中考复习图形的认识与三角形一

合集下载

中考数学复习第4章图形的认识与三角形第15讲等腰三角形与直角三角形课件

中考数学复习第4章图形的认识与三角形第15讲等腰三角形与直角三角形课件
1 为圆心,大于 2 AC的长为半径画弧,两弧相交于点M,N,作直线MN,
交BC于点D,连接AD,则∠BAD的度数为( A ) A.65° B.60° C.55° D.45°
A 由作图知,MN是AC的垂直平分线,∴∠DAC=∠C=30°.又 ∵∠BAC=180°-∠B-∠C=180°-55°-30°=95°,∴∠BAD= ∠BAC-∠DAC=95°-30°=65°.
1 ∴∠CDE=∠CED= 2
∠BCD=30°.
∴∠DBC=∠DEC. ∴DB=DE(等角对等边).
变式运用► [2017·蓬江区质检]如图,在△ABC中,AB=AC,点D,E, F分别在AB,BC,AC边上,且BE=CF,BD=CE. (1)求证:△DEF是等腰三角形; (2)当∠A=40°时,求∠DEF的度数. 解:(1)证明:∵AB=AC, ∴∠ABC=∠ACB. 在△DBE和△ECF中,
第四章
图形的认识与三角形
第 15讲
等腰三角形与直角三角形
考点梳理过关
考点1 等腰三角形的性质及判定 6年1考 等腰三角形的两腰①相等(定义赋予) 等腰三角形的两个底角相等,即“②等边 对等角” 性质
提示►(1)在一个三角形中, 等腰三角形顶角的平分线、底边上的中线、 如果一个角的平分线与该 底边上的高相互重合,即“③三线合一” 角对边上的中线重合,那 么这个三角形是等腰三角 形;(2)在一个三角形中, 等腰三角形是轴对称图形,有④一条对称 如果一个角的平分线与该 轴 角对边上的高重合,那么 有两⑤边相等的三角形是等腰三角形(定义这个三角形是等腰三角形 赋予) 有两个⑥角相等的三角形是等腰三角形, 即“⑦等角对等边”
判定
考点2
等边三角形的性质及判定 6年1考
考点3

山东潍坊市2018年中考数学复习 第4章 图形的初步认识与三角形 第14讲 图形的初步认识

山东潍坊市2018年中考数学复习 第4章 图形的初步认识与三角形 第14讲 图形的初步认识

六年真题全练
命题点1 角的运算
通过近六年潍坊市的中考题可以看出角的运算不是潍坊中考命 题的重点,一般情况下不会单独出题,多数情况下是在做题的 过程中用到角的运算. 1.[2016·潍坊,20(2),3分]链接第26讲六年真题全练第2 题.
命题点2 平行线的性质与判定
通过近六年潍坊市的中考题可以看出平行线的性质与判定是潍坊 市中考命题的重点,一般情况下不会单独出题,经常是在做题的 过程中用到平行线的性质和判定. 2.[2017·潍坊,5,3分]如图,∠BCD=90°,AB∥DE,则∠α 与∠β 满足( B )
第四章 图形的初步认识与三角形 第14讲 图形的初步认识
考点梳理过关
考点1 线
线段 线段有① 两 个端点;两点之间,② 线段 最短
直线
把线段向两个方向无限延伸,就得到直线,直线有③ 端点;经过两点,有且只有④ 一 条直线
0

射线
将线段向一个方向无限延伸就得到射线,射线有⑤ 点

个端
(1)概念:在同一平面内两条⑥ 不相交 的直线叫做平行线;
技法点拨►本题主要考查平行线的性质.判断“三线八角”时 关键是“截线”,有平行线时要联想同位角、内错角和同旁内 角.涉及的相关问题有: 如图,若AB∥CD,试探究∠A,∠C,∠AEC之间的关系.
变式运用►1.[2017·凉山中考]如图,AB∥CD,则下列式子一定 成立的是( D)
A.∠1=∠3
B.∠2=∠3
公理 公认的真命题称为公理
经过证明并且作为推理依据的真命题称为定理.如果一个定理 定理 的逆命题是真命题,那么这个逆命题就叫做原定理的逆定
理.任何命题都有逆命题,但一个定理不一定有逆定理
证明
推理的过程,叫做证明.用反证法证明命题的第一步是⑧ 设命题的结论不成立

全国2020年中考数学试题精选50题图形的初步认识与三角形含解析

全国2020年中考数学试题精选50题图形的初步认识与三角形含解析

2020年全国中考数学试题精选50题:图形的初步认识与三角形一、单选题1.(2020·玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A. 等腰直角三角形B. 等腰三角形 C. 直角三角形 D. 等边三角形2.(2020·玉林)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A. 一种B. 两种 C. 三种 D. 四种3.(2020·玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是()A. ②→③→①→④B. ②→①→③→④C . ①→③→④→② D. ①→③→②→④4.(2020·河池)如图,在中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A. 5B. 6C. 4D. 55.(2020·河池)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A. B. C.D.6.(2020·河池)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A. B.C.D.7.(2020·河池)如图,AB是O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若BF=FE=2,DC=1,则AC的长是()A. B.C.D.8.(2020·铁岭)一个零件的形状如图所示,,则的度数是()A. 70°B. 80°C. 90°D. 100°9.(2020·铁岭)如图,矩形的顶点在反比例函数的图象上,点和点在边上,,连接轴,则的值为()A. B.3 C. 4D.10.(2020·盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是尺.根据题意,可列方程为()A. B. C.D.11.(2020·盘锦)如图,在中,,,以为直径的⊙O交于点,点为线段上的一点,,连接并延长交的延长线于点,连接交⊙O于点,若,则的长是()A. B.C.D.12.(2020·锦州)如图,在菱形中,P是对角线上一动点,过点P作于点E.于点F.若菱形的周长为20,面积为24,则的值为()A. 4B.C.6 D.13.(2020·锦州)如图,在中,,,平分,则的度数是()A. B.C.D.14.(2020·丹东)如图,在四边形中,,,,,分别以和为圆心,以大于的长为半径作弧,两弧相交于点和,直线与延长线交于点,连接,则的内切圆半径是()A. 4B.C. 2D.15.(2020·丹东)如图,是的角平分线,过点作交延长线于点,若,,则的度数为()C. 125°D. 135°16.(2020·朝阳)如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为()A. -12B. -42 C. 42D. -2117.(2020·朝阳)如图,四边形是矩形,点D是BC边上的动点(点D与点B、点C不重合),则的值为()A. 1B.C. 2D. 无法确定18.(2020·雅安)如图,内接于圆,,过点C的切线交的延长线于点.则()A. B.C.D.19.(2020·雅安)如图,在中,,若,则的长为()C.D.20.(2020·绵阳)下列四个图形中,不能作为正方体的展开图的是()A. B. C.D.21.(2020·绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A. 16°B. 28°C. 44°D. 45°22.(2020·绵阳)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A. 1B. 2C. 3D. 423.(2020·眉山)如图,四边形的外接圆为⊙O,,,,则的度数为()A. B.C.D.24.(2020·眉山)一副三角板如图所示摆放,则与的数量关系为()A. B. C.D.25.(2020·凉山州)如图,等边三角形ABC和正方形ADEF都内接于,则()A. B.C.D.26.(2020·凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段,则线段BD的长为()A. 10cmB. 8cmC. 8cm或10cm D. 2cm或4cm27.(2020·淄博)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A. AC=DEB. ∠BAD=∠CAE C. AB=AE D. ∠ABC=∠AED28.(2020·淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A. 12B.24 C. 36 D. 48 29.(2020·淄博)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()A. 36B.48 C.49 D. 64 30.(2020·淄博)如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A. 30°B.35° C. 40°D. 45°二、填空题31.(2020·徐州)在中,若,,则的面积的最大值为________.32.(2020·徐州)如图,在中,,,.若以所在直线为轴,把旋转一周,得到一个圆锥,则这个圆锥的侧面积等于________.33.(2020·徐州)如图,在中,,、、分别为、、的中点,若,则________.34.(2020·徐州)如图,,在上截取.过点作,交于点,以点为圆心,为半径画弧,交于点;过点作,交于点,以点为圆心,为半径画弧,交于点;按此规律,所得线段的长等于________.35.(2020·河池)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是________.36.(2020·铁岭)如图,以为边,在的同侧分别作正五边形和等边,连接,则的度数是________.37.(2020·铁岭)如图,在中,,以为圆心,以适当的长为半径作弧,交于点,交于点,分别以为圆心,以大于的长为半径作弧,两弧在的内部相交于点,作射线,交于点,点在边上,,连接,则的周长为________.38.(2020·铁岭)一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为________ .39.(2020·盘锦)如图,直线,的顶点和分别落在直线和上,若,,则的度数是________.40.(2020·盘锦)如图,菱形的边长为4,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,直线交于点,连接,则的长为________.三、综合题41.(2020·徐州)如图,,,. ,与交于点.(1)求证:;(2)求的度数.42.(2020·玉林)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.43.(2020·玉林)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.44.(2020·河池)如图(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.45.(2020·铁岭)在等腰和等腰中,,,将绕点逆时针旋转,连接,点为线段的中点,连接.(1)如图1,当点旋转到边上时,请直接写出线段与的位置关系和数量关系;(2)如图2,当点旋转到边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由.(3)若,在绕点逆时针旋转的过程中,当时,请直接写出线段的长.46.(2020·铁岭)如图,四边形内接于是直径,,连接,过点的直线与的延长线相交于点,且.(1)求证:直线是的切线;(2)若,,求的长.47.(2020·盘锦)如图,是的直径,是的弦,交于点,连接,过点作,垂足为,.(1)求证:;(2)点在的延长线上,连接.①求证:与相切;②当时,直接写出的长.48.(2020·盘锦)如图,两点的坐标分别为,将线段绕点逆时针旋转90°得到线段,过点作,垂足为,反比例函数的图象经过点.(1)直接写出点的坐标,并求反比例函数的解析式;(2)点在反比例函数的图象上,当的面积为3时,求点的坐标.49.(2020·锦州)已知和都是等腰直角三角形,.(1)如图1:连,求证:;(2)若将绕点O顺时针旋转,①如图2,当点N恰好在边上时,求证:;②当点在同一条直线上时,若,请直接写出线段的长.50.(2020·阜新)如图,正方形和正方形(其中),的延长线与直线交于点H.(1)如图1,当点G在上时,求证:,;(2)将正方形绕点C旋转一周.①如图2,当点E在直线右侧时,求证:;②当时,若,,请直接写出线段的长答案解析部分一、单选题1.【答案】 C【解析】【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.故答案为:C.【分析】如图,过点C作CD∥AE交AB于点D,可得∠DCA=∠EAC=35°,根据AE∥BF,可得CD∥BF,可得∠BCD=∠CBF=55°,进而得△ABC是直角三角形.2.【答案】 B【解析】【解答】解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y≤120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,当长60cm的木条与100cm的一边对应,则,解得:x=45,y=72;当长60cm的木条与120cm的一边对应,则,解得:x=37.5,y=50.答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段. 故答案为:B.【分析】分类讨论:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的一根上截下的两段长分别为xcm,ycm(x+y≤120),易得长60cm的木条不能与75cm的一边对应,所以当长60cm的木条与100cm的一边对应时有;当长60cm的木条与120cm的一边对应时有,然后分别利用比例的性质计算出两种情况下得x和y的值.3.【答案】 A【解析】【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故答案为:A.【分析】证出四边形ADCF是平行四边形,得出CF AD.即CF BD,则四边形DBCF是平行四边形,得出DF BC,即可得出结论.4.【答案】 C【解析】【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,,即,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,.故答案为:C.【分析】利用平行四边形的性质,可证得AB=CD,AD=BC,AB∥CD,再利用角平分线的定义及平行线的性质可以推出∠BEC=∠BCE,利用等角对等边,就可求出BC的长,即可得到AD的长;再利用勾股定理的逆定理证明△ADE是直角三角形,由此可证△DEC是直角三角形,利用勾股定理求出CE的长。

中考数学复习第四章图形的初步认识与三角形第17讲等腰三角形与直角三角形

中考数学复习第四章图形的初步认识与三角形第17讲等腰三角形与直角三角形

12
【思路点拨】 本题考查等腰三角形的性质.根据等腰三角形的性质和三角形 的内角和即可得到结论.
第一部分 教材同步复习
13
1.(2017海南)已知△ABC的三边长分别为4,4,6,在△ABC所在平面
内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样
的直线最多可画__________条. A.3
第一部分 教材同步复习
6
(2)在 Rt△ABC 中,∠ACB=90°,∠A=30°,BC=1,则 AB 边上的中线长为
A.1
B.2
(A )
C.1.5
D. 3
(3)已知直角三角形中 30°角所对的直角边为 2 cm,则斜边的长为
(B )
A.2 cm
B.4 cm
C.6 cm
D.8 cm
第一部分 教材同步复习
周长:c=a+b+c;
周长、 面积
面积:SRt△ABC=12ab=12ch(其中
a,b
为两个直角边,c
为斜边,h
为斜边上
的高)
第一部分 教材同步复习
知识点四 等腰直角三角形的判定与性质
【回顾】
(1)等腰直角三角形的直角边为 2,则斜边的长为
A. 2
B.2 2
C.1
D.2
1 (2)等腰直角三角形的斜边长 2,则它的面积为___2_______.
第一部分 教材同步复习
8
(1)有一个角为⑤___9_0_°_____的三角形是直角三角形;
判 (2)勾股定理逆定理:如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么 定 这个三角形是直角三角形;
(3)一条边的中线等于这条边的一半的三角形是直角三角形;

河北省中考数学系统复习 第四单元 图形的初步认识与三角形 方法技巧训练(一)与角平分线有关的基本模型

河北省中考数学系统复习 第四单元 图形的初步认识与三角形 方法技巧训练(一)与角平分线有关的基本模型
如图5,BO是∠ABC的平分线,过点O作OE⊥AB于点E,过点O作OF⊥BC于点F,则OE=OF,△BEO≌△BFO.
②角平分线的两端过角的顶点取相等的两条线段构造全等三角形
如图6,BO是∠ABC的平分线,在BA,BC上取线段BE=BF,则△BEO≌△BFO.
解题通法:遇到角平分线时,我们通常过角平分线上的一点向两边作垂线或在角平分线的两端取相等的线段构造全等三角形.
与角平分线有关的图形与辅助线
1.角平分线+平行线→等腰三角形
如图4,BD是∠ABC的平分线,点O是BD上一点,OE∥BC交AB于点E,则△BOE是等腰三角形.
解题通法:遇到角平分线及平行线,除了可以得到角度的关系,还可以得到一个等腰三角形.
图4 图5 图6 图7
2.与角平分线有关的辅助线
①过角平分线上的点作角两边的垂线
方法技巧训练(一) 与角平分线有关的基本模型
三角形中角平分线的夹角的计算
类型1 两个内角平分线的夹角
如图1,在△ABC中,∠ABC,∠ACB的平分线BE,CF相交于点G,则∠BGC=90°+ ∠A.
图1 图2 图3
解题通法:三角形两内角的平分线的夹角等于90°与第三个内角的一半的和.
类型2 一个内角平分线和一个外角平分线的夹角
A.10 cmB.28 cmC.20 cmD.18 cm
3.如图,矩形ABCD中,AB=4 cm,BC=8 cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积(B)
A.8 cm2B.10 cm2C.15 cm2D.20 cm2
4.(2018·某某)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=(B)
A.30° B.35° C.45° D.60°

2020年中考数学第一轮复习 第十七讲 三角形与全等三角形 知识点+真题 学生版(后含答案)

2020年中考数学第一轮复习 第十七讲  三角形与全等三角形 知识点+真题 学生版(后含答案)

2020年中考数学第一轮复习教案第三章图形的认识与三角形第十七讲三角形与全等三角形【中考真题考点例析】考点一:三角形三边关系例1 (温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11对应练习1-1(长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8考点二:三角形内角、外角的应用例2 (2019青岛中考)如图,BD 是△ABC 的角平分线,AE⊥ BD ,垂足为F .若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A. 35°B. 40°C. 45°D. 50°对应练习2-1(2019年威海)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上),若∠1=23°,则∠2=°对应练习2-2(2019年枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B. 60°C. 75°D. 85°考点三:三角形全等的判定和性质例3 (2019年山东滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC ,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.1对应练习3-1 (天门)如图,已知△ABC ≌△ADE ,AB 与ED 交于点M ,BC 与ED ,AD 分别交于点F ,N .请写出图中两对全等三角形(△ABC ≌△ADE 除外),并选择其中的一对加以证明.对应练习3-2 (宜宾)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD . 考点四:全等三角形开放性问题例4 (云南)如图,点B 在AE 上,点D 在AC 上,AB=AD .请你添加一个适当的条件,使△ABC ≌△ADE (只能添加一个).(1)你添加的条件是 .(2)添加条件后,请说明△ABC ≌△ADE 的理由.对应练习4-1 (昭通)如图,AF=DC ,BC ∥EF ,只需补充一个条件 ,就得△ABC ≌△DEF .第十七讲 三角形与全等三角形 参考答案【中考真题考点例析】考点一:三角形三边关系例1答案:C 对应练习1-1答案:B 考点二:三角形内角、外角的应用例2答案:C 对应练习2-1答案:68 对应练习2-2 答案:C 考点三:三角形全等的判定和性质MOCD B例3 答案:B 对应练习3-1 答案:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .选择△AEM ≌△ACN ,证明:∵△ADE ≌△ABC ,∴AE=AC ,∠E=∠C ,∠EAD=∠CAB ,∴∠EAM=∠CAN ,∵在△AEM 和△ACN 中,∠E =∠CAE =AC∠EAM =∠CAN∴△AEM ≌△ACN (ASA ).对应练习3-2 答案:证明:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧)公共角A(=∠A ∠)已知AC(= AB )已知C(=∠B ∠ ∴△ABE ≌△ACD (ASA ),∴BE=CD (全等三角形的对应边相等).考点四:全等三角形开放性问题例4 答案:解:(1)∵AB=AD ,∠A=∠A ,∴若利用“AAS ”,可以添加∠C=∠E ,若利用“ASA ”,可以添加∠ABC=∠ADE ,或∠EBC=∠CDE ,若利用“SAS ”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为∠C=∠E (或∠ABC=∠ADE 或∠EBC=∠CDE 或AC=AE 或BE=DC );故答案为:∠C=∠E ;(2)选∠C=∠E 为条件.理由如下:∵在△ABC 和△ADE 中,⎪⎩⎪⎨⎧AD =AB E=∠C ∠A =∠A ∠ ∴△ABC ≌△ADE (AAS ).对应练习4-1 答案:BC=EF ,解析:∵AF=DC ,∴AF+FC=CD+FC ,即AC=DF ,∵BC ∥EF ,∴∠EFC=∠BCF ,∵在△ABC 和△DEF 中,⎪⎩⎪⎨⎧DF =AC BCF=∠EFC ∠BC =EF ∴△ABC ≌△DEF (SAS ).故答案为:BC=EF .【聚焦中考真题】 一、选择题 1.(湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°2.(鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°3.(泉州)在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形4.(宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,45.(衡阳)如图,∠1=100°,∠C=70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°6.(河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远7.(铁岭)如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.(台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确9.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC10.(河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°11.(陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对二、填空题12.(威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF= .13.(黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B= 度.14.(柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .15.(巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)16.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).17.(达州)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013= 度.三、解答题18.(聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.19.(菏泽)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.(临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.(东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.22.(烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF 的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.23.(玉林)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.24.(湛江)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.25.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.26.(十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.28.(内江)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.29.(舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?30.(荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.31.(随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .第十七讲 三角形与全等三角形 参考答案【聚焦中考真题】一、选择题1-5 AADDC 6-10 CCDAB 11 C二、填空题12答案:25°13答案:6014答案:2015答案:CA=FD16答案:∠B=∠C17答案:20152m解:∵A1B 平分∠ABC ,A1C 平分∠ACD ,∴∠A1=21∠A ,∠A2=21∠A1=221∠A ,… ∴∠A2 015=201521∠A=20152m 。

中考数学总复习第四单元图形的初步认识与三角形 特殊三角形课件

中考数学总复习第四单元图形的初步认识与三角形 特殊三角形课件

课前双基巩固
考点四 勾股定理及其逆定理
勾股定理 如果直角三角形两直角边分别为 a,b,斜边为 c,那么
a2+b 2=c 2
勾股定理的 逆定理 如果三角形的三边 a,b,c 满足 a 2+b 2=c 2 ,那么这个三角形是直角三角形
逆 定理
用途 (1)判断某三角形是不是直角三角形 ;(2)证明两条线段垂直 ;(3)解决生活中的实际问题
A.16 cm
B.17 cm
(B)
C.20 cm
D.16 cm 或 20 cm
课前双基巩固
3.下列四组线段中 ,能构成直角三角形的是 ( D )
A.a= 1,b= 2,c= 3
B.a= 2,b= 3,c= 4
C.a= 2,b= 4,c= 5
D.a= 3,b= 4,c= 5
4.如图 18-1,线段 AC 的垂直平分线交线段 AB 于点 D,∠A=50°,则∠BDC= ( B )
形,此时三角形的周长为 3+ 3+ 2= 8.
综上,三角形的周长为 11 或 8.
课前双基巩固
7.如图 18-2 所示,在△ABC 中,AB=AC,BD⊥AC,垂足为 D,∠A
= 40°,则 ∠DBC=
.
[答案 ] 20° [解析 ] ∵在△ABC 中,AB=AC,∠= 70°. 又∵BD⊥AC,∴∠ DBC= 90°-∠ACB= 90°-70°= 20°.
课前双基巩固
例 1 (2)[2018·
成都] 等腰三角形的一个底角为 50°,则它的顶角的度数为 80° .
[ 方法模型] 在等腰三角形中进行边或角的计算时,往往要分类讨论:当等腰三角形的边不确定时,要利用三 边关系确定腰或底;当等腰三角形的角不确定时,要利用三角形的内角和来确定顶角和底角.

2020年中考数学第一轮复习 第十九讲 解直角三角形 知识点+真题

2020年中考数学第一轮复习 第十九讲  解直角三角形 知识点+真题

2020年中考数学第一轮复习教案第三章图形的认识与三角形第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA= ∠A的正切:tanA= ,它们统称为∠A的锐角三角函数注意:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有单位,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< ,cosA< ,tanA>注意:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A()⑵若∠A+∠B=900,则sinA= ,tanA·tanB=三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt∠ABC中,∠C=900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB注意:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角俯角 ⑵坡度坡角:如图:斜坡AB 的垂直度h 和水平宽度l 的比叫做坡度,用i 表示,即i= 坡面与水平面得夹角为 用字母α表示,则i=tanα=hl。

⑶方位角:是指南北方向线与目标方向所成的小于900的水平角 如图:OA 表示 OB 表示 OC 表示OD 表示 (也可称东南方向)3、 利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数学问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点,选取合适的锐角三角函数去解直角三角形 ⑶解出数学问题答案,从而得到实际问题的答案注意:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决【中考真题考点例析】考点一:锐角三角函数的概念例1 (2019年威海)如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 图形的认识与三角形课时18.几何初步及平行线、相交线【知识考点】1.两点确定一条直线,两点之间 最短,即过两点有且只有一条直线。

2. 1周角=_______,1平角=_______,1直角=_______.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与已知直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.9.线段的垂直平分线:性质:线段垂直平分线上的到这条线段的 的距离相等;判定:到线段 的点在线段的垂直平分线上。

10.角的平分线:性质:角平分线上的点到角 相等; 判定:到角 的点在这个角的平分线上。

【中考试题】一.选择题1.(2011年广西桂林)下面四个图形中,∠1=∠2一定成立的是( ).2.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42第5题C B AE DO3.(2011山东日照)如图,已知直线AB ∥CD ,∠C=125°,∠A=45°,那么∠E 的大小为( ) A .70° B .80° C .90° D .100°4.(2011•南通)如图,AB ∥CD ,∠DCE=80°,则∠BEF=( )A 、120°B 、110°C 、100°D 、80°5.(2011山西)如图所示,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB =35°在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是( )A .35°B . 70°C . 110°D . 120°6.(2011重庆綦江)如图,直线a ∥b ,AC 丄AB ,AC 交直线b 于点C ,∠1=65°,则∠2的度数是( )(第2题)图 AB D a b 70° 31°A.65°B.50°C.35°D.25°7.(2010重庆)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( )A.60°B.50°C.45°D.408.(2011•河池)如图,AB∥CD,AC与BD相交于点O,∠A=30°,∠COD=105°.则∠D 的大小是()A、30°B、45°C、65°D、75°9.(2011湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°10.(2011•安顺)如图,己知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C的度数是()A、100°B、110°C、120°D、150°11.(2011•德州)如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A、55°B、60°C、65°D、70°12.(2011泰安)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为()A.25°B.30°C.20°D.35°13.(2011四川泸州)如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A.45° B.55°C.65°D.75°14.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A、32°B、58°C、68°D、60°A BDC甲 乙丙北北A α(第6题图)15.(2011天水)如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是( )A 、30° B 、45° C 、40° D 、50°16.(2011四川雅安)如图,直线l 1,l 2被直线l 3所截,且l 1∥l 2,若∠1=72°,∠2=58°,则∠3=( )A.45°B.50°C.60°D.58°17.(2011福建龙岩)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是( )A .25°B .30°C .35°D .40°18.(2011广东省茂名)如图,已知AB ∥CD ,则图中与∠1互补的角有( )A 、2个B 、3个C 、4个D 、5个19.(2011吉林长春)如图,直线l 1∥l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交直线l 1.l 2于B .C 两点,连接AC .BC .若∠ABC =54°,则∠1的大小为( )A .36°B .54°C .72°D .73°20.(2011襄阳)如图,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是( )A .40°B .60°C .80°D .120°21.(2011湖北孝感)如图,直线AB .CD 交于点O ,O T ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DO T 等于( )A .30°B .45°C .60°D .120°22.(2011湖南怀化)如图,已知直线a ∥b ,∠1=40°,∠2=60°.则∠3等于( )A .100°B .60°C .40°D .20°23.(2011贵州毕节)如图,已知AB ∥CD ,∠E =︒28,∠C =︒52,则∠EAB 的度数是( )A .︒28B .︒52C .︒70D .︒8024.(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A 、7B 、7.5C 、8D 、8.51 2 a c25..下列说法中正确的有 ( )①同位角相等;②过一点有且只有一条直线与已知直线平行;③过一点有且只有一条直线与已知直线垂直;④三条直线两两相交总有三个交点; ⑤若a ∥b ,b ∥c ,则a ∥c .A.1个B.2个C.3个D.二.填空题1.(2010年,3分)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=,则2_____∠=.2.(11永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件_________.(填一个即可)3. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,则∠BCD 度数为____________.4.(2011云南保山)如图,l 1∥l 2,∠1=120°,则∠2= .5.(2011江苏)如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= .6.(2011四川广安)如图所示,直线a ∥b .直线c 与直线a ,b 分别相交于点A 、点B ,AM b ⊥,垂足为点M ,若158∠=︒,则2∠= _________7.(2011•江西)一块直角三角板放在两平行直线上,如图所示,∠1+∠2= 度.8.(2011湖州)如图:CD 平分∠ACB ,DE ∥AC 且∠1=30°,则∠2= 60 度.9.(2011辽宁本溪)如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG⊥FG 于点G ,若∠BEM =50°,则∠CFG = .C E FG ABD10.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE=2,则两平行线AD 与BC 间的距离为 .课时19.三角形的有关概念【知识考点】一、三角形的分类:1.三角形按角分为______________,______________,_____________.2.三角形按边分为_______________,__________________.二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________.三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________.3.三角形三条中位线将三角形分成四个面积相等的全等三角形。

4.角平分线:三角形的角平分线交于一点,这点叫三角形的内心,它到三角形三边的距离 ,内心也是三角形内切圆的圆心。

5.三角形三边的垂直平分线:三角形三边的垂直平分线交于一点,这点叫做三角形的外心,它到三角形三个顶点的距离 ,外心也是三角形外接圆的圆心。

6.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)四、等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______、底边上的________和顶角的_______互相重合(三线合一);3. 有两个角相等的三角形是_________.五、等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是_____,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.六、直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________. 【中考试题】 一.选择题1. (2010年,3分)如图1,在△ABC 中,D 是BC 延长线上一点, ∠B = 40°,∠ACD = 120°,则∠A 等于( )A .60°B .70°A B CD 40° 120° 图1C .80°D .90°2. (2011山东济宁)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或17cm3. (2011四川)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( )A .1013B .1513 C .6013D .75134. (2011浙江省舟山)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )(A )32 (B )33 (C )34 (D )36 5. (2011山东德州13,4分)下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.6. (2011四川南充市)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个二、填空题1. (2011山东滨州)边长为6cm 的等边三角形中,其一边上高的长度为________.2.(2011山东)等腰三角形的周长为14,其一边长为4,那么,它的底边为 .3.等腰ABC △两边的长分别是一元二次方程2560x x -+=的两个解,则这个等腰三角形的周长是 .4. (2011湖南邵阳)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

相关文档
最新文档