下:P(点数之和为3 的倍数)=12 = 1.36 3创新应用13.解(1)不公平.因为P =9π-4π = 5,阴影9π9即小红胜的概率为5,小明胜的概率为4,9 9故游戏对双方不公平.(2)能利用频率估计概率的试验方法估算非规则图形的面积.设计方案:①设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S),如图;②往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不做记录);③当掷点次数充分大(如 1 万次),记录并统计结果,设掷入正方形内n 次,其中m 次掷入非规则图形内;④设非规则图形的面积为S1,用频率估计概率,即掷入非规则图形内的频率为�≈P(掷入非规则图形�内)=�1,�≈�1 ���故��⇒S1≈�.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展训练2020年人教版九年级上册数学25.3用频率估计概率
基础闯关全练
1.(2018吉林长春期末)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复该试验,下表是试验中的数据,通过数据估计摸到白球的概率是( )
A.0.4 B.0.5 C.0.6 D.0.7
2.(2018广东深圳宝安期末)在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(4)班的数学学习小组做了摸球试验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表巾的统计数据:
(1)请估计:当摸球的次数凡足够大时,摸到红球的频率将会接近_________;(精确到0.1)
(2)假如你去摸一次,则摸到红球的概率的估计值为_________;
(3)试估算盒子里红球的个数为_______,黑球的个数为____.
3.(2018河南新乡长垣期末)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9.下列说法正确的是( )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活,10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
能力提升全练
如图25 -3-1,正方形ABCD内,有一个内切圆.电脑可设计程序:在正方形内可随机产生
一系列点,当点数很多时,电脑自动统计正方形内的点数a,内的点数b(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是( )
图25-3-1
A. B. C. D.
b
a
a
b4
a
b
b
a4
三年模拟全练 一、选择题
1.(2018河北承德兴隆期末.4,★☆☆)为了估计图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是试验总次数的40%,下列说法错误的是( ) A .钉尖着地的频率是0.4
B .随着试验次数的增加,钉尖着地的频率稳定在0.4附近
C .钉尖着地的概率约为0.4
D .前20次试验结束后,钉尖着地的次数一定是8 二、填空题
2.(2018北京延庆一模改编,16,★☆☆)某农科所在相同条件下做玉米种子发芽试验,结果如图25-3-2:
图25-3-2
某位顾客购进这种玉米种子10千克,那么大约有__________千克种子能发芽.
3.(2018江苏盐城神州路中学期末,11,★☆☆)在一个口袋中,装有白色、黑色、红色球共
36
个,小红通过多次摸球试验后,发现摸到白色、黑色、红色球的频率依次为,则
口袋中三种球的数目依次大约是_____________. 五年中考全练 一、选择题
1.(2017甘肃兰州中考,7,★☆☆)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )
A .20
B .24
C .28
D .30
2.(2018内蒙古呼和浩特中考,5.★★☆)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了折线统计图如图25-3-3,则符合这一结果的试验最有可能的是( )
1276141、
、
图25-3-3
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都反面朝上
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
二、填空题
3.(2018湖南郴州中考,14,★☆☆)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:
则这个厂生产的瓷砖是合格品的概率估计值是___________.(精确到0.01)
三、解答题
4.(2015广东广州中考,22,★★☆)4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率:
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率:
(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95.可以推算出x的值大约是多少?
核心素养全练
1.(2019广东深圳罗湖月考)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
C.抛一枚硬币,正面朝上的概率
D.抛一个质地均匀的正六面体骰子(六个面上分别刻有1到6的点数),向上的面的点数是5 2.“中秋节”前夕,某商店推出“迎中秋,赠月饼”活动,活动规则:在一个装有6个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸出一个球,摸到一个红球就获得精美
月饼一盒.已知当天参加活动的有1000人,该商店共发放了200盒精美的月饼,清你估计袋中白球的数量是_______个.
25.3用频率估计概率 基础闯关全练
1.C 由题中表格可知,摸到白球的频率稳定在0.6附近,则估计摸到白球的概率是0.6.故选C . 2.答案(1)0.3 (2)0.3 (3)18;42
解析估算盒子里红球的个数为60x0.3= 18,黑球的个数为60-18= 42.
2.D 某种幼树在一定条件下移植成活的概率为0.9,是在大量重复试验中得到的频率的稳定值,故选D . 能力提升全练
B 设圆的半径为r ,则正方形的边长为2r ,根据题意得≈,故
,故选B . 三年模拟全练 一、选择题
1.D 钉尖着地的频率是40%= 0.4,故选项A 中说法正确,不符合题意;随着试验次数的增加,钉尖着地的频率稳定在0.4附近,故选项B 中说法正确,不符合题意;∵钉尖着地的频率是0.4,.∴钉尖着地的概率大约是0.4,故选项C 中说法正确,不符合题意:随着试验次数的增加,钉尖着地的频率稳定在0.4附近,但前20次试验结束后,钉尖着地的次数并不一定是8.故选项D 中说法错误,符合题意.故选D . 二、填空题 2.答案 8.8
解析 ∵大量重复试验后,种子发芽率逐渐稳定在0.88左右.∴估计这批玉米种子发芽的概率为0. 88,∴10千克种子中能发芽的种子的质量是10x0.88= 8.8(千克). 3.答案 9个、6个、21个
解析 ∵白色、黑色、红色球共36个,摸到白色、黑色、红色球的频率依次为
,∴估计白色球有36×=9个,黑色球有36×=6个,红色球有36×=21个.
五年中考全练 一、选择题
1.D 根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完
全相同的小球.故选D .
2.D 由题中的折线统计图可知,该试验发生的频率稳定在0.33附近,可估计事件发生的概率为0.33.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为
,故A 不符合题意;掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,
2
2
4r r πa b a b 4 π1276141、、4161
127n 9
5321
故B 不符合题意;先后两次掷一枚质地均匀的硬币,两次都反面朝上的概率为,故C 不符合
题意;先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之
和
是7或超过9的概率
为,故D 符合题意.故选D .
二、填空题 3.答案0.95
解析因为合格品的频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0. 95. 三、解答题
4.解析(1)P (抽到不合格品)=.
(2)设1件不合格品为A ,3件合格品分别为Bl ,B2,B3.根据题意,画出数状图如下, 由树状图可知,共有12种等可能的结果,其中抽到的都是合格品的结果有6种,
∴P (抽到的都是合格品)
. (3) ∵抽到合格品的频率稳定在0.95. ∴估计抽到合格品的概率为0.
95. 根据题意,得,解得x=16.经检验,x= 16是原方程的解且符合题意,
答:可以推算出石的值大约是16.
1.B 由题中表格看出,试验发生的频率随着试验次数的增加.逐渐稳定在0.333附近,故估计该事件发生的概率为0.333.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红
桃的概率为,故A 不符合题意;从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是,故B 符合题意;抛一枚硬币,正面朝上的概率为,故C 不符合题意;抛一个质地均匀的正六面体骰子(六个面上分别刻有1到6的点数),向上的面的点数是5的概率是,
故D 不符合题意,故选B .
41
31
4
1
21126==
95
.031x
3=+++x 41
3121
61
2.答案24
解析设白球有z 个,由题意知参加活动获得月饼的频率是
,因为参加的人数众多,频率接近概率,故可得,解得x=24.经检验x=24是原方程的解且符合题意.
51
1000200=51
x 66=
+。