2014-专升本高等数学真题及答案
2014年专升本高数真题答案解析

所以 cos 2x
n0
1n 2x2n
(2n)!
,即:
f
(x)
1 2
1 2
n0
1n 2x2n 2n!
, x(,)
13. 2
解析:
a
b
b
c
c
a
a
b
c
b
b
c
c
a
a
b
a
c
b b
b
c
c
a
a
b
a c
b
c
c
a
a
b
a c
b
c
c
a
a
b
c
a
b
a
a
c
16.
解:
lim
x 0
ln(sin2 x ex ) x ln(x2 e2x ) 2x
lim x0
ln[ex (ex sin2 ln[e2x (e2x x2
x 1)] x 1)] 2x
lim x0
ln(ex sin 2 ln(e2x x2
x 1) 1)
ex sin2 x
lim x 0
1 x 2
2 1 x 1 x
故 y 1 x0
10. ( 3 , 3) 34
解析:
求曲线的拐点,当 x
0 时,
y
2x (1 x2 )2
,
y
2(3x2 1) (1 x2 )3
,令
y 0 ,得 x 3 ,所以拐点为: ( 3 , 3)
3
34
11. 1
6
1
解析:由题意可知, S
1
(x
0
x2 )dx
[专升本(国家)考试密押题库与答案解析]专升本高等数学(一)真题2014年
![[专升本(国家)考试密押题库与答案解析]专升本高等数学(一)真题2014年](https://img.taocdn.com/s3/m/b680280d770bf78a6429549f.png)
问题:5. 曲线y=x+cosx在点(0,1)处的切线的斜率k=______.
答案:1[解析] 本题考查了导数的几何意义的知识点.
因为y=x+cosx,所以y'=1-sinx,y'(0)=1,即所求的斜率k=1.
问题:6. ______.
答案:[解析] 本题考查了第一类换元积分法的知识点.
C.e-5xdx
D.5e-5xdx
答案:A[解析] 本题考查了一元函数的微分的知识点.
因为y=e-5x,所以dy=-5e-5xdx.
问题:3. 设函数f(x)=xsinx,则______
A.
B.1
C.
D.2π
答案:B[解析] 本题考查了导数的基本公式的知识点.
因为f'(x)=sinx+xcosx,所以.
y"+3y'+2y=0.
特征方程为r2+3r+2=0,
特征根为r1=-2,r2=-1.
所以齐次方程的通解为
Y=C1e-2x+C2e-x.
设y*=Aex为原方程的一个特解,
代入原方程可得
所以原方程的通解为
C.(1,-2,3);2
D.(1,-2,3);4
答案:C[解析] 本题考查了球的球心坐标与半径的知识点.
(x-1)2+[y-(-2)]2+(z-3)2=22,所以,该球的球心坐标与半径分别为(1,-2,3),2.
二、填空题
问题:1. 设,则a=______.
答案:[解析] 本题考查了特殊极限的知识点.
问题:9. 过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为______.
2014年成人高考专升本高等数学一真题附答案

2021年成人高考专升本高等数学一真题及答案一、选择题:每题4分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求。
第1题参考答案:D第2题参考答案:A第3题参考答案:B第4题设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0.假设f(a)·f(b)<0,那么y=f(x)在(a,b)( )参考答案:B第5题参考答案:C第6题参考答案:D 第7题参考答案:C 第8题参考答案:A 第9题参考答案:A第10题设球面方程为(x一1)2+(y+2)2+(z一3)2=4,那么该球的球心坐标与半径分别为( )A.(一1,2,一3);2B.(一1,2,-3);4C.(1,一2,3);2D.(1,一2,3);4参考答案:C二、填空题:本大题共10小题。
每题4分,共40分,将答案填在题中横线上。
第11题参考答案:2/3第12题第13题第14题参考答案:3第15题曲线y=x+cosx在点(0,1)处的切线的斜率k=_______.参考答案:1第16题参考答案:1/2第17题参考答案:1第18题设二元函数z=x2+2xy,那么dz=_________.参考答案:2(x+y)dx-2xdy第19题过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为________.参考答案:z+y+z=0第20题微分方程y’-2xy=0的通解为y=________.三、解答题:本大翘共8个小题,共70分。
解容许写出推理,演算步骤。
第21题第22题设Y=y(x)满足2y+sin(x+y)=0,求y’.第23题求函数f(x)一x3—3x的极大值.第24题第25题第26题第27题第28题求微分方程y〞+3y’+2y=ex的通解.。
铭远教育-(历年真题)2014年浙江省专升本数学试卷及解析

25、设 lim
x 0
f x 1 ,且 f x 0 ,证明: f x x . x
26、已知
2 ln 2
dt e 1
t
x
,求 x 的值. 6
浙江省 2014 年选拔优秀高职高专毕业生进入本科学习统一 考试 《高等数学》试卷答案
一、选择题 1、D 解析:解题方法举例子。若 f x x, g x 即 f x g x 极限存在. 2、C 解析:y 3 x 2 3 , 令 y 0. 得 x 1. 当 x 1 时,y 2 ; 当 x 1 时,y 2 .
x 1
lim f x lim
x 1
x 1 是不可导点.
4、A 解析:令 t x u , 则 sin t x dt
x
0
sin udu, f x sin x sin x.
x
0
1 1 1 1 x dx x dx 5、B 解析: y e x x 2 1 e dx C x arctan x C .
所以通解为 ln xy x y C 0, C 为任意的常数
5 1 y 4e x e 2 x 2 2 15、
解析:
y C1e x C2e 2 x , r1 1, r2 2. y 3 y 2 y 1. 1 y * A.0 3 0 2 A 1, A . 2 1 C 4 5 2x 1 C C2 2 1 x 1 , C 5 y 4e e . 2 2 2 2 2 C1 2C2 1
8、曲线 y x ln e
2014专升本高等数学真题及答案

河南省2014年普通高校等学校选拔优秀本科毕业生本科阶段学习考试高等数学一.选择题(每小题2分,共60分)1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3] B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--.()A.是偶函数 B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当x→0时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x +C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -Bln x x C.-21xD.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数)。
在2t=对应点处切线的方程为()A.1x =B.1y =C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数。
则dy dx=A.11x y x +-- B.21y xy x --C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a (a>0)上连实,(0)f >0且在(0,a)上恒有'()f x >0,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.1S <2SB.1S =2SC.1S >2S D.不确定12.曲线31y x =+()A.无拐点B 有一个拐点C.有两个拐点D.有三个拐点13.曲线y=12x -的渐近线的方程为()A.0,1x y ==B1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数则()xx e f e dx --⎰=()A.()xF e c -+ B.()xF e c --+C.()x F e c+ D.()xF e c-+15.设()f x 在[],a b 上连续,则由曲线()y f x =与直线x=a,x=b,y=0所围成平面图形的面积为()A ()baf x dx⎰B.()baf x dx⎰C.()b af x dx ⎰D.()()()f b f a b a --16.设()f x 是连实函数,满足()f x =21sin 1x x ++_11(),f x dx -⎰则lim ()x f x →∞=()A.B.-6πC.3πD6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln xdx x+∞⎰B.11dx x+∞⎰C.2111dx x -⎰D.1cos xdx+∞⎰19.微方程0dx dy y x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.2=)xy Ax Bx e+半( B.=xy Axe半 C.=xy Ae半 D.2=()xy x e Ax B +半21.已知a,b,c 为非零向量,且0a b ⋅=,0b c ⨯=则()A.a b ⊥ 且b cB.a b b c⊥ 且 C.a c b c⊥ 且 D.a c b c⊥ 且22、直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A、L 在π上B、L 与π平行但无公共点C、L 与π相交但不垂直D、L 与π垂直23、在空间直角坐标系内,方程222-y =1x 表示的二次曲面是()A、球面B、双曲抛物面C、圆锥面D、双曲柱面24、极限0y 02lim+1-1x xyxy →→=()A、0B、4C、14D、-1425、点(0,0)是函数z xy =的()A、驻点B、极值点C、最大值点D、间断点26、设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy ⎰⎰=()A、0B、-1C、2D、127、设(),f x y 为连续函数,()()122-01,+,x xdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A、()212,yy dy f x y dx⎰⎰B、()2,ydy f x y dx⎰⎰C、()12-0,y ydy f x y dx⎰⎰D、()2022,yy dy f x y dx⎰⎰28、L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A、1B、2C、0D、-113.下列级数条件中收敛的是()A、2n=12n-1n +1∞∑B、n nn=11-3∞∑(1)C、22n=1n +n+1n -n+1∞∑D、nn=11-n∞∑(1)30、级数2n=114n -1∞∑的和是()A、1B、2C、12D、14二、填空题(每题2分,共20分)31、设-1=-1x x f x x x ⎛⎫≠⎪⎝⎭(0,1),则()f x =______.32、设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=______.33、已知(){,1ln 1x a x x x f x -<≥=,,若函数()f x 在1x =连续,则a=______.34、设33'(1)12f x x +=+是()01f =-,则()f x =______.35、不定积分cos 2xdx ⎰=______.36、若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===则()a b c ⨯ =______.37、微分方程"4'40y y y -+=的通解()y x =______.38、设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =______.39、函数()222,,f x y z x y z =++在点(1,1,1)处方向导数的最大值为______.40、函数()112f x x=-的幂级数展开式是______.三、计算题(每题5分,共50分)41、求极限20(1)lim1tan -1x x x e x x→-++42、设n a 为曲线ny x =与1(1,2,3,4...)n y xn +==所围的面积,判定级数1n n na ∞-∑的敛散性43.求不定积分21xdx x -⎰.44.计算定积分402x dx -⎰.45.解方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分22lnDx y dxdy +⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分22(1)(1)y x dx x y dy <++-⎰其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四.应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕Ox 轴旋转所形成空间旋转体体积.五.证明题(6分)53.设2e a b e <<<证明2224ln ln ()b a b a e ->-2014专升本真题答案一.选择题1-10A C B A B D B B C B 11-20C B D B C B D C C D 21-30B D D B A A C A D C 二.填空题31.1x 32.8933.134.21x x --35.1sin 22x c=36.237.2212xx x c ec e+38.239.2340.2n nn x ∞=∑,11(,)22x ∈-41.2030303030320220220(1)1tan 11tan 1(1tan 1)1tan (1)(1tan 1)tan 2tan 6sec 16tan 66lim limlimlimlimlim lim lim x x x x x x x x x x e x x x x x x x x x x x x x x x x x x x x x x x x →→→→→→→→-+-+=+-++++=+-++++=-=-=-===42.解:由题意知112110111(1212(1)(2)n n n n n x x a x x dx n n n n n n +++⎡⎤=-=-=-=⎢⎥++++++⎣⎦⎰)1131123231112(1)(2)(1)(2)1(1)(2)lim 101(1)(2)1(1)(2)n n n n n n n n n n n n nna n n n n nn n n n n n n n a n n n∞∞==∞∞→∞==∞∞∞=====++++++=>++++∑∑∑∑∑∑∑故此级数为正项级数且u 由正项级数比较判别法的极限形式知故与级数的敛散性相同且为收敛级数,故为收敛级数即级数收敛43.22212221122211(1)2111(1)(1)21(1)11212xdx d x x x x d x x c x c--+=---=---=+=-+-+⎰⎰⎰44.42x dx-⎰4422422022(2)2222224x dx x dxx x x x =-+-⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦=+=⎰⎰45.原方程可化为21'y y x x-=为一阶线性齐次微分方程,由公式知,其通解为112ln 2ln 2231(+c)2=2x xx xdx x e dx c e x e dx c x x dx c x x xdx c x x x cx ----⎡⎤⎰⎰⋅+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎣⎦=+⎰⎰⎰⎰y=e 46..'''''''2,,22222xy z xy xy z x y Z xy x zz xy y zz xy xyz z z e F ye F xe F e F zye x F e F z xe y F e z zdz dx dy x yye xe dx dy e e --------+=-=-=-∂=-=∂-∂=-=∂-∂∂=+∂∂=+--解:令F(x,y,z)=e 则故所以47.解:{}AB=3,34-- ,,{}AC=2,11-- ,{}AB*AC=3341,5,3211i j k--=--AB ×AC=22215335++=ABC 的面积等于12AB ×AC =35248.在极坐标下22221221222211222122122212lnln .2ln 22.ln ln 22122ln .224ln 224ln 2434ln 2x r rr r x y dxdy d rdrr dr r l d r dr rdrr l θπππππππππ+==⎡⎤=-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰49.由格林公式知2222222222212013410(1)(1)(1)(1)1(1)(1)()(2242x oy x dx x y dy x y y x dxdy y x y y x dxdy x y dxdyd r rdr r drr l θπππ++-⎧⎫⎡⎤⎡⎤∂-∂+⎪⎪⎣⎦⎣⎦=-+=⎨⎬∂∂⎪⎪⎩⎭⎡⎤=--+⎣⎦=-+=--=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中D:x 用极坐标计算)50.解:幂级数01n n x n ∞=+∑中11n a n =+有公式知112limlim 111n n n na n a n ρ+→∞→∞+===+故收敛半径11R ρ==,收敛区间为(1,1)-1x =-时,幂级数为0(1)1nn n ∞=-+∑收敛;1x =时,幂级数为011n n ∞=+∑发散;故幂级数01nn x n ∞=+∑的收敛域为[1,1)-设幂级数01n n x n ∞=+∑的和函数为()s x ,即0()1nn x s x n ∞==+∑则10()1n n x xs x n +∞==+∑由100111n n n n x x n x +∞∞=='⎛⎫== ⎪+-⎝⎭∑∑则1(1)00011(1)ln 111n x x x n x dx d x n x x +∞-===--=-+--∑⎰⎰故(1)()ln x xs x -=-即(1)1()ln x s x x-=-51.解:设场地的长为x ,宽为y ,高为h 。
2014年浙江专升本(高等数学)真题试卷(题后含答案及解析)

2014年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.当x→x0时,若f(x)存在极限,g(x)不存在极限,则下列结论正确的是( )A.当x→x0时,f(x)g(x)必定存在极限B.当x→x0时,f(x)g(x)必定不存在极限C.当x→x0时,f(x)g(x)若存在极限,则此极限必为零D.当x→x0时,f(x)g(x)可能存在极限,也可能不存在极限正确答案:D解析:极限运算法则,可以举反例,若f(x)=x2,g(x)=lnx,则f(x)= x2=0,g(x)=lnx=-∞,但f(x).g(x)=x2lnx=0;若f(x)=2,g(x)=sin=2,不存在,但f(x).g(x)=不存在;可见选项D正确.2.曲线y=x3-3x上切线平行于x轴的点是( )A.(0,0)B.(1,2)C.(一1,2)D.(0,2)正确答案:C解析:由导数几何意义可知,k切=y′(x0)=3—3=0,所以切点坐标为(1,一2)或(一1,2),即选项C正确.3.函数f(x)=(x2—x一2)|x3一x|的不可导点个数是( )A.3B.2C.1D.0正确答案:B解析:导数定义,f′(0)=所以f′-(0)==2,f′+(0)==-2所以函数f(x)在x=0处不可导;同理,f′(1)=所以f′-(1)=一(x2一x—2)|x(x+1)|=4.f′+(1)=(x2一x—2)|x(x+1)|=-4,所以函数f(x)在x=1处不可导;f′(-1)==(x-2)|x3-x|=0,所以函数f(x)在x=-1处可导;综上可知,函数f(x)共有2个不可导点,选项B正确.4.若f(x=sin(t一x)dt,则f(x)= ( )A.-sinxB.-1+cosxC.sinxD.0正确答案:A解析:变限函数求导数,因为sin(t一x)dt sinudu,所以sin(t—x)dt=sinudu=0一sin(一x).(一1)=-sim,可见选项A正确.5.微分方程y′+的通解是( )A.arctanx+CB.(arctanx+C)C.arctanx+CD.+arctanx+C正确答案:B解析:一阶线性微分方程,由通解公式可得y=e-∫p(x)dx[∫Q(x).e∫p(x)dxdx+C]=.elnxdx+C]=(arctanx+C),可见选项B正确.填空题6.设f(x)在(-∞,+∞)上连续,且f(2)=3,则=___________.正确答案:9解析:利用连续性求极限,=3f(2)=9 7.设f(x)=,则f[f(x)]=___________.正确答案:解析:求复合函数的表达式,f[f(x)]=f[f(x)]=8.曲线y=xln(e+)(x>0)的渐近线方程是___________.正确答案:y=x+解析:计算斜渐近线,设直线y=ax+b为所求曲线的渐近线,则a==lne=1,b=所以,斜渐近线为y=x+.9.设y=ln,则y′|x=0=___________.正确答案:-1解析:求导函数,因为y=ln[ln(1一x)一ln(1+x)]所以y′=,故y′(0)=-1.10.曲线y=(x>0)的拐点是___________.正确答案:()解析:求曲线的拐点,当x>0时,y′=令y″=0,得x=,所以拐点为().11.由曲线y=x和y=x2所围成的平面图形的面积是___________.正确答案:解析:据题意画图,求所围平面图形的面积S=(x—x2)dx=(x2一12.将函数f(x)=sin2x展开成x的幂级数为___________.正确答案:,x∈(一∞,+∞)解析:麦克劳林展式,f(x)=sin2x=cos2x,又因cosx=x2n,x∈(一∞,+∞),所以cos2x=(2x)2n即f(x)=,x∈(一∞,+∞).13.设(a×b).c=1,则[(a+b)×(b+c)].(c+a)=___________.正确答案:2解析:混合积,向量积运算法则,在混合积计算中,如有两向量相同,则混合积为0.因此,[(a+b)×(b+c)].(c+a)=[a×(b+c)+b×(b+c)]=[a×b+a×c+b×b+b ×c].(c+a)=[a×b+a×c+b×c].(c+a)=(a×b).c+(a×b).a+(a×c).c+(a×c).a+(b×c).c+(b×c).a=(a×b).c-(b×c).a=2(a×b).c=214.微分方程(1+x)ydx+(1一y)xdy=0的通解为___________.正确答案:ln|xy|+x-y+C=0,C为任意常数解析:可分离变量的微分方程,(1+x)ydx+(1一y)xdx=0x+ln|x+C=y—ln|y|,即通解为y=x+ln|xy|+C,C为任意常数.15.设二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=C1ex+C1e2x,那么非齐次y″+ay′+by=1满足的条件y(0)=2,y′(0)=-1的解为___________.正确答案:y=4ex-解析:求二阶线性常系数非齐次方程的通解,特征方程为r2+ar+b=0,r1=1,r2=2即(r-1)(r-2)=0,r2-3r+2=0,故a=-3,b=2.所以原微分方程为y″一3y′+2y=1,由于λ=0不是特征方程的根,取k=0,因此,设特解y*=A,则(y*)′=0,(y*)″=0,代入可得A=,所以y*=,所以y″一3y′+2y=1的通解为y=C1ex+C2e2x+,再由y(0)=2,y′(0)=-1,可得C1=4,C2=,故满足初始条件的特解为y=4ex-解答题解答时应写出推理、演算步骤。
2014年专升本(高等数学一)真题试卷(题后含答案及解析)

2014年专升本(高等数学一)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.( )A.e2B.e1C.eD.e2正确答案:D2.设y=e-5x,则dy=( )A.-5e2-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx正确答案:A3.设函数f(x)=xsinx,则( )A.B.1C.D.2π正确答案:B4.设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0,若f(a).f(b)<0,则y=f’(x)在(a,b)( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B5.∫x2ex3dx=( )A.B.3x2ex3+CC.D.3ex3+C正确答案:C6.∫-11(3x2+sin5x)dx=( )A.-2B.-1C.1D.2正确答案:D7.∫1+∞e-xdx=( )A.-eB.-e-1C.e-1D.e正确答案:C8.设二元函数z=x2y+xsiny,则=( )A.2xy+sinyB.x2+xcosyC.2xy+xsinyD.x2y+siny正确答案:A9.设二元函数z==( ) A.1B.2C.x2+y2D.正确答案:A10.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为( )A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4正确答案:C填空题11.设=3,则a=________。
正确答案:12.曲线的铅直渐近线方程为________。
正确答案:13.设,则y’=________。
正确答案:14.设函数f(x)=在x=0处连续,则a=________。
正确答案:315.曲线y=xcosx在点(0,1)处的切线的斜率k=________。
正确答案:116.=________。
正确答案:17.设函数f(x)=∫0xet2,则f’(0)=________。
江苏省2014年专转本高等数学试卷及解答

解 当 t 0 时, x 1 , y 1 ,由 e y ty e 得 e y 于是
dy dy dy y dx y (2t 3)e 2t , yt 0, , dt dt dt e t dt
dy y 1 dy y , . t dx (e t )(2t 3)e 3e dx t 0
2 2 x
z z z 3 y ( z x ) 3x 2 0 得 x x x
D .
x 1 y 0
1 .
5.二次积分
1
dx
2 y 0
0
f x, y dy 交换积分次序后得
A. C.
解
2
1
dy
f ( x, y )dx
B. D.
2 y
dy
绝密★启用前
江苏省 2014 年普通高校专转本选拔考试
高等数学 试题卷
注意事项: 1.本试卷分为试题卷和答题卡两部分.试题卷共 3 页,全卷满分 150 分,考试时间 120 分钟. 2.必须在答题卡上作答,作答在试题卷上无效,作答前务必将自己的姓名和准考证号准确清晰 地填写在试题卷和答题卡上的指定位置. 3.考试结束时,须将试题卷和答题卷一并交回.
x ln
2
xdx
16. 计算定积分 2
1 2
5
2x 1 dx . 2x 3 1 2 1 5 (t 1) .当 x 时, t 0 ;当 x 时, t 2 . 2 2 2
2
解 设 2 x 1 t ,则 x
5 2 1 2
2 2 2x 1 t2 4 t dx 2 dt (1 2 )dt (t 2arctan ) 2 . 0 t 4 0 2x 3 t 4 2 0 2