2013届数学培优网高三艺考生数学训练题 集合

合集下载

艺考生基础高三数学联考试题 (集合)

艺考生基础高三数学联考试题 (集合)

集合
202041
【1】题(选择题)考查知识点:交集及其运算-难度:0.91 -平均分:4.54分-得分率:91.0 %
集合
NO.2 来源:交大附中西安三中汉中龙岗-三校联考选择题(1)
【1】题(选择题)考查知识点:交集及其运算-难度:0.98 -平均分:4.89分-得分率:98.0 %
集合
NO.3 来源:衡水金卷山西五校联考选择题(1)
【1】题(选择题)考查知识点:交集及其运算-难度:0.87 -平均分:4.35分-得分率:87.0 %
集合
NO.4 来源:2019-20学年全国百强名校高三年级“领军考试”选择题(2)
【2】题(选择题)考查知识点:交、并、补集的混合运算-难度:0.94 -平均分:4.68分-得分率:94.0 %
集合
1
【1】题(选择题)考查知识点:交集及其运算-难度:0.94 -平均分:4.72分-得分率:94.0 %
集合
NO.6 来源:2019-20学年全国百强名校高三年级“领军考试”选择题(2)
【2】题(选择题)考查知识点:交、并、补集的混合运算-难度:0.99 -平均分:4.93分-得分率:99.0 %
集合
NO.7 来源:华大新高考联盟2020届高三1月教学质量测评选择题(1)
【1】题(选择题)考查知识点:并集及其运算-难度:0.86 -平均分:4.32分-得分率:86.0 %
集合
NO.8 来源:衡水金卷山西五校联考选择题(1)
【1】题(选择题)考查知识点:交集及其运算-难度:0.98 -平均分:4.88分-得分率:98.0 %
答案:【1】题C
【1】题A
【1】题A
【2】题D
【1】题D
【2】题B
【1】题C
【1】题A。

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)集合专题(附解析)一、选择题1.【2022年全国甲卷理科·第3题】设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=ð()A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-【答案】D 解析:由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.2.【2022年全国乙卷理科·第1题】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈B.3M ∈C.4M ∉D.5M∉【答案】A 解析:由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误3.【2022新高考全国II 卷·第1题】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}-B.{1,2}C.{1,4}D.{1,4}-【答案】B 解析:{}|02B x x =≤≤,故{}1,2A B = .故选B.4.【2022新高考全国I 卷·第1题】若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤<D.1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D 解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭ ,故选:D5.【2021年新高考全国Ⅱ卷·第2题】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B 解析:由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选B.6.【2021年新高考Ⅰ卷·第1题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2B.{}2,3C.{}3,4D.{}2,3,4【答案】B 解析:由题设有{}2,3A B ⋂=,故选B.7.【2020年新高考I 卷(山东卷)·第1题】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3}B.{x |2≤x ≤3}C.{x |1≤x <4}D.{x |1<x <4}【答案】C 解析:[1,3](2,4)[1,4)A B ==U U 故选:C8.【2020新高考II 卷(海南卷)·第1题】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}【答案】C 解析:因为{2,3,5,7},{1,2,3,5,8}A B ==,所以{2,3,5}A B = ,故选:C9.【2021年高考全国乙卷理科·第2题】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.S C.T D.Z 【答案】C 解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.【2021年高考全国甲卷理科·第1题】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A.103x x ⎧⎫<≤⎨⎬⎩⎭B.143x x ⎧⎫≤<⎨⎬⎩⎭C.{}45x x ≤<D.{}05x x <≤【答案】B 解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.11.【2020年高考数学课标Ⅰ卷理科·第2题】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.4【答案】B 解析:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.12.【2020年高考数学课标Ⅱ卷理科·第1题】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A .13.【2020年高考数学课标Ⅲ卷理科·第1题】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2B.3C.4D.6【答案】C 解析:由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.14.【2019年高考数学课标Ⅲ卷理科·第1题】已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B = ()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,2【答案】A 解析:因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A.15.【2019年高考数学课标全国Ⅱ卷理科·第1题】设集合{}2560A x x x =-+>,{}10B x x =-<,则A B = ()A.(),1-∞B.()2,1-C.()3,1--D.()3,+∞【答案】A 解析:{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A.16.【2019年高考数学课标全国Ⅰ卷理科·第1题】已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ().{|43}A x x -<<.{|42}B x x -<<-.{|22}C x x -<<.{|23}D x x <<【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< 故选C.17.【2018年高考数学课标Ⅲ卷(理)·第1题】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A.{}0B.{}1C.{}1,2D.{}0,1,2【答案】C 解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C.18.【2018年高考数学课标Ⅱ卷(理)·第2题】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A.9B.8C.5D.4【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y x y x y =+∈∈=-------Z Z ,≤,,,故选A.19.【2018年高考数学课标卷Ⅰ(理)·第2题】己知集合{}220A x x x =-->,则R A =ð()A.{}12x x -<<B.{}12x x -≤≤C.{}{}12x x x x <-> D.{}{}12x x x x ≤-≥ 【答案】B 解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B.20.【2017年高考数学新课标Ⅰ卷理科·第1题】已知集合{}|1A x x =<,{}|31x B x =<,则()A.{|0}A B x x =< B.A B =R C.{|1}A B x x => D.A B =∅ 【答案】A 解析:由31x <得033x <,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A.21.【2017年高考数学课标Ⅲ卷理科·第1题】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A.3B.2C.1D.0【答案】B 解析:法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点,22⎛⎫ ⎪ ⎪⎝⎭,,22⎛⎫- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B22.【2017年高考数学课标Ⅱ卷理科·第2题】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C 解析:法1:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =法2:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =法3:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A﹑B﹑C﹑D 看只有C 选项满足题意.23.【2016高考数学课标Ⅲ卷理科·第1题】设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T = ()A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞D.(][)0,23,+∞ 【答案】D 解析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D.24.【2016高考数学课标Ⅱ卷理科·第2题】已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()A.{1}B.{12},C.{0123},,,D.{10123}-,,,,【答案】C 解析:{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C.25.【2016高考数学课标Ⅰ卷理科·第1题】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = ()(A)3(3,)2--(B)3(3,2-(C)3(1,)2(D)3(,3)2【答案】D 解析:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D.26.【2015高考数学新课标2理科·第1题】已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A.{}1,0A =-B.{}0,1C.{}1,0,1-D.{}0,1,2【答案】A 解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A.27.【2014高考数学课标2理科·第1题】设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A.{1}B.{2}C.{0,1}D.{1,2}【答案】D 解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D.28.【2014高考数学课标1理科·第1题】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)【答案】A 解析:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.29.【2013高考数学新课标2理科·第1题】已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}【答案】A 解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.30.【2013高考数学新课标1理科·第1题】已知集合A=2{|20}x x x ->,B={|x x <<,则()A.A B =∅ B.A B R = C.B A⊆D.A B ⊆【答案】D 解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B.。

2013高考数学(人教A文)多考点综合练:集合、常用逻辑用语 不等式

2013高考数学(人教A文)多考点综合练:集合、常用逻辑用语 不等式

多考点综合练(一)测试内容:集合、常用逻辑用语 不等式 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2012年福州市高三第一学期期末质量检查)已知集合A ={x|x>3},B ={x|2<x<4},那么集合A ∩B 等于 ( ) A .{x|x>3} B .{x|2<x<3} C .{x|3<x<4} D .{x|x<4}解析:A ∩B ={x|x>3}∩{x|2<x<4}={x|3<x<4},故选C. 答案:C 2.(2012年合肥第一次质检)集合A ={-1,0,4},集合B ={x|x2-2x -3≤0,x ∈N},全集为U ,则图中阴影部分表示的集合是 ( )A .{4}B .{4,-1}C .{4,5}D .{-1,0}解析:本题主要考查集合的运算与韦恩图.由图可知阴影部分表示的集合为(∁UB)∩A ,因为B ={x|-1≤x ≤3,x ∈N}={0,1,2,3},因此(∁UB)∩A ={4,-1},选B.本题为容易题. 答案:B3.(2012年河北省衡水中学期末检测)若集合A ={0,m2},B ={1,2},则“m =1”是“A ∪B ={0,1,2}”的 ( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件解析:当m =1时,m2=1,A ={0,1},A ∪B ={0,1,2},若A ∪B ={0,1,2},则m2=1或m2=2,m =±1或m =±2,故选B. 答案:B4.若a<b<0,则下列不等式中不一定成立的是 ( )A.1a >1bB.1a -b >1bC.-a>-bD .|a|>-b解析:∵1a -1b =b -a ab>0,∴A 一定成立;∵a<b<0,∴-a>-b>0, ∴-a>-b ,即C 一定成立; |a|=-a ;∴|a|>-b ⇔-a>-b ,成立,∴D 成立;当a =-2,b =-1时,1a -b =1-2+1=-1=1b ,所以B 不一定成立,故选B.答案:B5.设A 、B 是非空集合,定义A×B ={x|x ∈(A ∪B)且x ∉(A ∩B)}.已知A ={x|y =2x -x2},B ={y|y =2x ,x>0},则A×B 等于 ( )A .[0,1]∪(2,+∞)B .[0,1]∪[2,+∞)C .[0,1]D .[0,2]解析:∵A =[0,2],B =(1,+∞),∴A×B ={x|x ∈(A ∪B)且x ∉(A ∩B)}=[0,1]∪(2,+∞).故选A.答案:A6.(2012年厦门模拟)设命题p :若a>b ,则1a <1b ,q :若1ab <0,则ab<0.给出以下3个复合命题,①p ∧q ;②p ∨q ;③綈p ∧綈q.其中真命题的个数为 ( )A .0B .1C .2D .3解析:p 为假命题,q 为真命题,所以只有②正确,故选B. 答案:B7.在算式“4△+1□=30□×△”的两个□、△中,分别填入两个正整数,使它们的倒数之和最小.则这两个正整数构成的数对(□,△)应为 ( )A .(4,14)B .(6,6)C .(3,18)D .(5,10)解析:题中的算式可以变形为“4×□+1×△=30”.设x =□,y =△,则4x +y =30.30⎝⎛⎭⎫1x +1y =(4x +y)⎝⎛⎭⎫1x +1y =5+⎝⎛⎭⎫y x +4xy ≥5+2y x ·4x y =9,当且仅当y x =4xy ,即x =5,y =10时取等号,所求的数对为(5,10).故选D.答案:D8.若a>0,b>0,且a +b =4,则下列不等式恒成立的是 ( ) A.1ab >12B.1a +1b ≤1C.ab ≥2 D .a2+b2≥8解析:a +b =4≥2ab ,ab ≤2,ab ≤4 ∴1ab ≥14,故C 错,A 错. 1a +1b =a +b ab =4ab ≥1,故B 错.(a +b)2=a2+b2+2ab ≤2(a2+b2) ∴a2+b2≥8,故选D. 答案:D9.(2012年广东番禺模拟)已知命题p :“∀x ∈[0,1],a ≥ex ”,命题q :“∃x ∈R ,x2+4x +a =0”,若命题“p ∧q ”是真命题,则实数a 的取值范围是 ( ) A .[e,4] B .[1,4]C .[4,+∞)D .(-∞,1]解析:若p 真,则a ≥e ;若q 真,则16-4a ≥0⇒a ≤4,所以若命题“p ∧q ”是真命题,则实数a 的取值范围是[e,4].故选A. 答案:A10.(2012年辽宁)设变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55解析:可行域如图所示:由⎩⎪⎨⎪⎧y =15,x +y =20得A(5,15),A 点为最优解, ∴zmax =2×5+3×15=55,故选D. 答案:D11.若不等式(a -2)x2+2(a -2)x -4<0对于x ∈R 恒成立,则a 的取值范围是( )A .(-2,2)B .[-2,2]C .(-2,2]D .[-2,2)解析:当a =2时,不等式-4<0恒成立;当a ≠2时,由⎩⎪⎨⎪⎧a -2<0Δ=4a -22+4×4a -2<0,解得-2<a<2, ∴符合要求的a 的取值范围是(-2,2],故选C. 答案:C12.设A ={x|x -1x +1<0},B ={x||x -b|<a},若“a =1”是“A ∩B ≠Ø”的充分条件,则实数b 的取值范围是 ( ) A .-2≤b ≤2 B .-2≤b<2 C .-2<b<2 D .b ≤2解析:A ={x|-1<x<1},当a =1时,B ={x|b -1<x<b +1}, 若“a =1”是“A ∩B ≠Ø”的充分条件, 则有-1≤b -1<1或-1<b +1≤1, 所以-2<b<2,故选C. 答案:C二、填空题(本大题共4小题,每小题5分,共20分)13.命题p :∀x ∈R ,f(x)≥m ,则命题p 的否定綈p 是______. 答案:∃x ∈R ,f(x)<m14.(2012年安徽)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析:①作出可行域,如图中阴影部分;②作出零线x -y =0并平移,判断A ,B 点坐标;③由⎩⎪⎨⎪⎧ x +2y =3,2x +y =3解得A(1,1),由⎩⎪⎨⎪⎧2x +y =3,x =0解得B(0,3),∴(x -y)max =1-1=0,(x -y)min =0-3=-3,∴x -y ∈[-3,0]. 答案:[-3,0]15.已知条件p :|x +1|>2,条件q :5x -6>x2,则非p 是非q 的________条件. 解析:∵p :x<-3或x>1,∴綈p :-3≤x ≤1. ∵q :2<x<3,∴綈q :x ≤2或x ≥3,则綈p ⇒綈q. 答案:充分不必要16.已知命题p :“∀x ∈[1,2],12x2-ln x -a ≥0”与命题q :“∃x0∈R ,x20+2ax0-8-6a =0”都是真命题,则实数a 的取值范围是______________.解析:若p 真,则∀x ∈[1,2],⎝⎛⎭⎫12x2-ln x min ≥a ,∴a ≤12;若q 真,则(2a)2-4×(-8-6a)=4(a +2)(a +4)≥0,∴a ≤-4或a ≥-2,∴实数a 的取值范围为(-∞,-4]∪⎣⎡⎦⎤-2,12. 答案:(-∞,-4]∪⎣⎡⎦⎤-2,12 三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.设全集U =R ,函数y =log2(6-x -x2)的定义域为A ,函数y =1x2-x -12的定义域为B.(1)求集合A 与B ; (2)求A ∩B ,(∁UA)∪B.解:(1)函数y =log2(6-x -x2)要有意义需满足6-x -x2>0,解得-3<x<2, ∴A ={x|-3<x<2}. 函数y =1x2-x -12要有意义需满足x2-x -12>0,解得x<-3或x>4,∴B ={x|x<-3或x>4}.(2)A ∩B =Ø,∁UA ={x|x ≤-3或x ≥2},∴(∁UA)∪B ={x|x ≤-3或x ≥2}.18.我们知道,如果集合A ⊆S ,那么S 的子集A 的补集为∁SA ={x|x ∈S ,且x ∉A}.类似地,对于集合A ,B ,我们把集合{x|x ∈A ,且x ∉B}叫做集合A 与B 的差集,记作A -B. 据此回答下列问题:(1)若A ={1,2,3,4},B ={3,4,5,6},求A -B ; (2)在下列各图中用阴影表示集合A -B ;(3)若集合A ={x|0<ax -1≤5},集合B ={x|-12<x ≤2},有A -B =Ø,求实数a 的取值范围.(4)解:(1)根据题意知A -B ={1,2}. (2)(3)A ={x|0<ax -1≤5},则1<ax ≤6,当a =0时,A =Ø,此时A -B =Ø,符合题意; 当a>0时,A =⎝⎛⎦⎤1a ,6a ,若A -B =Ø,则6a ≤2,即a ≥3; 当a<0时,A =⎣⎡⎭⎫6a ,1a ,若A -B =Ø,则6a >-12,即a<-12. 综上所述:实数a 的取值范围是a<-12或a ≥3或a =0. 19.(1)求函数y =2xx2+1在x>0时的最大值;(2)已知x +y +xy =2,且x>0,y>0,求x +y 的最小值. 解:(1)因为x>0,所以y =2x x2+1=2x +1x,而x +1x ≥2,故0<1x +1x ≤12,则0<2x +1x ≤1,当且仅当x =1x 即x =1时,y 的最大值为1.(2)由xy =2-(x +y)及xy ≤⎝⎛⎭⎫x +y 22得2-(x +y)≤x +y 24, 即(x +y)2+4(x +y)-8≥0.解得x +y ≥23-2或x +y ≤-2-2 3. 因为x>0,y>0,所以x +y ≥23-2, 当且仅当x =y 且x +y +xy =2,即x =y =3-1时,x +y 的最小值为23-2.20.(2013届湖北省黄冈中学高三11月月考)已知p :f(x)=1-x3,且|f(a)|<2;q :集合A ={x|x2+(a +2)x +1=0,x ∈R},且A ≠Ø.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围. 解:若|f(a)|=|1-a3|<2成立,则-6<1-a<6,即当-5<a<7时p 是真命题;若A ≠Ø,则方程x2+(a +2)x +1=0有实数根, 由Δ=(a +2)2-4≥0,解得a ≤-4,或a ≥0, 即当a ≤-4,若a ≥0时q 是真命题;由于p ∨q 为真命题,p ∧q 为假命题,∴p 与q 一真一假,p 真q 假时,⎩⎪⎨⎪⎧-5<a<7-4<a<0,∴-4<a<0.p 假q 真时,⎩⎪⎨⎪⎧a ≤-5或a ≥7a ≤-4或a ≥0,∴a ≤-5或a ≥7.故知所求a 的取值范围是(-∞,-5]∪(-4,0)∪[7,+∞).21.某工厂生产甲、乙两种产品,每生产一吨产品所消耗的电能和煤、所需工人人数以及所已知该工厂的工人人数最多是200人,根据限额,该工厂每天消耗电能不得超过160千度,消耗煤不得超过150吨,问怎样安排甲、乙这两种产品的生产数量,才能使每天所得的产值最大?解:设甲、乙两种产品每天分别生产x 吨和y 吨,则每天所得的产值为z =7x +10y 万元.依题意,得不等式组⎩⎪⎨⎪⎧2x +8y ≤160,3x +5y ≤150,5x +2y ≤200,x ≥0,y ≥0.(※)由⎩⎪⎨⎪⎧ 2x +8y =160,3x +5y =150,解得⎩⎨⎧x =2007,y =907.由⎩⎪⎨⎪⎧5x +2y =200,3x +5y =150,解得⎩⎨⎧x =70019,y =15019.设点A 的坐标为⎝⎛⎭⎫2007,907,点B 的坐标为⎝⎛⎭⎫70019,15019,则不等式组(※)所表示的平面区域是五边形的边界及其内部(如图中阴影部分).令z =0,得7x +10y =0,即y =-710x.作直线l0:y =-710x.由图可知把l0平移至过点B ⎝⎛⎭⎫70019,15019时,即x =70019,y =15019时,z 取得最大值6 40019. 答:每天生产甲产品70019吨、乙产品15019吨时,能获得最大的产值6 40019万元.22.某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即x10,0<x ≤10),每月卖出数量将减少y 成,而售货金额变成原来的z 倍.(1)设y =ax ,其中a 是满足13≤a<1的常数,用a 来表示当售货金额最大时的x 的值; (2)若y =23x ,求使售货金额比原来有所增加的x 的取值范围.解:(1)由题意知某商店定价上涨x 成时,上涨后的定价、每月卖出数量、每月售货金额分别是p ⎝⎛⎭⎫1+x 10元,n ⎝⎛⎭⎫1-y10元,npz 元, 因而npz =p ⎝⎛⎭⎫1+x 10·n ⎝⎛⎭⎫1-y 10, ∴z =1100(10+x)(10-y),在y =ax 的条件下, z =1100⎣⎡⎦⎤-a ⎝⎛⎭⎫x -51-a a 2+100+251-a 2a , 由于13≤a<1,则0<51-a a ≤10,要使售货金额最大,即使z 值最大, 此时x =51-a a .(2)由z =1100(10+x)⎝⎛⎭⎫10-23x >1,解得0<x<5.。

2013届高三各地名校试题解析分类汇编(一)理科数学1集合

2013届高三各地名校试题解析分类汇编(一)理科数学1集合

各地解析分类汇编:集合与简易逻辑1【云南省玉溪一中2013届高三第四次月考理】已知:p “,,a b c 成等比数列”,:q “ac b =”,那么p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D . 既不充分又非必要条件【答案】D【解析】,,a b c 成等比数列,则有2b ac =,所以b =所以p 成立是q 成立不充分条件.当==0a b c =时,有ac b =成立,但此时,,a b c 不成等比数列,所以p 成立是q 成立既不充分又非必要条件,选D.2【云南省玉溪一中2013届高三上学期期中考试理】设全集{}1,2,3,4,5U =,集合{}2,3,4A =,{}2,5B =,则()U B C A =( )A.{}5B. {}125, ,C. {}12345, , , ,D.∅【答案】B【解析】{1,5}U C A =,所以()={1,5}{2,5}={1,2,5}U B C A ,选B. 3【云南师大附中2013届高三高考适应性月考卷(三)理科】设集合{}{}|,|5,,A x x k N B x x x Q ==∈=≤∈则A B 等于( )A . {1,2,5}B .{l, 2,4, 5}C .{1,4, 5}D .{1,2,4}【答案】B【解析】当k =0时,x =1;当k =1时,x =2;当k =5时,x =4;当k =8时,x =5,故选B.4【云南师大附中2013届高三高考适应性月考卷(三)理科】已知条件2:340p x x --≤;条件22:690q x x m -+-≤ 若p 是q 的充分不必要条件,则m 的取值范围是( )A .[]1,1-B .[]4,4-C .(][),44,-∞-+∞ D .(][),11,-∞-+∞【答案】C【解析】14p x -:≤≤,记33(0)33(0)q m x m m m x m m -++-:≤≤>或≤≤<,依题意,03134m m m ⎧⎪--⎨⎪+⎩>, ≤,≥或03134m m m ⎧⎪+-⎨⎪-⎩<, ≤,≥,解得44m m -≤或≥.选C.5【云南省玉溪一中2013届高三第三次月考 理】下列命题中正确的是( ) A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥” B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件 C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π.【答案】C【解析】A 中命题的否定式2,0x R x x ∃∈->,所以错误.p q ∧为真,则,p q 同时为真,若p q ∨为真,则,p q 至少有一个为真,所以是充分不必要条件,所以B 错误.C 的否命题为“若22am bm >,则a b >”,若22am bm >,则有0,m a b ≠>所以成立,选C. 6【天津市耀华中学2013届高三第一次月考理科】下列命题中是假命题的是 A 、(0,),>2x x sin x π∀∈ B 、000,+=2x R sin x cos x ∃∈C 、 ,3>0xx R ∀∈ D 、00,=0x R lg x ∃∈ 【答案】B【解析】因为000+4sin x cos x sin x π+≤(),所以B 错误,选B.7【天津市耀华中学2013届高三第一次月考理科】设a ,b ∈R ,那么“>1ab”是“>>0a b ”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】B【解析】由>1a b 得,10a a bb b --=>,即()0b a b ->,得0b a b >⎧⎨>⎩或0b a b <⎧⎨<⎩,即0a b >>或0a b <<,所以“>1ab ”是“>>0a b ”的必要不充分条件,选B.8【山东省烟台市莱州一中2013届高三10月月考(理)】集合{x x y R y A ,lg =∈=>}{}2,1,1,2,1--=B 则下列结论正确的是A.{}1,2--=⋂B AB.()()0,∞-=⋃B A C RC.()+∞=⋃,0B AD.(){}1,2--=⋂B A C R【答案】D【解析】{0}A y y =>,所以={0}R C A y y ≤,所以(){}1,2--=⋂B A C R ,选D. 9【天津市天津一中2013届高三上学期一月考 理】有关下列命题的说法正确的是A.命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1” B.“1x =-”是“2560x x --=”的必要不充分条件C.命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0” D.命题“若x=y,则sinx=siny ”的逆否命题为真命题 【答案】D【解析】若x 2=1,则x=1”的否命题为21x ≠,则1x ≠,即A 错误。

2013高考理科数学试题分类汇编1:集合(修改)

2013高考理科数学试题分类汇编1:集合(修改)

2013年全国高考理科数学试题分类汇编1:集合一、选择题1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则()=U A B ( )A.{}134,, B.{}34, C. {}3 D. {}4 【答案】D2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A.()01,B.(]02,C.()1,2D.(]12, 【答案】D3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]【答案】D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A.*,A N B N ==B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或C.{|01},A x x B R =<<=D.,A Z B Q ==【答案】D5 .(2013年高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B.6 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是(A) 1 (B) 3 (C)5 (D)9【答案】C7 .(2013年高考陕西卷(理))设全集为R , 函数()f x =M , 则C M R 为(A) [-1,1] (B) (-1,1)(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D8 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A)3 (B)4 (C)5 (D)6【答案】B9 .(2013年高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A){2}- (B){2} (C){2,2}- (D)∅【答案】A10.(2013年高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<<,则 ( ) A.A∩B=∅ B.A∪B=R C.B ⊆AD.A ⊆B【答案】B. 11.(2013年高考湖北卷(理))已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( )A.{}|0x x ≤B.{}|24x x ≤≤C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或【答案】C12.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0【答案】A13.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( ) A . {}0 B.{}0,2 C.{}2,0- D.{}2,0,2-【答案】D14.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A.(2,1]-B. ]4,(--∞C. ]1,(-∞D.),1[+∞【答案】C15.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉ B.(),,y z w S ∈,(),,x y w S ∈C.(),,y z w S ∉,(),,x y w S ∈D.(),,y z w S ∉,(),,x y w S ∈(一)必做题(9~13题)【答案】B16.(2013年高考北京卷(理))已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】B17.(2013年上海市春季高考数学试卷(含答案))设全集U R =,下列集合运算结果为R 的是( )(A)u Z N (B)u N N (C)()u u ∅ (D){0}u【答案】A二、填空题18.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))集合}1,0,1{-共有___________个子集.【答案】8三、解答题19.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))对正整数n ,记{}1,2,3,,m I n =,,m m m P I k I ⎫=∈∈⎬⎭. (1)求集合7P 中元素的个数;(2)若m P 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使m P 能分成两人上不相交的稀疏集的并.【答案】。

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)集合专题(附解析)1.【2022年全国甲卷理科·第3题】设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()U A B ⋃=ð()A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-2.【2022年全国乙卷理科·第1题】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈B.3M ∈C.4M ∉D.5M∉3.【2022新高考全国II 卷·第1题】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}-B.{1,2}C.{1,4}D.{1,4}-4.【2022新高考全国I 卷·第1题】若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤<D.1163x x ⎧⎫≤<⎨⎬⎩⎭5.【2021年新高考全国Ⅱ卷·第2题】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3}B.{1,6}C.{5,6}D.{1,3}6.【2021年新高考Ⅰ卷·第1题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2B.{}2,3C.{}3,4D.{}2,3,47.【2020年新高考I 卷(山东卷)·第1题】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3}B.{x |2≤x ≤3}C.{x |1≤x <4}D.{x |1<x <4}8.【2020新高考II 卷(海南卷)·第1题】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}9.【2021年高考全国乙卷理科·第2题】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.S C.T D.Z 10.【2021年高考全国甲卷理科·第1题】设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A.103x x ⎧⎫<≤⎨⎬⎩⎭B.143x x ⎧⎫≤<⎨⎬⎩⎭C.{}45x x ≤<D.{}05x x <≤11.【2020年高考数学课标Ⅰ卷理科·第2题】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.412.【2020年高考数学课标Ⅱ卷理科·第1题】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}13.【2020年高考数学课标Ⅲ卷理科·第1题】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2B.3C.4D.614.【2019年高考数学课标Ⅲ卷理科·第1题】已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B = ()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,215.【2019年高考数学课标全国Ⅱ卷理科·第1题】设集合{}2560A x x x =-+>,{}10B x x =-<,则A B = ()A.(),1-∞B.()2,1-C.()3,1--D.()3,+∞16.【2019年高考数学课标全国Ⅰ卷理科·第1题】已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ().{|43}A x x -<<.{|42}B x x -<<-.{|22}C x x -<<.{|23}D x x <<17.【2018年高考数学课标Ⅲ卷(理)·第1题】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A.{}0B.{}1C.{}1,2D.{}0,1,218.【2018年高考数学课标Ⅱ卷(理)·第2题】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A.9B.8C.5D.419.【2018年高考数学课标卷Ⅰ(理)·第2题】己知集合{}220A x x x =-->,则R A =ð()A.{}12x x -<<B.{}12x x -≤≤C.{}{}12x x x x <-> D.{}{}12x x x x ≤-≥ 20.【2017年高考数学新课标Ⅰ卷理科·第1题】已知集合{}|1A x x =<,{}|31x B x =<,则()A.{|0}A B x x =< B.A B =R C.{|1}A B x x => D.A B =∅21.【2017年高考数学课标Ⅲ卷理科·第1题】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A.3B.2C.1D.022.【2017年高考数学课标Ⅱ卷理科·第2题】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A.{}1,3-B.{}1,0C.{}1,3D.{}1,523.【2016高考数学课标Ⅲ卷理科·第1题】设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T = ()A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞D.(][)0,23,+∞ 24.【2016高考数学课标Ⅱ卷理科·第2题】已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()A.{1}B.{12},C.{0123},,,D.{10123}-,,,,25.【2016高考数学课标Ⅰ卷理科·第1题】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = ()(A)3(3,)2--(B)3(3,2-(C)3(1,2(D)3(,3)226.【2015高考数学新课标2理科·第1题】已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A.{}1,0A =-B.{}0,1C.{}1,0,1-D.{}0,1,227.【2014高考数学课标2理科·第1题】设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A.{1}B.{2}C.{0,1}D.{1,2}28.【2014高考数学课标1理科·第1题】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)29.【2013高考数学新课标2理科·第1题】已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}30.【2013高考数学新课标1理科·第1题】已知集合A=2{|20}x x x ->,B={|x x <<,则()A.A B =∅ B.A B R = C.B A ⊆D.A B ⊆参考解析1.【答案】D 解析:由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.2.【答案】A 解析:由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误3.【答案】B 解析:{}|02B x x =≤≤,故{}1,2A B = .故选B.4.【答案】D 解析:1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 5.【答案】B 解析:由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选B.6.【答案】B 解析:由题设有{}2,3A B ⋂=,故选B.7.【答案】C 解析:[1,3](2,4)[1,4)A B ==U U 故选:C8.【答案】C 解析:因为{2,3,5,7},{1,2,3,5,8}A B ==,所以{2,3,5}A B = ,故选:C9.【答案】C 解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.【答案】B 解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.11.【答案】B 解析:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.12.【答案】A 解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A .13.【答案】C 解析:由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.14.【答案】A 解析:因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A.15.【答案】A 解析:{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A.16.【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< 故选C.17.【答案】C 解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C.18.【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y x y x y =+∈∈=-------Z Z ,≤,,,故选A.19.【答案】B 解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B.20.【答案】A 解析:由31x <得033x <,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A.21.【答案】B 解析:法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点,22⎫⎪⎪⎝⎭,,22⎛⎫-- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B22.【答案】C 解析:法1:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =法2:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =法3:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A﹑B﹑C ﹑D看只有C 选项满足题意.23.【答案】D 解析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D.24.【答案】C 解析:{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C.25.【答案】D 解析:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭ .故选D.26.【答案】A 解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A.27.【答案】D 解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D.28.【答案】A 解析:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.29.【答案】A 解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.30.【答案】D 解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B。

高考数学专题复习-集合真题练习(附答案)

专题一集合与常用逻辑用语1.1集合考点一集合及其关系1.(2013山东理,2,5分)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9答案C因为x∈A,y∈A,所以=0,=0或=0,=1或=0,=2或=1,=0或=1,=1或=1,=2或=2,=0或=2,=1或=2,=2,所以B={0,-1,-2,1,2},所以集合B中有5个元素,故选C.2.(2013江西文,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或4答案A若a=0,则A=Ø⌀,不符合要求;若a≠0,则Δ=a2-4a=0,得a=4,故选A.3.(2012课标理,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10答案D解法一:由x-y∈A及A={1,2,3,4,5}得x>y,当y=1时,x可取2,3,4,5,有4个;当y=2时,x可取3,4,5,有3个;当y=3时,x可取4,5,有2个;当y=4时,x可取5,有1个.故共有1+2+3+4=10(个),选D.解法二:因为A中元素均为正整数,所以从A中任取两个元素作为x,y,满足x>y的(x,y)即为集合B中的元素,故共有C52=10个,选D.4.(2011福建理,1,5分)i是虚数单位,若集合S={-1,0,1},则()A.i∈SB.i2∈SC.i3∈SD.2i∈S答案B i2=-1,-1∈S,故选B.5.(2015重庆理,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=Ø⌀C.A⫋BD.B⫋A答案D∵A={1,2,3},B={2,3},∴A≠B,A∩B={2,3}≠Ø;又1∈A且1∉B,∴A不是B的子集,故选D.6.(2013课标Ⅰ理,1,5分)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=ØB.A∪B=RC.B⊆AD.A⊆B答案B化简A={x|x>2或x<0},而B={x|-5<x<5},所以A∩B={x|-5<x<0或2<x<5},A项错误;A∪B=R,B项正确;A与B没有包含关系,C项与D项均错误.故选B.7.(2012课标文,1,5分)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.A∩B=Ø答案B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.8.(2012大纲全国文,1,5分)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x 是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D答案B由已知x是正方形,则x必是矩形,所以C⊆B,故选B.9.(2012湖北文,1,5分)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数为()A.1B.2C.3D.4答案D A={1,2},B={1,2,3,4},所以满足条件的集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.评析本题考查集合之间的关系.10.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C A中包含的整数元素有-2,-1,0,1,2,共5个,所以A∩Z中的元素个数为5.11.(2012天津文,9,5分)集合A={x∈R||x-2|≤5}中的最小整数为.答案-3解析由|x-2|≤5,得-5≤x-2≤5,即-3≤x≤7,所以集合A中的最小整数为-3.12.(2013江苏,4,5分)集合{-1,0,1}共有个子集.答案8解析集合{-1,0,1}的子集有Ø,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.评析本题考查子集的概念,忽视Ø是学生出错的主要原因.考点二集合的基本运算1.(2021北京,1,4分)已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案B因为集合A={x|-1<x<1},B={x|0≤x≤2},所以用数轴表示两集合中元素如图,可知A∪B={x|-1<x≤2},故选B.2.(2021浙江,1,4分)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案D利用数轴可得A∩B={x|1≤x<2}.3.(2022浙江,1,4分)设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案D由题意得A∪B={1,2,4,6}.故选D.4.(2022全国乙文,1,5分)集合M={2,4,6,8,10},N={x|-1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案A由题意知M∩N={2,4},故选A.5.(2022全国甲文,1,5分)设集合A={-2,-1,0,1,2},B=U0≤<A∩B=()A.{0,1,2}B.{-2,-1,0}C.{0,1}D.{1,2}答案A集合A中的元素只有0,1,2属于集合B,所以A∩B={0,1,2}.故选A.6.(2022全国乙理,1,5分)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈MB.3∈MC.4∉MD.5∉M答案A由题意知M={2,4,5},故选A.7.(2022新高考Ⅱ,1,5分)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=()A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B由|x-1|≤1得0≤x≤2,则B={x|0≤x≤2},∴A∩B={1,2},故选B.8.(2022北京,1,4分)已知全集U={x|-3<x<3},集合A={x|-2<x≤1},则∁U A=()A.(-2,1]B.(-3,-2)∪[1,3)C.[-2,1)D.(-3,-2]∪(1,3)答案D在数轴上作出全集U及集合A,如图所示,可知∁U A=(-3,-2]∪(1,3).故选D.易错警示:集合A中含有元素1,不含元素-2,故∁U A中含有元素-2,不含元素1,注意区间的开闭.9.(2022天津,1,5分)设全集U={-2,-1,0,1,2},集合A={0,1,2},B={-1,2},则A∩(∁U B)=()A.{0,1}B.{0,1,2}C.{-1,1,2}D.{0,-1,1,2}答案A∵U={-2,-1,0,1,2},B={-1,2},∴∁U B={-2,0,1},又A={0,1,2},∴A∩(∁U B)={0,1}.故选A.10.(2022新高考Ⅰ,1,5分)若集合M={x|<4},N={x|3x≥1},则M∩N=()A.{x|0≤x<2}B.U13≤<2C.{x|3≤x<16}D.U13≤<16答案D由题意知M={x|0≤x<16},N=U≥M∩N=U13≤<16,故选D.11.(2022全国甲理,3,5分)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)=() A.{1,3} B.{0,3} C.{-2,1} D.{-2,0}答案D因为B={x|x2-4x+3=0}={1,3},所以A∪B={-1,1,2,3},所以∁U(A∪B)={-2,0},故选D. 12.(2021全国甲理,1,5分)设集合M={x|0<x<4},N=U13≤≤5,则M∩N=()A.U0<≤B.U13≤<4C.{x|4≤x<5}D.{x|0<x≤5}答案B<<4,≤5,得13≤x<4,故选B.13.(2021全国甲文,1,5分)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=()A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案B解题指导:对可化简的集合,先化成最简形式;注意仔细审题,利用“∩”的含义,进行基本运算.解析N={x|2x>7}=U M∩N={5,7,9},故选B.易错警示:区分“∩”与“∪”.14.(2021新高考Ⅰ,1,5分)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B在数轴上表示出集合A,如图,由图知A∩B={2,3}.15.(2021全国乙理,2,5分)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.ØB.SC.TD.Z答案C解题指导:首先结合集合S、T的元素特征得到T⫋S,然后依据集合的交集运算得出结果.解析依题知T⫋S,则S∩T=T,故选C.16.(2021全国乙文,1,5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}答案A解题指导:先求M∪N,再求∁U(M∪N),即可得出结果.解析由题意得M∪N={1,2,3,4},则∁U(M∪N)={5},故选A.易错警示学生易因混淆交集和并集的运算而出错.17.(2020新高考Ⅰ,1,5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}答案C已知A={x|1≤x≤3},B={x|2<x<4},在数轴上表示出两个集合,由图易知A∪B={x|1≤x<4}.故选C.18.(2020新高考Ⅰ,5,5分)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是() A.62% B.56% C.46% D.42%答案C用Venn图表示学生参加体育锻炼的情况,A+B表示喜欢游泳的学生数占该校学生总数的比例,B+C表示喜欢足球的学生数占该校学生总数的比例,A+B+C表示喜欢足球或游泳的学生数占该校学生总数的比例,即A+B=82%,B+C=60%,A+B+C=96%,B表示既喜欢足球又喜欢游泳的学生数占该校学生总数的比例,故B=82%+60%-96%=46%.故选C.19.(2020北京,1,4分)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}答案D集合A与集合B的公共元素为1,2,由交集的定义知A∩B={1,2},故选D.20.(2019课标Ⅱ理,1,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)答案A本题考查了集合的运算;以集合的交集为载体,考查运算求解能力,旨在考查数学运算的素养要求.由题意得A={x|x<2或x>3},B={x|x<1},∴A∩B={x|x<1}.21.(2019课标Ⅱ文,1,5分)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.(-∞,2)C.(-1,2)D.Ø答案C本题主要考查集合的交集运算;考查数学运算的核心素养.∵A={x|x>-1},B={x|x<2},∴A∩B={x|-1<x<2},即A∩B=(-1,2).故选C.22.(2019课标Ⅲ理,1,5分)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}答案A本题考查集合的运算,通过集合的不同表示方法考查学生对知识的掌握程度,考查了数学运算的核心素养.由题意可知B={x|-1≤x≤1},又∵A={-1,0,1,2},∴A∩B={-1,0,1},故选A.23.(2019北京文,1,5分)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)答案C本题主要考查集合的并集运算,考查学生运算求解的能力,考查的核心素养是数学运算.∵A={x|-1<x<2},B={x|x>1},∴A∪B={x|x>-1},故选C.A)∩B=()24.(2019浙江,1,4分)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}答案A本题考查补集、交集的运算;旨在考查学生的运算求解的能力;以列举法表示集合为背景体现数学运算的核心素养.∵∁U A={-1,3},∴(∁U A)∩B={-1},故选A.25.(2018课标Ⅰ文,1,5分)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}答案A本题主要考查集合的基本运算.∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.26.(2018课标Ⅱ文,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}答案C本题主要考查集合的运算.由题意得A∩B={3,5},故选C.27.(2018课标Ⅲ理,1,5分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}答案C本题考查集合的运算.∵A={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.28.(2018北京理,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案A本题主要考查集合的运算.化简A={x|-2<x<2},∴A∩B={0,1},故选A.29.(2018天津文,1,5分)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}答案C本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.A=()30.(2018浙江,1,4分)已知全集U={1,2,3,4,5},A={1,3},则∁UA.Ø⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}答案C本题考查集合的运算.∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.31.(2017课标Ⅱ理,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案C本题主要考查集合的运算.∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.32.(2017课标Ⅰ文,1,5分)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=<B.A∩B=ØC.A∪B=<D.A∪B=R答案A本题考查集合的运算.由3-2x>0得x<32,则B=<所以A∩B=<故选A.33.(2017课标Ⅱ文,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}答案A本题考查集合的并集.A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A.34.(2017课标Ⅲ文,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4答案B因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.35.(2017天津理,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B本题主要考查集合的表示和集合的运算.因为A={1,2,6},B={2,4},所以A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},所以(A∪B)∩C={1,2,4}.故选B.36.(2017北京理,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案A本题考查集合的交集运算,考查运算求解能力.由集合的交集运算可得A∩B={x|-2<x<-1},故选A.37.(2017北京文,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁A=()UA.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)答案C本题考查集合的补集运算.根据补集的定义可知,∁U A={x|-2≤x≤2}=[-2,2].故选C.38.(2016课标Ⅰ理,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A.−3,−B.C.1,3答案D因为A={x|x2-4x+3<0}={x|1<x<3},B=>所以A∩B={x|1<x<3}∩>=< x<3.故选D.思路分析通过不等式的求解分别得出集合A和集合B,然后根据交集的定义求得A∩B的结果,从而得出正确选项.方法总结集合的运算问题通常是先化简后运算,可借助数轴或韦恩图解决.39.(2016课标Ⅱ理,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C由(x+1)(x-2)<0⇒-1<x<2,又x∈Z,∴B={0,1},∴A∪B={0,1,2,3}.故选C.40.(2016课标Ⅲ理,1,5分)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)答案D S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},在数轴上表示出集合S,T,如图所示:由图可知S∩T=(0,2]∪[3,+∞),故选D.评析本题主要考查了集合的运算,数轴是解决集合运算问题的“利器”.41.(2016课标Ⅰ文,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}答案B∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.42.(2016课标Ⅱ文,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}答案D由已知得B={x|-3<x<3},∵A={1,2,3},∴A∩B={1,2},故选D.B=()43.(2016课标Ⅲ文,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AA.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}答案C由补集定义知∁A B={0,2,6,10},故选C.44.(2016天津理,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案D由题易知B={1,4,7,10},所以A∩B={1,4},故选D.45.(2016山东理,2,5分)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.Q)=()46.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RA.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案B∵Q=(-∞,-2]∪[2,+∞),∴∁R Q=(-2,2),∴P∪(∁R Q)=(-2,3],故选B.47.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案A因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A∩B={-1,0}.选A.48.(2015课标Ⅰ文,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案D由已知得A={2,5,8,11,14,17,…},又B={6,8,10,12,14},所以A∩B={8,14}.故选D.49.(2015课标Ⅱ文,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)答案A因为A=(-1,2),B=(0,3),所以A∪B=(-1,3),故选A.50.(2015陕西文,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案A由题意知M={0,1},N={x|0<x≤1},所以M∪N=[0,1].故选A.51.(2014课标Ⅰ理,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案A由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.52.(2014课标Ⅱ理,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}答案D由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.53.(2014课标Ⅱ文,1,5分)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}答案B∵集合A={-2,0,2},B={x|x2-x-2=0}={2,-1},∴A∩B={2},故选B.54.(2013课标Ⅱ理,1,5分)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}答案A化简得M={x|-1<x<3},所以M∩N={0,1,2},故选A.55.(2013课标Ⅰ文,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案A∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4},故选A.56.(2013课标Ⅱ文,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}答案C由题意得M∩N={-2,-1,0}.选C.57.(2013上海理,15,5分)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)答案B当a=1时,集合A=R,满足A∪B=R.当a>1时,A=(-∞,1]∪[a,+∞),由A∪B=R,得a-1≤1,所以1<a≤2;当a<1时,A=(-∞,a]∪[1,+∞),由A∪B=R,得a-1≤a,所以a<1.综上所述,a≤2.58.(2012大纲全国理,2,5分)已知集合A={1,3,},B={1,m},A∪B=A,则m=()A.0或3B.0或3C.1或3D.1或3答案B由A∪B=A得B⊆A,则m∈A,所以有m=或m=3,所以m=3或m=1或m=0,又由集合中元素的互异性知m≠1,故选B.59.(2011课标文,1,5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案B由题意得P=M∩N={1,3},∴P的子集为⌀,{1},{3},{1,3},共4个,故选B.M=⌀,则M∪N=() 60.(2011辽宁理,2,5分)已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁IA.MB.NC.ID.⌀答案A∵N∩∁I M=⌀,∴N⊆M.又M≠N,∴N⫋M,∴M∪N=M.故选A.61.(2020江苏,1,5分)已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.答案{0,2}解析∵A={-1,0,1,2},B={0,2,3},∴A∩B={0,2}.62.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=.答案{1,8}解析本题考查集合的运算.∵A={0,1,2,8},B={-1,1,6,8},∴A∩B={1,8}.。

备战2013年高考数学(理)专题1 集合 历届高考.pdf

【2012年高考试题】 1.【2012高考真题浙江理1】设集合A={x|1<x<4},集合B={x|-2x-3≤0}, 则A∩(CRB)=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 2.【2012高考真题新课标理1】已知集合;,则中所含元素 的个数为( ) 3.【2012高考真题陕西理1】集合,,则( ) A. B. C. D. 【答案】C. 【解析】, ,故选C. 4.【2012高考真题山东理2】已知全集,集合,则为 (A) (B) (C) (D) 【答案】C 【解析】,所以,选C. 5.【2012高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则为 (A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 2. 集合为即为在全集U中去掉集合A和集合B中的元素,所剩的元素形成的集合,由此可快速得到答案,选B 6.【2012高考真题江西理1】若集合A={-1,1},B={0,2},则集合{zz=x+y,x∈A,y∈B}中的元素的个数为 A.5 B.4 C.3 D.2 7.【2012高考真题湖南理1】设集合M={-1,0,1},N={x|x2≤x},则M∩N=A.{0} B.{0,1} C.{-1,1} D.{-1,0,0} 【答案】B 【解析】 M={-1,0,1} M∩N={0,1}. 8【2012高考真题广东理2】设集合U={1,2,3,4,5,6}, M={1,2,4 },则CuM=A.U B. {1,3,5} C.{3,5,6} D. {2,4,6} 【答案】C 【解析】,故选C. 9.【2012高考真题北京理1】已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B=A (-,-1)B (-1,-) C (-,3)D (3,+) 【答案】D 【解析】因为,利用二次不等式可得或画出数轴易得:.故选D. 10.【2012高考真题全国卷理2】已知集合A={1.3. },B={1,m} ,AB=A, 则m=A 0或 B 0或3 C 1或D 1或3 11.【2012高考真题四川理13】设全集,集合,,则___________。

2013年高考试题分项版解析数学(文) 专题01 集合与简易逻辑(Word精析版)(2)

第一章 集合与简易逻辑一.基础题组1.【2013年普通高等学校招生全国统一考试(四川卷)文科】设集合{1,2,3}A =,集合{2,2}B =-,则A B =( )(A )∅ (B ){2} (C ){2,2}- (D ){2,1,2,3}-2.【2013年普通高等学校统一考试试题大纲全国文科】设集合{}1,2,3,4,5,U =集合{}1,2A =,则u A =ð( ) (A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅3.【2013年全国高考统一考试天津数学(文)卷】 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= ( )(A) (,2]-∞(B) [1,2](C) [-2,2](D) [-2,1]4.【2013年普通高等学校招生全国统一考试(北京卷)文】已知集合{1,0,1}A =-,{|11}B x x =-≤<,则A B =( )(A ){0}(B ){1,0}-(C ){0,1}(D ){1,0,1}-5.【2013年普通高等学校招生全国统一考试(湖北卷)文科】已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U BA =ðA .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}6.【2013年普通高等学校招生全国统一考试(湖南卷)文科】“1<x <2”是“x <2”成立的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件7.【2013年普通高等学校招生全国统一考试(浙江卷)文科】设集合{|2},{|41}S x x T x x =>-=-≤≤,则S ∩T=( )A 、[-4,+∞)B 、(-2, +∞)C 、[-4,1]D 、(-2,1]8.【2013年高考新课标Ⅱ数学(文)卷】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N=( )(A ){-2,-1,0,1} (B ){-3,-2,-1,0}(C ){-2,-1,0} (D ){-3,-2,-1 }9.【2013年普通高等学校招生全国统一考试(辽宁卷)文科】已知集合{}{}0,1,2,3,4,|2,A B x x A B ==<=则( )(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,210.【2013年普通高等学校招生全国统一考试(广东卷)文科】 设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =( )A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-11.【2013年普通高等学校招生全国统一考试(安徽卷文科)】已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( )(A ){}2,1--(B ){}2-(C ){}1,0,1-(D ){}0,112.【2013年普通高等学校招生全国统一考试(福建卷)文科】设点(),,21:10P x y x y P l x y ==-+-=则“且”是“点在直线上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.【2013年普通高等学校招生全国统一考试(上海卷)文】钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( ) (A )充分条件(B )必要条件(C )充分必要条件(D )既非充分又非必要条件14.【2013年普通高等学校统一考试江苏卷】集合{1,0,1}-共有 个子集.15.【2013年普通高等学校招生全国统一考试(湖南卷)文科】已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()C A B ⋃⋂=________ 【答案】{}6,8【解析】{}6,8U C A =,(){}6,8U C A B =.【考点定位】本题考查集合的基本运算,考查学生的的逻辑推理能力.二.能力题组16.【2013年普通高等学校招生全国统一考试(四川卷)文科】设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )(A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉17.【2013年全国高考新课标(I )文科】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ()(A ){1,4}(B ){2,3}(C ){9,16}(D ){1,2}18.【2013年普通高等学校招生全国统一考试(江西卷)文科】若集合{}21A x R ax ax =∈++中只有一个元素,则a =( )A .4B . 2C .0D .0或419.【2013年普通高等学校招生全国统一考试(安徽卷文科)】“(21)0x x -=”是“0x =”的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件20.【2013年普通高等学校招生全国统一考试(浙江卷)文科】若a R ∈,则“0α=”是“s i n c o s αα<”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件21.【2013年普通高等学校招生全国统一考试(山东卷)文科】已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =ð,{1,2}B =,则U A B =ð( )A.{}3B. {}4C. {}3,4D.∅22.【2013年普通高等学校招生全国统一考试(陕西卷) 文科】 设全集为R, 函数()f x =M, 则C M R 为( )(A) (-∞,1) (B) (1, + ∞) (C) (,1]-∞ (D) [1,)+∞23.【2013年普通高等学校招生全国统一考试(福建卷)文科】若集合{}{}=1,2,3=1,3,4A B ⋂,,则A B 的子集个数为( )A .2B .3C .4D .16三.拔高题组24.【2013年普通高等学校招生全国统一考试(湖北卷)文科】在一次跳伞训练中,甲、乙两位学员各 跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有 降落在指定范围”可表示为A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q25.【2013年普通高等学校招生全国统一考试(山东卷)文科】 给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件的简单例子,进行转化比较,从而确定答案.26.【2013年全国高考新课标(I )文科】已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝。

2013届高三人教A版数学章末综合测试题(1)集合与常用逻辑用语

2013届高三数学章末综合测试题(1)集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.1.设全集U={1,2,3,4,5},集合A={1,a-2,5},∁U A={2,4},则a的值为()A.3B.4C.5D.6解析:由∁U A={2,4},可得A={1,3,5},∴a-2=3,a=5.答案:C2.设全体实数集为R,M={1,2},N={1,2,3,4},则(∁R M)∩N等于()A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}解析:∵M={1,2},N={1,2,3,4},∴(∁R B)∩N={3,4}.答案:B3.如图所示,U是全集,M、N、S是U的子集,则图中阴影部分所示的集合是() A.(∁U M∩∁U N)∩SB.(∁U(M∩N))∩SC.(∁U N∩∁U S)∪MD.(∁U M∩∁U S)∪N解析:由集合运算公式及Venn图可知A正确.答案:A4.已知p:2+3=5,q:5<4,则下列判断错误的是()A.“p或q”为真,“p”为假B.“p且q”为假,“q”为真C.“p且q”为假,“p”为假D.“p且q”为真,“p或q”为真解析:∵p为真,∴p为假.又∵q为假,∴q为真.∴“p且q”为真,“p或q”为真.答案:DA.0 B.1C .2D .4答案:C6.已知集合A ={(x ,y )|y =lg(x +1)-1},B ={(x ,y )|x =m },若A ∩B =∅,则实数m 的取值范围是( )A .m <1B .m ≤1C .m <-1D .m ≤-1解析:A ∩B =∅即指函数y =lg(x +1)-1的图像与直线x =m 没有交点,结合图形可得m ≤-1.答案:D7.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( ) A .x ≥0 B .x <0或x >2 C .x ∈{-1,3,5}D .x ≤-12或x ≥3解析:依题意所选选项能使不等式2x 2-5x -3≥0成立,但当不等式2x 2-5x -3≥0成立时,却不一定能推出所选选项.由于不等式2x 2-5x -3≥0的解为x ≥3,或x ≤-12.答案:D8.命题p :不等式⎪⎪⎪⎪x x -1>x x -1的解集为{x |0<x <1};命题q :0<a ≤15是函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4]上为减函数的充分不必要条件,则( )A .p 真q 假B .“p 且q ”为真C .“p 或q ”为假D .p 假q 真解析:命题p 为真,命题q 也为真.事实上,当0<a ≤15时,函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4]上为减函数,但若函数在(-∞,4]上是减函数,应有0≤a ≤15.故“p 且q ”为真.答案:B9.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p 且q ”是真命题; ②命题“p 且(q )”是假命题; ③命题“(p )或q ”是真命题; ④命题“(p )或(q )”是假命题. 其中正确的是( ) A .②③ B .①②④ C .①③④D .①②③④解析:命题p :∃x 0∈R ,使tan x 0=1为真命题, 命题q :x 2-3x +2<0的解集是{x |1<x <2}也为真命题, ∴p 且q 是真命题,p 且(q )是假命题, (p )或q 是真命题,(p )或(q )是假命题, 故①②③④都正确. 答案:D10.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题是:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线开口可以向上,因此否命题也是假命题.故选D.答案:D11.若命题“∀x ,y ∈(0,+∞),都有(x +y )⎝⎛⎭⎫1x +a y ≥9”为真命题,则正实数a 的最小值是( )A .2B .4C .6D .8解析:(x +y )⎝⎛⎭⎫1x +a y =1+a +ax y +yx≥1+a +2a =(a +1)2≥9,所以a ≥4,故a 的最小值为4.答案:B12.设p :y =c x (c >0)是R 上的单调递减函数;q :函数g (x )=lg(2cx 2+2x +1)的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎦⎤0,12∪[1,+∞) D.⎝⎛⎭⎫0,12 解析:由y =c x (c >0)是R 上的单调递减函数, 得0<c <1,所以p :0<c <1, 由g (x )=lg(2cx 2+2x +1)的值域为R , 得当c =0时,满足题意.当c ≠0时,由⎩⎪⎨⎪⎧c >0,Δ=4-8c ≥0,得0<c ≤12.所以q :0≤c ≤12.由p 且q 为假命题,p 或q 为真命题可知p 、q 一假一真. 当p 为真命题,q 为假命题时,得12<c <1,当p 为假命题时,c ≥1,q 为真命题时,0≤c ≤12.故此时这样的c 不存在. 综上,可知12<c <1.答案:A第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知命题p :∃x ∈R ,x 3-x 2+1≤0,则命题p 是____________________. 解析:所给命题是特称命题,而特称命题的否定是全称命题,故得结论. 答案:∀x ∈R ,x 3-x 2+1>014.若命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是__________. 解析:∵“∃x ∈R,2x 2-3ax +9<0”为假命题,∴“∀x ∈R,2x 2-3ax +9≥0”为真命题. ∴Δ=9a 2-4×2×9≤0,解得-22≤a ≤2 2. 故实数a 的取值范围是[-22,22]. 答案:[-22,22]15.已知命题p :“对∀x ∈R ,∃m ∈R 使4x -2x +1+m =0”,若命题p 是假命题,则实数m 的取值范围是__________.解析:命题p 是假命题,即命题p 是真命题,也就是关于x 的方程4x -2x +1+m =0有实数解,即m =-(4x -2x +1).令f (x )=-(4x -2x +1),由于f (x )=-(2x -1)2+1,所以当x ∈R 时f (x )≤1,因此实数m 的取值范围是(-∞,1].答案:(-∞,1]16.已知集合A ={x ∈R |x 2-x ≤0},函数f (x )=2-x +a (x ∈A )的值域为B .若B ⊆A ,则实数a 的取值范围是__________.解析:A ={x ∈R |x 2-x ≤0}=[0,1]. ∵函数f (x )=2-x +a 在[0,1]上为减函数,∴函数f (x )=2-x +a (x ∈A )的值域B =⎣⎡⎦⎤12+a ,1+a . ∵B ⊆A ,∴⎩⎪⎨⎪⎧12+a ≥0,1+a ≤1.解得-12≤a ≤0.故实数a 的取值范围是⎣⎡⎦⎤-12,0. 答案:⎣⎡⎦⎤-12,0 三、解答题:本大题共6小题,共70分.17.(10分)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B 和A ∪B ;(2)若C ={x |4x +p <0},C ⊆A ,求实数p 的取值范围.解析:(1)依题意,得A ={x |x 2-x -2>0}={x |x <-1,或x >2}, B ={x |3-|x |≥0}={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3}, A ∪B =R .(2)由4x +p <0,得x <-p4,而C ⊆A ,∴-p4≤-1.∴p ≥4.18.(12分)已知命题p :关于x 的不等式x 2-2ax +4>0对一切x ∈R 恒成立;命题q :函数y =log (4-2a )x 在(0,+∞)上递减.若p ∨q 为真,p ∧q 为假,求实数a 的取值范围.解析:命题p 为真,则有4a 2-16<0,解得-2<a <2; 命题q 为真,则有0<4-2a <1,解得32<a <2.由“p ∨q 为真,p ∧q 为假”可知p 和q 满足: p 真q 真、p 假q 真、p 假q 假.而当p 真q 假时,应有⎩⎪⎨⎪⎧-2<a <2,a ≥2或,a ≤32,即-2<a ≤32, 取其补集得a ≤-2,或a >32,此即为当“p ∨q 为真,p ∧q 为假”时实数a 的取值范围,故a ∈(-∞,-2]∪⎝⎛⎭⎫32,+∞ 19.(12分)已知命题p :|x -8|<2,q :x -1x +1>0,r :x 2-3ax +2a 2<0(a >0).若命题r是命题p 的必要不充分条件,且r 是q 的充分不必要条件,试求a 的取值范围.解析:命题p 即:{x |6<x <10}; 命题q 即:{x |x >1}; 命题r 即:{x |a <x <2a }.由于r 是p 的必要而不充分条件,r 是q 的充分而不必要条件,结合数轴应有⎩⎨⎧1≤a ≤6,2a ≥10.解得5≤a ≤6,故a 的取值范围是[5,6].20.(12分)已知集合A ={x |2-a ≤x ≤2+a },B ={x |x 2-5x +4≥0}. (1)当a =3时,求A ∩B ,A ∪(∁U B );(2)若A ∩B =∅,求实数a 的取值范围. 解析:(1)∵a =3,∴A ={x |-1≤x ≤5}. 由x 2-5x +4≥0,得x ≤1,或x ≥4, 故B ={x |x ≤1,或x ≥4}.∴A ∩B ={x |-1≤x ≤1或4≤x ≤5}. A ∪(∁U B )={x |-1≤x ≤5}∪{x |1<x <4} ={x |-1≤x ≤5}.(2)∵A =[2-a,2+a ],B =(-∞,1]∪[4,+∞),且A ∩B =∅,∴⎩⎪⎨⎪⎧2-a >1,2+a <4,解得a <1. 21.(12分)已知函数f (x )=2x 2-2ax +b ,f (-1)=-8.对∀x ∈R ,都有f (x )≥f (-1)成立.记集合A ={x |f (x )>0},B ={x ||x -t |≤1}.(1)当t =1时,求(∁R A )∪B ;(2)设命题p :A ∩B =∅,若p 为真命题,求实数t 的取值范围. 解析:由题意知(-1,-8)为二次函数的顶点, ∴f (x )=2(x +1)2-8=2(x 2+2x -3).由f (x )>0,即x 2+2x -3>0得x <-3,或x >1, ∴A ={x |x <-3,或x >1}. (1)∵B ={x ||x -1|≤1}={x |0≤x ≤2}. ∴(∁R A )∪B ={x |-3≤x ≤1}∪{x |0≤x ≤2} ={x |-3≤x ≤2}.(2)由题意知,B ={x |t -1≤x ≤t +1},且A ∩B =∅,∴⎩⎪⎨⎪⎧ t -1≥-3,t +1≤1⇒⎩⎪⎨⎪⎧t ≥-2,t ≤0,∴实数t 的取值范围是[-2,0].22.(12分)已知全集U =R ,非空集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -2x -3a -1<0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -a 2-2x -a <0.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解析:(1)当a =12时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 2<x <52, B =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12<x <94. ∁U B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤12,或x ≥94. (∁UB )∩A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 94≤x <52. (2)若q 是p 的必要条件, 即p ⇒q ,可知A ⊆B ,由a 2+2>a ,得B ={x |a <x <a 2+2},当3a +1>2,即a >13时,A ={x |2<x <3a +1},∴⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2}.∴⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13;综上,a ∈⎣⎢⎡⎦⎥⎤-12,3-52.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学数学,上数学培优网!
1
2013届数学培优网高三艺考生数学训练题

集合
1、若全集为实数集R,集合A=12{|log(21)0},RxxCA则=

A.1(,)2 B.(1,) C.1[0,][1,)2 D.
1
(,][1,)2

2、若2(1)24,Axxx则AZ的元素个数为___.
3、已知集合M={1,2,3,4,5},N={2,4,6,8,10},则M∩N=
4、已知集合2|320,|log42xAxxxBx,则AB( )

A. 1,2 B. 2,1,2 C.2,2 D.2
5、已知集合
12012A,,,,,123B,,,
234C,,,
,则ABC()

A.12, B.123,, C.1234,,, D.1201234,,,,,,

6、满足M1234,,,,aaaa且12312,,,Maaaaa的集合M的个数是( )
A.1 B.2 C.3 D.4

7、(理)已知集合1,log|3xxyyA,1,)21(|xyyBx,则BA ( )
A.  B.(0,1) C. (,211) D. (0,21)
(文)设集合1|3,|04xAxxBxx,则AB= ( )

A. B.3,4 C.2,1 D. 4,

8、【2013·河北正定中学】已知集合122|,|23,AxyxByyxxxR,则
AB
( )

A. B.R C.0, D.2,

9、已知集合{1,2,3,4,5}A,{(,),,}BxyxAyAxyA;则B中所含元素的个数为
()A3 ()B6 ()C ()D

1、D 2、0 3、{2,4} 4、A 5、C 6、B 7、(理)D (文)B 8、D 9、D

相关文档
最新文档