最新初中数学中常见的几种平面图形知识点归纳

合集下载

初中平面几何知识点汇总

初中平面几何知识点汇总

初中平面几何知识点汇总
1.平面直角坐标系和点的坐标
2.向量的定义和运算:向量加减、数乘
3. 向量点积和向量夹角的定义
4.线段、射线、直线的定义和区别
5.直线方程的表示:点斜式、截距式、两点式
6.平行和垂直的概念和性质
7.相交线和平行线之间的性质
8.三角形和四边形的定义和性质
9.三角形的内角和、外角和、内切圆、外接圆,三角形的相似性质
10.正方形、长方形、菱形、平行四边形的定义和性质
11.圆的基本概念:圆心、半径、直径、弧长、圆周、面积
12.圆的切线和切点,切线和半径的关系,切线和弦的关系
13.圆的相交和相切的性质和方法
14. 圆的内接和外接多边形的性质
15.三角形中垂线、中线、角平分线和高的概念和性质
16.正多边形的概念和性质,正多边形内角和、外角和
17.相似三角形和全等三角形的定义和性质,相似三角形的判定
18.三角形的勾股定理和解题方法
19.平面镜像和旋转的基本概念和性质
20.平面几何综合题的解答方法
以上就是初中平面几何的所有知识点,希望对您的学习有所帮助。

初中数学平面几何知识点归纳

初中数学平面几何知识点归纳

初中数学平面几何知识点归纳平面几何是数学中的一个重要分支,主要研究平面上的点、线和图形之间的关系。

在初中数学学习中,我们掌握了许多平面几何的基本知识和技巧。

本文将对初中数学平面几何的知识点进行归纳总结,帮助学生们全面恢复和加深对这一知识领域的理解。

一、点、线、面的基本概念1. 点:点是基本的几何因素,没有大小和形状,通常用大写字母表示,如A、B、C等。

2. 线段:线段是由两个不同的点A、B确定的有限点集合,线段的长度可以用AB表示。

3. 直线:由一条一直延伸而不断延长的线段组成,直线没有始点和终点,可以用一条小写字母表示,如l、m、n等。

4. 射线:由一条起点在A,且通过A的一部分直线延伸而不断延长而成的部分组成。

5. 面:面是由足够多的直线围成的区域,常用大写字母表示,如∆ABC、□ABCD等。

二、平面图形的性质和运算1. 三角形:三角形是由三条线段组成的图形,它具有以下性质:a. 三角形内角和等于180度。

b. 等腰三角形的底角相等。

c. 等边三角形的内角均相等,为60度。

2. 矩形:矩形是由四条边相等的线段围成的四边形,它具有以下性质:a. 相邻两条边相等且平行。

b. 对角线相等,且对角线互相垂直。

3. 正方形:正方形是边长相等的矩形,它具有以下性质:a. 边长相等且互相平行。

b. 对角线相等,且对角线互相垂直。

c. 内角均为90度。

4. 平行四边形:平行四边形是具有两对平行边的四边形,它具有以下性质:a. 对边相等。

b. 对角线互相平分。

5. 圆:圆是由平面内的一点到该平面上固定的一点的所有线段长度相等的图形,它具有以下性质:a. 圆心到圆上任意点的距离相等。

b. 圆的直径是圆上任意两点间的最长线段。

c. 圆的半径是圆的直径的一半。

6. 相似图形:两个图形的形状相似,当且仅当两个图形的对应角相等,对应边成比例。

三、计算平面图形的面积和周长1. 三角形的面积:三角形的面积可以通过以下公式计算:面积=底边长×高/2。

图形与几何初中知识点总结

图形与几何初中知识点总结

图形与几何初中知识点总结图形与几何是初中数学的一个重要部分,其中包括平面图形、空间图形、几何相似、三角形、圆等知识点。

本文将对这些知识点进行总结。

一、平面图形1.矩形:四边都是直角的四边形,对边平行且相等。

周长为2a+2b,面积为ab。

2.正方形:四边均相等,对边是平行且相等的。

周长为4a,面积为a²。

3.平行四边形:对边平行,且相等。

周长为2a+2b,面积为ah。

4.梯形:两个底分别是a和b,两腰分别是c和d,高为h。

周长为a+b+c+d,面积为(h/2)×(a+b)。

5.菱形:四边均相等,对角线相等且平分角。

周长为4a,面积为(d1×d2)/2。

二、空间图形1.立方体:六个面都是正方形,每个角都是直角。

体积为a³,表面积为6a²。

2.正方体:六个面都是正方形,每个角都是直角。

体积为a³,表面积为6a²。

3.长方体:六个面都是矩形,每个角都是直角。

体积为ab×h,表面积为2ab+2ah+2bh。

4.棱锥:一个底是正方形,其他部分都是四个三角形。

体积为(a²h)/3,表面积为a√(a²+4h²)+2a²。

5.棱柱:底面为正方形,侧面是矩形。

体积为a²h,表面积为2a²+4ah。

6.圆锥:底面是圆形,侧面为三角形。

体积为(πr²h)/3,表面积为πr(r+√(r²+h²))。

7.圆柱:底面是圆形,侧面为矩形。

体积为πr²h,表面积为2πr²+2πrh。

三、几何相似几何相似是指两个图形的形状相似,但是大小不同。

当两个图形相似时,它们的对应边长成比例,对应角度相等。

1.相似三角形:两个三角形如果它们的对应角度相等,并且对应边长成比例,那么它们是相似的。

如果两个三角形相似,那么它们的面积也成比例。

2.黄金分割:在一个等边三角形中,将一条边分成两个线段,他们的比为黄金分割比1:1.618。

平面图形数学知识点

平面图形数学知识点

平面图形数学知识点平面图形数学知识点平面图形1、长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4、平行四边形(1)特征两组对边分别平行的四边形。

相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。

平行四边形容易变形。

(2)计算公式s=ah5、梯形(1)特征只有一组对边平行的四边形。

中位线等于上下底和的一半。

等腰梯形有一条对称轴。

(2)公式s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。

圆中心的`一点叫做圆心。

一般用字母o表示。

半径:连接圆心和圆上任意一点的线段叫做半径。

一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

通过圆心并且两端都在圆上的线段叫做直径。

一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。

圆有无数条对称轴。

(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。

(3)圆的周长围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。

用字母表示。

(4)圆的面积圆所占平面的大小叫做圆的面积。

以上是平面图形,读后您收获多少呢?下载全文。

图形与几何初中知识点总结

图形与几何初中知识点总结

图形与几何初中知识点总结图形与几何是数学中的一个重要分支,主要研究形状、大小以及它们之间的关系。

在初中阶段,学生将会接触到一系列的图形和几何知识。

本文将对这些初中图形与几何的知识点进行总结。

一、平面图形1. 三角形:三边的关系、内角和、直角三角形、等腰三角形等。

2. 四边形:平行四边形、矩形、正方形、菱形等。

3. 多边形:五边形、六边形、正多边形等。

4. 圆:圆的半径、直径、弧长、面积等。

二、空间图形1. 立体图形:长方体、正方体、圆柱体、圆锥体、正棱柱等。

2. 进一步了解这些立体图形的表面积、体积和侧面积的计算方法。

三、相似与全等1. 相似:两个图形形状相同,但大小可能不同。

学生需要了解相似三角形的判定条件,以及相似图形的比例关系。

2. 全等:两个图形既形状相同,又大小相同。

学生需要了解全等图形的性质和判定条件,以及如何做全等图形的对应构造。

四、坐标系与平面直角坐标系1. 坐标系的概念:了解平面上的点如何用坐标来表示。

2. 平面直角坐标系:了解直角坐标系的构建方法,以及如何通过坐标计算两点之间的距离和斜率。

五、角与角的计算1. 角的概念:了解角的定义,以及如何用角度和弧度来表示角。

2. 角的运算:了解角的加法、减法、相等和互补关系等。

六、直线与曲线1. 平行线和垂直线的概念:了解直线之间的平行和垂直关系。

2. 直线与曲线的交点:了解直线和圆的交点性质,以及如何通过已知条件求解交点问题。

七、投影与旋转1. 投影的概念:了解正交投影和斜投影的概念,以及投影的性质和相关计算方法。

2. 旋转的概念:了解平面上图形的旋转概念,以及旋转的性质和相关计算方法。

八、对称与镜像1. 对称的概念:了解平面上的图形对称性,以及对称图形的性质和判断方法。

2. 镜像的概念:了解平面上的图形镜像关系,以及镜像图形的构造方法。

九、尺规作图1. 基本作图:了解使用尺规作图工具(直尺和圆规)进行基本图形的作图。

2. 组合作图:了解使用尺规作图工具进行更复杂图形的作图,如平分角、作已知角的整倍角等。

七年级平面图形知识点归纳

七年级平面图形知识点归纳

七年级平面图形知识点归纳在初中数学中,平面图形是一个非常重要的知识点。

本文将从基础概念、常用公式和解题方法三个方面进行讲解,希望能够帮助同学们更好地掌握平面图形。

一、基础概念平面图形是指在平面内的图形,包括点、线、面和曲线等。

常见的平面图形包括:直线、线段、射线、角、图形的边和表面等。

直线是没有端点的无限延伸,可以用两个点来确定。

线段是有两个端点的部分,射线则是有一个端点的部分。

角是由两条射线和它们的公共端点所组成的一个部分。

根据角的大小,可以分为锐角、直角和钝角。

图形的边是指图形的各条线段,表面则是指图形的边所围成的部分。

二、常用公式1. 长方形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长²3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 圆的面积公式:面积= π × 半径²5. 矩形的周长公式:周长 = 2 × (长 + 宽)6. 三角形的周长公式:周长 = 边长之和7. 圆的周长公式:周长= 2 × π × 半径三、解题方法1. 认真分析题目中所给出的条件,确定需要求解的内容。

2. 根据所给出的条件选择合适的公式进行运算。

3. 在计算时注意单位的转换,例如长度单位从厘米转换成米等。

4. 最后检查计算结果,看是否符合实际意义,如是否存在负数或者逻辑上的矛盾等。

举例:小明的房间是一个矩形,长为4米,宽为3米。

现在要粘墙纸,假设每卷墙纸长度是10米,宽度是1.5米,问他需要购买几卷墙纸?解:由题意可知,小明的房间是一个长为4米,宽为3米的矩形,所以房间的墙纸需求量为:(周长×房间高度)÷每卷长×宽 = (4+3+4+3)×2.5÷10×1.5 ≈3由此可知,小明需要购买3卷墙纸。

总结:平面图形作为初中数学的重要知识点,同学们需要具备扎实的基本概念和熟练的运用技巧。

初中数学几何知识点归纳

初中数学几何知识点归纳

初中数学几何知识点归纳一、几何基础知识1. 点、线、面- 点:没有大小,只有位置。

- 线:由无数个点组成,有长度,没有宽度。

- 面:由无数条线组成,有长度和宽度。

2. 直线、射线、线段- 直线:无限延伸,没有端点。

- 射线:有一个端点,向一个方向无限延伸。

- 线段:有两个端点,长度有限。

3. 角- 邻角:有共同顶点和边的两个角。

- 对顶角:两条射线共享一个公共点,形成的两个角。

- 平行线:在同一平面内,永不相交的两条直线。

二、平面图形1. 三角形- 等边三角形:三条边长度相等。

- 等腰三角形:至少有两条边长度相等。

- 直角三角形:有一个90度的角。

- 钝角三角形:有一个大于90度的角。

- 锐角三角形:所有角都小于90度。

2. 四边形- 正方形:四条边长度相等,四个角都是直角。

- 长方形:对边平行且相等,四个角都是直角。

- 平行四边形:对边平行。

- 梯形:至少有一组对边平行。

3. 圆- 圆心:圆的中心点。

- 半径:圆心到圆上任意一点的距离。

- 直径:通过圆心的最长线段,等于半径的两倍。

三、几何图形的性质1. 三角形的性质- 内角和:三角形内角和为180度。

- 海伦公式:已知三边长度,可以计算三角形的面积。

2. 四边形的性质- 正方形的性质:对角线相等且互相平分。

- 长方形的性质:对角线相等且互相平分。

- 平行四边形的性质:对角线互相平分。

3. 圆的性质- 圆周率:圆的周长与直径的比值,用π表示。

- 圆的面积:π乘以半径的平方。

四、几何图形的计算1. 面积计算- 三角形面积:底乘高除以2。

- 四边形面积:长乘宽(正方形和长方形);梯形的上下底之和乘高除以2。

- 圆的面积:π乘以半径的平方。

2. 周长计算- 三角形周长:三边之和。

- 四边形周长:四边之和(正方形和长方形);梯形的上下底之和加上两腰之和。

- 圆的周长:2π乘以半径。

3. 体积计算- 圆柱体积:底面积乘以高。

- 圆锥体积:1/3乘以底面积乘以高。

七年级下册数学几何知识点

七年级下册数学几何知识点

七年级下册数学几何知识点数学是一门非常重要的科学,而几何则是数学中重要的分支之一。

几何涵盖了平面几何、立体几何等方面,今天我们就来讲述一下七年级下册数学几何知识点。

一、平面图形
1.三角形:三角形是最基本的平面图形之一,不同的三角形有不同的分类,例如按照边长分为等边三角形、等腰三角形和普通三角形。

2.四边形:四边形是具有四个顶点和四条边的平面图形。

不同的四边形有不同的分类,例如按照对边平行分为平行四边形和梯形,按照内角和分类可以分为矩形、正方形、菱形等。

3.正多边形:正多边形是所有边和角相等的多边形。

例如正三角形、正方形等。

二、空间图形
1.立体图形:立体图形有三个基本要素:面、棱、顶点。

按照形状分类可以分为正四面体、正六面体、正八面体等。

2.截面:截面是在立体图形内部平行于某个面的切面。

根据所截图形不同,可以分为正方形截面、圆形截面等。

三、几何运算
1.加、减、乘、除:这些是我们最基本的算术运算,也可以在几何运算中使用。

例如计算两个图形的面积之和或差。

2.相似与全等:相似和全等是两个非常重要的几何概念。

全等的两个图形必须在形状、大小、面积等方面完全相同,而相似的两个图形只是形状相似,大小不同。

3.投影:投影是指图形在某个方向上的投影。

例如,一个正方体在某个方向上的投影就是一个正方形。

本文介绍了七年级下册数学几何的一些知识点,其中包括平面图形、空间图形和几何运算。

这些知识点是学习数学和几何的基础,希望能够通过本文的介绍,对同学们的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中常见的几种平面图形知识点归纳平行四边形周长
可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b) 底×1X高
知识拓展:平行四边形+直角+一组邻边相等=正方形。

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
正方形的判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

直角三角形的`性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b 、c有下面关系a +b =c
,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

相关文档
最新文档