四年级奥数-容斥问题教学文稿

合集下载

小学奥数容斥原理教案

小学奥数容斥原理教案

小学奥数容斥原理教案【篇一:四年级奥数讲义:容斥原理(1)】四年级数学讲义奥数:容斥原理(1)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学衔接二、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=na+nb-nab。

(二)例题精讲 nanb例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

完整版小学四年级奥数容斥问题

完整版小学四年级奥数容斥问题

容斥问题涉及到一个重要的原理一一包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。

这一讲我们先介绍容斥原理1对n个事物,如果采用两种不同的分类标准:按性质a分类与性质b分类(如图1),那么,具有性质a或性质b的事物的个数=Na+Nb-Nad例1•一个班有55名学生,订阅《小学生数学报》的有12人,订阅《今日少年报》的有9人,两种报纸都订阅的有5人。

(1)订阅报纸的总人数有多少?(2)两种报纸都没订阅的有多少人?例2•一个旅行社有36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人,两样都会的有多少人?例3.在1到100的全部自然数中,既不是6的倍数也不是5的倍数的数有多少个?例4•艺术节那天,学校的画廊里展了了每个年级学生的图画作品,其中有23幅画不是五年级的,有21幅画不是六年级的,五、六年级参展的画共有8幅。

其他年级参展的画共有多少幅?练习与思考1•将边长分别为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上(如图6),已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少平方厘米?2 . 二(2)班有50名学生,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?3.有62名学生,其中会弹钢琴的有11名,会吹竖笛的有56名,两样都不会的有4名,两样都会的有多少名?4 •某校选出50名学生参加区作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖的,两项比赛都没获奖的有多少人?5 •四(1)班有40个学生,其中有25人参加数学小组,23人参加航模水组,有19人两个小组都参加了,那么,有多少人两个小组都没有参加?6 •在一次数学测验中,所有同学都答了第1、2两题,其中答对第1题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都答错。

四年级奥数讲义:容斥原理 (1)

四年级奥数讲义:容斥原理    (1)

四年级数学讲义奥数:容斥原理(1)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学衔接二、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。

(二)例题精讲例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

四年级容斥原理范文

四年级容斥原理范文

四年级的学生主要学习数学的基础知识和简单的计算方法,容斥原理不属于四年级的数学内容。

但是,我可以为您提供有关容斥原理的简单介绍,以便您更好地理解这个概念。

容斥原理是集合论中的一种计数方法,它用于解决多个集合的组合问题。

具体来说,容斥原理用于计算多个集合的交集、并集和差集的元素个数。

在理解容斥原理之前,我们需要先了解一些相关的概念。

1.集合:集合是由一些确定的、互不相同的元素组成的整体。

2.元素:元素是集合中的个体。

3.交集:两个或多个集合中共有的元素构成的集合。

4.并集:两个或多个集合中所有元素组成的集合。

5.差集:一个集合中不包含另一个集合中的元素所构成的集合。

在使用容斥原理解决问题时,我们通常需要考虑多个集合之间的关系,并利用这些关系来求解问题。

容斥原理的基本思想是,通过抵消重复计算来获得正确的结果。

具体来说,对于多个集合A、B、C...的并集,我们需要计算这些集合中的元素个数;但是,由于不同的集合之间可能存在重复的元素,所以我们需要减去这些重复计算的元素个数,以获得正确的结果。

以三个集合为例,容斥原理的计算公式如下:A∪B∪C,=,A,+,B,+,C,-,A∩B,-,A∩C,-,B∩C,+,A∩B∩C其中,A,表示集合A中元素的个数,A∩B,表示在集合A和集合B 中同时出现的元素个数,依此类推。

通过容斥原理的计算公式,我们可以计算出多个集合的并集的元素个数,从而解决一些相对复杂的计数问题。

综上所述,虽然容斥原理不属于四年级数学的内容范围,但了解容斥原理可以帮助我们扩展数学思维,解决更复杂的问题。

希望上述内容对您有所帮助。

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

四年级容斥问题老师版

四年级容斥问题老师版

龙文教育个性化辅导授课案教师: 吴香云学生: 常恩泰年级: 四日期: 2014-11-16星期: 日时段: 17:00-20:30 (第 1 次课)课题容斥问题(二)理解容斥问题原理(排除与包含)教学目的教学重难点能运用容斥原理来解决实际中的应用题学习内容与过程一、知识要点在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理二、典型例题例题一:四年级5班有56人,订《小学生优秀作文》的有38人,订《数学大世界》的有42人,每人至少订一种读物,问同时订阅这两种读物的学生有多少人?例题二:某班有42个同学在一项数学竞赛中,答对第一题的有26人,答对第二题的有34人,两题都答对的有20人。

问多少同学两题都没有答对。

例题三:在1到100的自然数中,既不是4的倍数也不是5的倍数的数有多少个?例题四:四年级3班参加广播操比赛,全班排成4行,每行人数相等,常恩泰排的位置是:从前面数第五个,从后面数第7个,问:这个班一共有多少人?例题五:科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。

问:其他年级参展的作品共有多少件?例题六某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没有一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有人.如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理,有20+12+10-6-2-x=30,解得x=4.例题七某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。

数学教案 4年级-2 容斥原理

数学教案 4年级-2 容斥原理

教案
教材版本:实验版. 学校: .
第一课时
第二课时
本讲教材答案:
呈现问题:
例1 137个
例2 16只
例3 53个
例4 30人
大胆闯关:
1. 13人
2. 最少是6人;最多是20人
3. 18幅
4. 65人
5. 120个
补充习题:
1.今年爸爸和小华年龄共56岁,妈妈和小华年龄共54岁。

爸爸、妈妈年龄共82岁,小华年龄多少岁?
2.一张长10厘米,宽5厘米的长方形纸片,一张面积是40平方厘米的圆形纸片,两张纸片覆盖在桌上的面积是60平方厘米,如图。

求两张纸片重合部分的面积是多少平方厘米?
3.一次数学竞赛只有两道题,参赛的有46人,做对第1题的32人,做对第2题的24人,两道题都做对的有20人,两道题都没有做对的有多少人?
补充习题答案:
1.(56+54-82)÷2=14(岁)
答:小华年龄14岁。

2.10×5=50(平方厘米)
50+40=90(平方厘米)
90-60=30(平方厘米)
答:两张纸片重合部分的面积是30平方厘米。

3.32+24-20=36(人)46-36=10(人)
答:两道题都没有做对的有10人。

四年级奥数(40讲)《举一反三》第35讲 容斥原理

四年级奥数(40讲)《举一反三》第35讲 容斥原理

第35讲容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。

Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。

那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。

两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一
1,五年级有122名学生参加语文、数学考试,每 人至少有一门功课取得优秀成绩。其中语文成绩 优秀的有65人,数学优秀的有87人。语文、数学 都优秀的有多少人?
2,四年级一班有54人,订阅《小学生优秀作文》 和《数学大世界》两种读物的有13人,订《小学 生优秀作文》的有45人,每人至少订一种读物, 订《数学大世界》的有多少人?
2,一个班有55名学生,订阅《小学生数学报》的有32 人,订阅《中国少年报》的有29人,两种报纸都订阅 的有25人。两种报纸都没有订阅的有多少人?
3,某校选出50名学生参加区作文比赛和数学比赛,结 果3人两项比赛都获奖了,有27人两项比赛都没有获奖。 已知作文比赛获奖的有14人,问数学比赛获奖的有多 少人?
四年级奥数-容斥问题
例1 、一个班有48人,班主任
在班会上问:“谁做完语文作 业?请举手!”有37人举手。 又问:“谁做完数学作业?请 举手!”有42人举手。最后问: “谁语文、数学作业都没有做 完?”没有人举手。求这个班 语文、数学作业都完成的人数。
分析 解答:
完成语文作业的有37人,完成数学作业 的有42人,一共有: 37+42=79人, 多于全班人数。这是因为语文、数学作 业都完成的人数在统计做完语文作业的 人数时算过一次,在统计做完数学作业 的人数时又算了一次,这样就多算了一 次。所以,这个班语文、数作业都完成 的有: 79-48=31人。
书山有路勤为径, 学海无涯苦作舟。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
览。学校的橱窗里展出了每个年 级学生的书法作品,其中有24幅 不是五年级的,有22幅不是六年 级的,五、六年级参展的书法作 品共有10幅,其他年级参展的书 法作品共有多少幅?
分析 :
由题意知,24幅作品是一、二、三、四、六年 级参展作品的总数,22幅是一、二、三、四、 五年级参展作品的总数。 24+22=46幅, 这是一个五、六年级和两个一、二、三、四年 级参展的作品数,从其中去掉五、六两个年级 共参展的10幅作品,即得到两个一、二、三、 四年级参展作品的总数,再除以2,即可求出其 他年级参展作品的总数。 (24+22-10)÷2=18幅。
练习四
1,在1到200的全部自然数中,既不是5的倍数 又不是8的倍数的数有多少个?
2,在1到130的全部自然数中,既不是6的倍数 又不是5的倍数的数有多少个?
3,五(1)班做广播操,全班排成4行,每行 的人数相等。小华排的位置是:从前面数第5 个,从后面数第8个。这个班共有多少个学生?
例5 、光明小学举办学生书法展
练习五
1,科技节那天,学校的科技室里展出了每个年级 学生的科技作品,其中有110件不是一年级的,有 100件不是二年级的,一、二年级参展的作品共有 32件。其他年级参展的作品共有多少件? 2,六(1)儿童节那天,学校的画廊里展出了每个 年级学生的图画作品,其中有25幅画不是三年级的, 有19幅画不是四年级的,三、四两个年级参展的画 共有8幅。其他年级参展的画共有多少幅? 3,实验小学举办学生书法展,学校的橱窗里展出 每个年级学生的书法作品,其中有28幅不是五年级 的,有24幅不是六年级的,五、六年级参展的书法 作品共有20幅。一、二年级参展的作品总数比三、 四年级参展作品的总数少4幅。一、二年级参展的 书法作品共有多少幅?
例4、在1到100的自然数中, 既不是5的倍数也不是6的倍 数的数有多少个?
分析:
从1到100的自然数中,减去5或6的倍数的个 数。从1到100的自然数中,5的倍数有 100÷5=20个,6的倍数有16个 (100÷6=16……4),其中既是5的倍数又 是6的倍数(即5和6的公倍数)的数有3个 (100÷30=3……10)。因此,是6或5的倍 数的个数是16+20-3=33个,既不是5的倍 数又不是6的倍数的数的个数是:100- 33=67个。
3,学校文艺组每人至少会演奏一种乐器,已知 会拉手风琴的有24人,会弹电子琴的有17人,其 中两种乐器都会演奏的有8人。这个文艺组一共 有多少人?
例2 、某班有36个同学在一项
测试中,答对第一题的有25人, 答对第二题的有23人,两题都 答对的有15人。问多少个同学 两题都答得不对?
分析 与解答:
例3、某班有56人,参加语文 竞赛的有28人,参加数学竞 赛的有27人,如果两科都没 有参加的有25人,那么同时
参加语文、数学两科竞赛的 有多少人?
分析 、
要求两科竞赛同时参加的人数,应 先求出至少参加一科竞赛的人数: 56-25=31人, 再求两科竞赛同时参加的人数: 28+27-31=24人。
已知答对第一题的有25人,两题都答对的有15人, 可以求出只答对第一题的有:
25-15=10人。
又已知答对第二题的有23人,用只答对第一题的 人数,加上答对第二题的人数就得到至少有一题 答对的人数:
10+23=33人。
所以,两题都答得不对的有:
36-33=3人。
练习二
1,五(1)班有40个学பைடு நூலகம்,其中25人参加数学小组, 23人参加科技小组,有19人两个小组都参加了。那么, 有多少人两个小组都没有参加?
练习三
1,一个旅行社有36人,其中会英语的有24人,会法 语的有18人,两样都不会的有4人。两样都会的有多 少人?
2,一个俱乐部有103人,其中会下中国象棋的有69人, 会下国际象棋的有52人,这两种棋都不会下的有12人。 问这两种棋都会下的有多少人?
3,三年级一班参加合唱队的有40人,参加舞蹈队的 有20人,既参加合唱队又参加舞蹈队的有14人。这两 队都没有参加的有10人。请算一算,这个班共有多少 人?
相关文档
最新文档