八皇后问题

合集下载

八皇后问题(经典算法-回溯法)

八皇后问题(经典算法-回溯法)

⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。

问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。

即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。

可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。

思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。

当到达第8⾏时,说明⼋个皇后安置完毕。

代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。

八皇后问题详细的解法

八皇后问题详细的解法

若无法放下皇后则回到上一行, 即回溯
当n行的皇后都已确定后,我们 就找到了一种方案
check2 (int a[ ],int n)
queen21(例) 1 b加约束的枚举算法{//i多nt次i; 被调用,只是一重循环
{int a[9]; for (a[1]=1;a[1]<=8;a[1]++) for (a[2]=1;a[2]<=8;a[2]++)
八皇后问题
1
1八皇后问题背景 2盲目的枚举算法 3加约束的枚举算法 4回溯法及基本思想 5 回溯法应用 6八皇后问题的递归回溯算法 7八皇后问题的非递归回溯算法
2
【背景】 八皇后问题是一个以国际象棋为背
景的问题: 如何能够在 8×8 的国际象棋棋盘上
放置八个皇后,使得任何一个皇后都 无法直接吃掉其他的皇后?为了达到 此目的,任两个皇后都不能处于同一 条横行、纵行或斜线上。
for(a[8]=1;a[8]<=8;a[8]++) 此算法可读性很好,
{if (check(a,8)==0)continue; 体现了“回溯”。但
else for(i=1;i<=8;i+nt(a[i]); }
题,而不能解决任意
}}}}}}}
的n皇后问题。
18
2 回溯法应用-算法说明
按什么顺序去搜? 目标是没有漏网之鱼,尽量速度快。
5
2 【问题设计】盲目的枚举算法
a 盲目的枚举算法
通过8重循环模拟搜索空间中的88个状态;
按枚举思想,以DFS的方式,从第1个皇后在第1列开 始搜索,枚举出所有的“解状态”:
从中找出满足约束条件的“答案状态”。

八皇后问题

八皇后问题

二.问题分析
• 显然,每一行可以而且必须放一个皇后,所以n皇后问题
的解可以用一个n元向量X=(x1,x2,.....xn)表示,其中, 1≤ i≤ n且1≤ xi≤ n,即第n个皇后放在第i行第xi列上。 由于两个皇后不能放在同一列上,所以,解向量X必须满 足的约束条件为:xi≠ xj; • 若两个皇后的摆放位置分别是(i,xi)和(j,xj),在棋盘 上斜率为-1的斜线上,满足条件i-j=xi-xj;在棋盘上斜率为1 的斜线上,满足条件i+j=xi+xj;
else {
x[k]=0;//重置x[k],回溯 k=k-1;
}
} }
void main() { int n; printf("输入皇后个数n:\n"); scanf("%d",&n); queue(n); }
ห้องสมุดไป่ตู้
• for(i=1;i<=n;i++)
x[i]=0; k=1; while(k>=1) { x[k]=x[k]+1; //在下一列放置第k个皇后 while(x[k]<=n&&!place(k)) x[k]=x[k]+1;//搜索下一列 if(x[k]<=n&&k==n)//得到一个输出 { for(i=1;i<=n;i++) printf("%d ",x[i]); printf("\n"); //return;//若return则只求出其中一种解,若不return则可以继 续回溯,求出全部的可能的解 } else if(x[k]<=n&&k<n) k=k+1;//放置下一个皇后

八皇后问题

八皇后问题

八皇后问题编辑八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。

该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

高斯认为有76种方案。

1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。

计算机发明后,有多种方法可以解决此问题。

八皇后问题最早是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出。

之后陆续有数学家对其进行研究,其中包括高斯和康托,并且将其推广为更一般的n皇后摆放问题。

八皇后问题的第一个解是在1850年由弗朗兹·诺克给出的。

诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。

1874年,S.冈德尔提出了一个通过行列式来求解的方法,这个方法后来又被J.W.L.格莱舍加以改进。

艾兹格·迪杰斯特拉在1972年用这个问题为例来说明他所谓结构性编程的能力。

八皇后问题在1990年代初期的著名电子游戏第七访客和NDS平台的著名电子游戏雷顿教授与不可思议的小镇中都有出现。

2名词解释算法介绍八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。

八皇后问题可以推广为更一般的n 皇后摆放问题:这时棋盘的大小变为n ×n ,而皇后个数也变成n 。

当且仅当 n = 1 或 n ≥ 4时问题有解。

C 语言1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 intn=8;intx[9];intnum = 0;//解的个数//判断第k 个皇后能否放在第x[k]列boolPlace(intk){inti = 1;while ( i < k){if ( x[i]==x[k] || (abs (x[i]-x[k]) ==abs (i-k)) )returnfalse ;i++;}returntrue ;}void nQueens(intn){x[0] = x[1] =0;intk=1;while (k > 0){x[k]+=1;//转到下一行while (x[k]<=n && Place(k)==false ){//如果无解,最后一个皇后就会安排到格子外面去 x[k]+=1;}if (x[k]<=n){//第k 个皇后仍被放置在格子内,有解if (k==n){num++;cout << num <<":\t";for (inti=1; i<=n; i++){28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 cout << x[i] <<"\t";}cout << endl;}else {k++;x[k]=0;//转到下一行}}else //第k 个皇后已经被放置到格子外了,没解,回溯k--;//回溯}}int_tmain(intargc, _TCHAR* argv[]){nQueens(n);getchar ();return 0;}Java 算法1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 publicclass Queen {// 同栏是否有皇后,1表示有privateint [] column;// 右上至左下是否有皇后privateint [] rup;// 左上至右下是否有皇后privateint [] lup;// 解答privateint [] queen;// 解答编号privateint num;public Queen() {column =newint [8+1];rup =newint [2*8+1];lup =newint [2*8+1];for (int i =1; i <=8; i++)column[i] =1;2223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 for(int i =1; i <=2*8; i++)rup[i] = lup[i] =1;queen =newint[8+1];}publicvoid backtrack(int i) {if(i >8) {showAnswer();}else{for(int j =1; j <=8; j++) {if(column[j] ==1&&rup[i+j] ==1&&lup[i-j+8] ==1) {queen[i] = j;// 设定为占用column[j] = rup[i+j] = lup[i-j+8] =0; backtrack(i+1);column[j] = rup[i+j] = lup[i-j+8] =1; }}}}protectedvoid showAnswer() {num++;System.out.println("\n解答 "+ num);for(int y =1; y <=8; y++) {for(int x =1; x <=8; x++) {if(queen[y] == x) {System.out.print(" Q");}else{System.out.print(" .");}}System.out.println();}}publicstaticvoid main(String[] args) {Queen queen =new Queen();queen.backtrack(1);66 67 }}Erlang 算法-module(queen).-export([printf/0,attack_range/2]).-define(MaxQueen, 4).%寻找字符串所有可能的排列%perms([]) ->%[[]];%perms(L) ->% [[H | T] || H <- L, T <-perms(L -- [H])].perms([]) ->[[]];perms(L)->[[H | T] || H <- L, T <- perms(L -- [H]),attack_range(H,T) == []].printf() ->L =lists:seq(1, ?MaxQueen),io:format("~p~n",[?MaxQueen]),perms(L).%检测出第一行的数字攻击到之后各行哪些数字%left 向下行的左侧检测%right 向下行的右侧检测attack_range(Queen,List) ->attack_range(Queen,left, List) ++ attack_range(Queen,right, List).attack_range(_, _, [])->[];attack_range(Queen, left, [H | _]) whenQueen - 1 =:= H ->[H];attack_range(Queen,right, [H | _]) when Queen + 1 =:= H->[H];attack_range(Queen, left, [_ | T])->attack_range(Queen - 1, left,T);attack_range(Queen, right, [_ | T])->attack_range(Queen + 1, right, T).C 语言算法C 代码头文件1 2 3 4 5 6 7 8 9 10 11 //eigqueprob.h#include#define N 8 /* N 表示皇后的个数 *//* 用来定义答案的结构体*/typedefstruct {intline;/* 答案的行号 */introw;/* 答案的列号 */}ANSWER_TYPE;/* 用来定义某个位置是否被占用 */12 13 14 15 16 17 18 19 20 typedefenum {notoccued = 0,/* 没被占用 */occued = 1/* 被占用 */}IFOCCUED; /* 该列是否已经有其他皇后占用 */IFOCCUED rowoccu[N];/* 左上-右下对角位置已经有其他皇后占用 */IFOCCUED LeftTop_RightDown[2*N-1];/* 右上-左下对角位置已经有其他皇后占用*/IFOCCUED RightTop_LefttDown[2*N-1];/* 最后的答案记录 */ANSWER_TYPE answer[N];主程序1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 #include "eigqueprob.h"/* 寻找下一行占用的位置 */void nextline(intLineIndex){static asnnum = 0;/* 统计答案的个数 */intRowIndex = 0;/* 列索引 */intPrintIndex = 0;/* 按列开始遍历 */for (RowIndex=0;RowIndex{/* 如果列和两个对角线上都没有被占用的话,则占用该位置 */if ((notoccued == rowoccu[RowIndex])\&&(notoccued == LeftTop_RightDown[LineIndex-RowIndex+N-1])\&&(notoccued == RightTop_LefttDown[LineIndex+RowIndex])){/* 标记已占用 */rowoccu[RowIndex] = occued;LeftTop_RightDown[LineIndex-RowIndex+N-1] = occued;RightTop_LefttDown[LineIndex+RowIndex] = occued;/* 标记被占用的行、列号 */answer[LineIndex].line = LineIndex;answer[LineIndex].row = RowIndex;/* 如果不是最后一行,继续找下一行可以占用的位置 */if ((N-1) > LineIndex ){nextline(LineIndex+1);}/* 如果已经到了最后一行,输出结果 */else{asnnum++;printf ("\nThe %dth answer is :",asnnum);for (PrintIndex=0;PrintIndex{343536373839404142434445464748495051525354 printf("(%d,%d) ",answer[PrintIndex].line+1,answer[PrintIndex].row+1}/* 每10个答案一组,与其他组隔两行 */if((asnnum % 10) == 0)printf("\n\n");}/* 清空占用标志,寻找下一组解 */rowoccu[RowIndex] = notoccued;LeftTop_RightDown[LineIndex-RowIndex+N-1] = notoccued;RightTop_LefttDown[LineIndex+RowIndex] = notoccued;}}}main(){inti = 0;/* 调用求解函数*/nextline(i);/* 保持屏幕结果*/getchar();}C语言实现图形实现对于八皇后问题的实现,如果结合动态的图形演示,则可以使算法的描述更形象、更生动,使教学能产生良好的效果。

八皇后以及N皇后问题分析

八皇后以及N皇后问题分析

⼋皇后以及N皇后问题分析⼋皇后是⼀个经典问题,在8*8的棋盘上放置8个皇后,每⼀⾏不能互相攻击。

因此拓展出 N皇后问题。

下⾯慢慢了解解决这些问题的⽅法:回溯法:回溯算法也叫试探法,它是⼀种系统地搜索问题的解的⽅法。

回溯算法的基本思想是:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。

在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满⾜某种要求的可能或最优的情况,从⽽得到整个问题的解。

回溯算法就是解决这种问题的“通⽤算法”,有“万能算法”之称。

N皇后问题在N增⼤时就是这样⼀个解空间很⼤的问题,所以⽐较适合⽤这种⽅法求解。

这也是N皇后问题的传统解法,很经典。

算法描述:1. 算法开始,清空棋盘。

当前⾏设为第⼀⾏,当前列设为第⼀列。

2. 在当前⾏,当前列的判断放置皇后是否安全,若不安全,则跳到第四步。

3. 在当前位置上满⾜条件的情况: 在当前位置放⼀个皇后,若当前⾏是最后⼀⾏,记录⼀个解; 若当前⾏不是最后⼀⾏,当前⾏设为下⼀⾏,当前列设为当前⾏的第⼀个待测位置; 若当前⾏是最后⼀⾏,当前列不是最后⼀列,当前列设为下⼀列; 若当前⾏是最后⼀⾏,当前列是最后⼀列,回溯,即清空当前⾏以及以下各⾏的棋盘,然后当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置; 以上返回第⼆步。

4.在当前位置上不满⾜条件: 若当前列不是最后⼀列,当前列设为下⼀列,返回到第⼆步; 若当前列是最后⼀列,回溯,即,若当前⾏已经是第⼀⾏了,算法退出,否则,清空当前⾏以及以下各⾏的棋盘,然后,当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置,返回第⼆步。

如何判断是否安全:把棋盘存储为⼀个N维数组a[N],数组中第i个元素的值代表第i⾏的皇后位置,这样便可以把问题的空间规模压缩为⼀维O(N),在判断是否冲突时也很简单, ⾸先每⾏只有⼀个皇后,且在数组中只占据⼀个元素的位置,⾏冲突就不存在了, 其次是列冲突,判断⼀下是否有a[i]与当前要放置皇后的列j相等即可。

八皇后问题有多少解

八皇后问题有多少解

八皇后问题有多少解八皇后问题有92解。

皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。

如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。

对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,‘即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。

已经知道8皇后问题一共有92组解(即92个不同的皇后串)。

给出一个数b,要求输出第b个串。

串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

//输入数据//第1行是测试数据的组数n,后面跟着n行输入。

每组测试数据占1行,包括一个正整数b(1 <= b <= 92)//输出要求//n行,每行输出对应一个输入。

输出应是一个正整数,是对应于b 的皇后串//输入样例//2//1//92//输出样例//15863724//84136275解题思路一因为要求出92种不同摆放方法中的任意一种,所以我们不妨把92种不同的摆放方法一次性求出来,存放在一个数组里。

为求解这道题我们需要有一个矩阵仿真棋盘,每次试放一个棋子时只能放在尚未被控制的格子上,一旦放置了一个新棋子,就在它所能控制的所有位置上设置标记,如此下去把八个棋子放好。

当完成一种摆放时,就要尝试下一种。

若要按照字典序将可行的摆放方法记录下来,就要按照一定的顺序进行尝试。

也就是将第一个棋子按照从小到大的顺序尝试;对于第一个棋子的每一个位置,将第二个棋子从可行的位置从小到大的顺序尝试;在第一第二个棋子固定的情况下,将第三个棋子从可行的位置从小到大的顺序尝试;依次类推。

首先,我们有一个8*8的矩阵仿真棋盘标识当前已经摆放好的棋子所控制的区域。

用一个有92行每行8个元素的二维数组记录可行的摆放方法。

用一个递归程序来实现尝试摆放的过程。

基本思想是假设我们将第一个棋子摆好,并设置了它所控制的区域,则这个问题变成了一个7皇后问题,用与8皇后同样的方法可以获得问题的解。

八皇后问题的解决方案

八皇后问题的解决方案

算法总结
3
解决八皇后问题常用算法
3.1
枚举法解决八皇后问题
3.2
非递归回溯法解决八皇后问题
3.3
递归回溯法解决八皇后问题
3.0
八皇后问题约束条件
a( i ) 1 2 3 4 5 6 7 8 a( 1) 2 0 -1 3 -2 4 -3 5 -4 6 -5 7 -6 8 -7 9
a( 2 ) a( 3 ) a( 4) a( 5 ) a( 6) a( 7 ) a( 8)
9 3 10 2 11 1 12 0 13 -1 14 -2
9 5 10 4 11 3 12 2 13 1 14 0 15 -1
9 7 10 6 11 5 12 4 13 3 14 2 15 1 16 0
3.0
八皇后问题约束条件
a( i ) =j 第i行j列放置皇后
判断不同列 a(i)≠a(j) 判断不同对角线 i-a(i)≠j-a(j) 判断不同反对角线 i+a(i)≠j+a(j)
取下一个………………
取下一个q (1)
用语言编程
For q1 = 1 To 8 For q2 = 1 To 8 For q3 = 1 To 8 For q4 = 1 To 8 For q5 = 1 To 8 For q6 = 1 To 8 For q7 = 1 To 8 For q8 = 1 To 8 q(q1) = q1 : q(q2) = q2 : q(q3) = q3 : q(q4) = q4 q(q5) = q5 : q(q6) = q6 : q(q7) = q7 : q(q8) = q8 If putdown(q)=1 Then printstr(q) Next q8 Next q7 Next q6 Next q5 Next q4 Next q3 Next q2 Next q1

皇后问题详细的解法

皇后问题详细的解法

for(a[7]=1;a[7]<=8;a[7]++} )
for(a[8]=1;a[8]<=8;a[8]++){
if (check(a,8)=0) continue;
else
for(i=1;i<=8;i++)print(a[i]);
}
10
}
1 回溯法
有“通用的解题法”之称。 回溯法的基本做法是搜索,或是一种组织得井井有条
枚举得有个顺序,否则 轻则有漏的、重复的; 重则无法循环表示。
6
1.按什么顺序去查找所有的解 a.盲目的枚举算法
void main() {
int x[100]; for (x[1]=1;x[1]<=10;x[1]++) for (x[2]=1;x[2]<=10;x[2]++)
for (x[3]=1;x[3]<=10;x[3]++) for (x[4]=1;x[4]<=10;x[4]++) for (x[5]=1;x[5]<=10;x[5]++) for (x[6]=1;x[6]<=10;x[6]++) for (x[7]=1;x[7]<=10;x[7]++) for (x[8]=1;x[8]<=10;x[8]++) if (check(x)==0) { printf(x); }
}
该如何解决冲突的问题呢?
1.行;我们是按照行枚举的,保证了一行一个皇后; 2.列:判断是否存在x[i]=x[j] 3.对角线:主对角线的i-j与从对角线的i+j存在特殊关系,如 图:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省巢湖学院计算机与信息工程学院课程设计报告课程名称《数据结构》课题名称八皇后问题专业计算机科学与技术班级学号姓名联系方式指导教师2011 年 12 月 25日目录1、数据结构课程设计任务书.............................................................................................. 11.1、题目..................................................................................................................... 11.2、要求..................................................................................................................... 12、总体设计....................................................................................................................... 12.1、功能模块设计 ...................................................................................................... 12.2、所有功能模块的流程图........................................................................................ 23、详细设计....................................................................................................................... 53.1、程序中所采用的数据结构及存储结构的说明........................................................ 53.2、算法的设计思想................................................................................................... 53.3、稀疏矩阵各种运算的性质变换 ............................................................................. 54、调试与测试:................................................................................................................ 64.1、调试方法与步骤: ............................................................................................... 64.2、测试结果的分析与讨论: .................................................................................... 64.3、测试过程中遇到的主要问题及采取的解决措施:................................................. 65、时间复杂度的分析:..................................................................................................... 66、源程序清单和执行结果 ................................................................................................. 67、C程序设计总结 ........................................................................................................ 108、致谢.......................................................................................................................... 109、参考文献................................................................................................................... 101、数据结构课程设计任务书1.1、题目八皇后问题1.2、要求编写程序实现将八个皇后放置在国际象棋棋盘的无冲突的位置上的算法,并给出所有的解。

2、总体设计本课件学生是用循环递归循环来实现的,分别一一测试了每一种摆法,并把它拥有的92种变化表现出来。

在这个程序中,我的主要思路以及思想是这样的:1)解决冲突问题:这个问题包括了行,列,两条对角线;列:规定每一列放一个皇后,不会造成列上的冲突;行:当第I行被某个皇后占领后,则同一行上的所有空格都不能再放皇后,要把以I 为下标的标记置为被占领状态;对角线:对角线有两个方向。

在这我把这两条对角线称为:主对角线和从对角线。

在同一对角线上的所有点(设下标为(i,j)),要么(i+j)是常数,要么(i-j)是常数。

因此,当第I 个皇后占领了第J列后,要同时把以(i+j)、(i-j)为下标的标记置为被占领状态。

2)数据结构的实现而对于数据结构的实现,学生则是着重于:数组a[I]:a [I]表示第I个皇后放置的列;I的范围:1..8;对角线数组:b[j](主对角线),c[j](从对角线),根据程序的运行,去决定主从对角线是否放入皇后;2.1、功能模块设计根据课程设计题目的功能要求,各个功能模块的组成框图如下:Mian()函数QueenRe(Qu een *Q, int y)函数PrintQueen( Queen *t)函数Checker(voi d)函数QueenPic(void)函数SetQueen(Queen *Q)2.2、所有功能模块的流程图皇后模块流程图八皇后递归流程图START行循环遍历完毕列循环遍历当前位置可否放置皇后放置皇后,并且标记下次该列,主次对角线不能放皇后回朔 重置 YN列遍历完毕输出图形EndNYNY3、详细设计模块功能说明:如函数功能、入口及出口参数说明,函数调用关系描述等;皇后模块算法:画皇后图象,然后存储到缓冲区八皇后摆放方法模块:八皇后的递归算法初始化模块:初始化3.1、程序中所采用的数据结构及存储结构的说明数据结构的实现:数组a[i]:a [i]表示第i个皇后放置的列;i的范围:1-8;对角线数组:b[j](主对角线),c[j](从对角线),根据程序的运行,去决定主从对角线是否放入皇后;然后进行数据的初始化。

从n列开始摆放第n个皇后(因为这样便可以符合每一竖列一个皇后的要求),先测试当前位置(n,m)是否等于0(未被占领):如果是,摆放第n个皇后,并宣布占领(切记要横列竖列斜列一起来),接着进行递归;如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯。

3.2、算法的设计思想本程序通过对子函数void qu(int i)的调用,将八皇后的问题关键通过数据结构的思想予以了实现。

虽然题目以及演算看起来都比较复杂,繁琐,但在实际中,只要当一只皇后放入棋盘后,在横与列、斜线上没有另外一只皇后与其冲突,再对皇后的定位进行相关的判断。

即可完成。

如果在这个程序中,我们运用的是非递归的思想,那么将大量使用if等语句,并通过不断的判断,去推出答案,而且这种非递归的思想,大大的增加了程序的时间复杂度。

如果我们使用了数据结构中的算法后,那么程序的时间复杂度,以及相关的代码简化都能取得不错的改进。

这个程序,我运用到了数据结构中的栈、数组,以及树和回溯的方法。

特别是在对于树以及二叉树的学习,更是为八皇后的问题提供了科学的解决方案,通过对树的分析,把八皇后的问题看成了树,而在衍生第一个变化后,上面的第一层八个变化就变成了八个结点,而这八个结点再继续的衍生……,这样比较形象的将八皇后的问题简单化了。

然后再通过回溯法进行设计,回溯法是设计递归过程的一个重要的方法。

它的求解过程实质上是一个先序遍历一棵“状态树“的过程。

在这个程序设计中,它先进行判断,棋盘上是否已经得到一个完整的布局(即棋盘是否已经摆上8个棋子),如果是,则输出布局;如果不是则依次先根遍历满足约束条件的各棵子树,流程即是:判断该子树根的布局是否合法:如果合法的话,则先根遍历该子树;如果不合法的话,则剪去该子树的分支。

3.3、稀疏矩阵各种运算的性质变换4、调试与测试:4.1、调试方法与步骤:4.2、测试结果的分析与讨论:(测试要写出测试用例及每个用例结果的的截图)通过编译连接后,程序基本上把八皇后的92种摆法的都进行了演示;但程序运行中也出现了以下缺点:因为八皇后的表现方法甚多,输出后虽能全部显示,但未能使屏幕停留,把一个一个的将其显示出来,但是这样便使得操作步骤太多,也会造成不必要的麻烦!所以只画出了第一种和最后一种的输出结果,演示如图所示:正确输出结果如下:4.3、测试过程中遇到的主要问题及采取的解决措施:5、时间复杂度的分析:6、源程序清单和执行结果(清单中应有足够的注释)【示例1】#include <stdio.h>#include <stdlib.h>#include <conio.h>#include <dos.h>#include <graphics.h>void *buff1,*buff2;typedef struct{int A[21],B[21],C[21],Y[8];}Queen;void SetQueen(Queen *Q) /* 初始化 */{int i;for(i=0;i<21;i++){Q->A[i]=0;Q->B[i]=0;Q->C[i]=0;}for(i=0; i<8; i++)Q->Y[i]=-1;}void QueenPic(void) /* 画皇后图象,然后存储到缓冲区 */ {int size,polypoints1[10]={9,1,11,1,20,20,1,20,9,1},polypoints2[10]={29,1,31,1,40,20,21,20,29,1};setfillstyle(SOLID_FILL,LIGHTBLUE); /* 画淡蓝色棋格 */ setcolor(LIGHTBLUE);rectangle(1,1,20,20);floodfill(10,10,LIGHTBLUE);setfillstyle(SOLID_FILL,WHITE); /* 画白色棋格 */setcolor(WHITE);rectangle(21,1,40,20);floodfill(30,10,WHITE);setfillstyle(SOLID_FILL,DARKGRAY);setcolor(YELLOW);drawpoly(5,polypoints1);floodfill(10,10,YELLOW);floodfill(30,10,YELLOW);size=imagesize(1,1,20,20); /* 计算缓冲区大小,然后存储 */ buff1=(void *)malloc(size);buff2=(void *)malloc(size);getimage(1,1,20,20,buff1);getimage(21,1,40,20,buff2);cleardevice();}void Checker(void) /* 画棋盘函数 */{int i,k;for(k=0;k<8;k++)for(i=0;i<8;i++)if(k%2==0&&i%2==0||k%2!=0&&i%2!=0){setfillstyle(SOLID_FILL,LIGHTBLUE);setcolor(LIGHTBLUE);rectangle(i*20,20+k*20,(i+1)*20,20+(k+1)*20);floodfill(i*20+10,20+k*20+10,LIGHTBLUE);}else{setfillstyle(SOLID_FILL,WHITE);setcolor(WHITE);rectangle(i*20,20+k*20,(i+1)*20,20+(k+1)*20);floodfill(i*20+10,20+k*20+10,WHITE);}}void PrintQueen(Queen *t) /* 图形输出函数 */{int k;char str[20];static total=0;total++;setviewport(240,80,400,260,1); /* 设置窗口 */sprintf(str,"NO.%d",total);setcolor(GREEN);settextstyle(0,0,1);outtextxy(0,0,str);Checker();for(k=0;k<8;k++)if(k%2==0&&t->Y[k]%2==0||k%2!=0&&t->Y[k]%2!=0)putimage((t->Y[k])*20,20+k*20,buff1,COPY_PUT);elsegetch();if(getch()==27) exit(0);clearviewport();}void QueenRe(Queen *Q, int y) /* 八皇后的递归算法 */{int x;if(y>7)return;for(x=0;x<8;x++)if(!Q->A[x+7]&&!Q->B[x+y+7]&&!Q->C[x-y+7]) /* 下一棵要遍历的子树由状态数确定 */{Q->Y[y]=x;Q->A[x+7]=1;Q->B[x+y+7]=1;Q->C[x-y+7]=1;if(y==7)PrintQueen(Q);QueenRe(Q,y+1); /* 进入下一层递归 */Q->A[x+7]=0;Q->B[x+y+7]=0;Q->C[x-y+7]=0;}}void main(void){Queen Q;int gdriver=DETECT,gmode;initgraph(&gdriver,&gmode,"D://Win-TC");SetQueen(&Q);setcolor(YELLOW);QueenPic();cleardevice();setcolor(LIGHTGREEN);settextstyle(0,0,3);outtextxy(180,10,"Eight Queens");setcolor(WHITE);settextstyle(0,0,1);outtextxy(250,400,"2009.11.8 3:30pm");QueenRe(&Q,0);getch();closegraph();}.....第927、C程序设计总结《数据结构》是计算机专业很重要的一门课程,也是必须要熟练掌握的课程,这次的课程设计对我的数据结构知识进行了一次全面的综合训练,加深了对数据结构基本概念和基本知识的理解,巩固了课堂上学的知识,掌握了数据结构的一些基本方法,深刻理解了算法,锻炼了自己分析问题解决问题的能力。

相关文档
最新文档