有理数运算技巧

合集下载

有理数计算的六个技巧

有理数计算的六个技巧

有理数计算的六个技巧有理数计算是数学中一个重要的部分,掌握一些技巧可以帮助我们更快速、更准确地完成计算。

以下是六个有理数计算的技巧:1. 分母有理化:对于形如$\frac{a}{b}$的有理数,如果b是平方数(例如4、9、16等),则可以将分母进行有理化处理,即将分子和分母都乘以b的平方根。

例如,$\frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8}$。

2. 乘法分配律:对于任意三个有理数a、b和c,有$a \times (b + c) = a\times b + a \times c$。

这个技巧可以用于简化复杂的乘法运算。

3. 提取公因数:对于多个有理数的乘法,如果存在公因数,可以先提取公因数,再进行其他运算。

例如,$2 \times 3 \times 4 = 2 \times (3 \times 4) = 2 \times 12$。

4. 利用绝对值的性质:对于有理数的绝对值,如果知道某个数的范围,可以利用绝对值的性质来简化计算。

例如,如果知道$a < b$,则可以得出$-b< a < b$。

5. 利用等差数列的性质:对于等差数列中的有理数,可以利用等差数列的性质来简化计算。

例如,对于等差数列$a, b, c, d$,有$b = \frac{a +c}{2}$和$d = \frac{a + d}{2}$。

6. 利用近似值:对于一些复杂的计算,如果不需要精确结果,可以利用近似值来快速得到一个接近真实值的结果。

例如,对于$\sqrt{2}$,我们知道$ < \sqrt{2} < $,所以可以取或作为$\sqrt{2}$的近似值。

这些技巧可以帮助我们更快速、更准确地完成有理数计算。

在掌握这些技巧的基础上,通过多做练习题来提高自己的计算能力和熟练度。

有理数的运算技巧

有理数的运算技巧

有理数的运算技巧有理数是指可用整数比值得数,包括整数、分数以及这两者之间的有限小数或循环小数。

有理数具有很多特点和规律,掌握一些运算技巧可以帮助我们更快更准确地进行有理数的运算。

下面将介绍一些常用的有理数运算技巧。

1.整数的加减运算:a)同号相加减:将它们的绝对值相加,结果的符号与原来相同。

b)异号相加减:将绝对值较大的数减去绝对值较小的数,结果的符号与绝对值较大的数相同。

2.分数的运算:a)分数的加减:先找到两个分数的最小公倍数,然后将两个分数的分子乘以最小公倍数除以原分母,再进行相加减即可。

b)分数的乘法:将两个分数的分子乘积作为结果的分子,分母乘积作为结果的分母。

c)分数的除法:将除数分数的分子与被除数分数的分母相乘,除以除数分数的分母与被除数分数的分子的乘积。

3.有理数的混合运算:首先进行混合数的整数部分的加减运算,然后再进行分数部分的运算。

如:31/4+22/5=(3+2)+(1/4+2/5)4.有理数的乘方运算:将有理数的底数按照要求进行相应的运算,然后再求幂。

如:(-2/3)^3=(-2/3)*(-2/3)*(-2/3)5.有理数的开方运算:对于完全平方数的有理数,可以直接提取出有理数的平方根。

对于非完全平方数的有理数,可以先将其化成最简分数形式,再进行开方运算。

6.有理数的逆运算:a)有理数的相反数:改变有理数的符号即可。

如:(-5)的相反数为5b)分数的倒数:将分子与分母互换位置即可。

如:1/4的倒数为4/17.有理数的化简:a)两数的最大公约数:将两数各自分解质因数,然后将公共的质因数相乘,得到的结果即为最大公约数。

b)两数的最小公倍数:将两数各自分解质因数,将各自分解质因数中的若干个质因数按照次数最多的那一组相乘,得到的结果即为最小公倍数。

8.小数的进位和舍位:a)进位:小数的末尾数大于等于5时,前一位数进位。

b)舍位:小数的末尾数小于5时,前一位数舍去(不进位)。

以上是有理数运算的一些常用技巧,通过掌握这些技巧,我们可以更加便捷和准确地进行有理数的运算。

有理数的加法与减法运算技巧

有理数的加法与减法运算技巧

有理数的加法与减法运算技巧一、有理数加法运算技巧1.同号有理数相加:–取相同符号,并保留原有绝对值;–将绝对值相加,结果的绝对值即为两数相加的绝对值,符号与原数相同。

2.异号有理数相加:–取绝对值较大的数的符号;–用较大的绝对值减去较小的绝对值,结果的绝对值为两数相加的绝对值,符号与绝对值较大的数相同。

–任何有理数加零,结果为该有理数本身。

3.加法交换律:–对于任何两个有理数a和b,a + b = b + a。

二、有理数减法运算技巧1.同号有理数相减:–取相同符号,并保留原有绝对值;–将绝对值相减,结果的绝对值即为两数相减的绝对值,符号与原数相同。

2.异号有理数相减:–转换为加法运算,即将被减数取相反数后与减数相加;–按照同号有理数相加的方法进行计算。

–任何有理数减零,结果为该有理数本身。

3.减法交换律:–对于任何两个有理数a和b,a - b = b - a。

4.减法的性质:– a - (b + c) = (a - b) - c;– a - b = a + (-b)。

三、加减法运算技巧1.结合律:–对于任何三个有理数a、b和c,(a + b) + c = a + (b + c)。

2.分配律:–对于任何三个有理数a、b和c,a × (b + c) = a × b + a × c;–对于任何三个有理数a、b和c,(a + b) × c = a × c + b × c。

3.运算顺序:–先算乘除,后算加减;–同一级运算,按照从左到右的顺序进行计算。

4.带符号移项:–将含有未知数的项移到等式的一边,将常数项移到等式的另一边;–移项时,注意改变移项后项的符号。

5.运用括号:–括号前面是加号时,括号内的数不变号;–括号前面是减号时,括号内的数变号。

通过以上知识点的学习与理解,同学们可以掌握有理数加减法的运算技巧,并在实际运算中灵活运用,提高解题速度和正确率。

有理数运算技巧十招

有理数运算技巧十招

2
1 1 2 。 12 12
例 6 计算: 2008 200920092009 2009 200820082008 。 解:原式 2008 2009 100010001 2009 2008 100010001
0。
六、转化 将小数与分数或乘法与除法相互转化。 例 7 计算: 42
2 3 0.25 。 3 4
解:原式 28
3 1 4 4
3 28 4 4
28 3 25 。
七、变序 运用运算律改变运算顺序。

1 6
3 4
2009

3 2009 1 。 3.75 3 0 , 1 4
原式 0 1 1 。
妙用字母解题
在我们学习的过程中,常会遇到一些数据大、关系复杂的计算题,令人望而生畏,无从 着手.这时,如果我们仔细观察数据特点,探究数据规律,巧妙利用字母代替数字,将会收 到化繁为简,化难为易的效果. 例 1 计算
-2-
例 8 计算: 12.5 31
4 0.1 5
解:原式 12.5 0.1 31

4 5

1 31 31。
例 9 计算: 1
3 8 8 7 1 。 5 9 15 8
009 9。
四、组合 将分母相同或易于通分的数结合。 例 4 计算: 5
ห้องสมุดไป่ตู้
5 5 11 5 2 10 12 。 24 9 18 6
-1-
解:原式 12

5 5 5 11 5 2 10 6 24 9 18

有理数的加减乘除的混合运算技巧

有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。

它们的混合运算在解决复杂问题时尤为重要。

下面将介绍有理数的加减乘除的混合运算技巧。

一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。

1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。

1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。

二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。

2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。

2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。

三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。

3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。

3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。

四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。

4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。

4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。

五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。

5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。

5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。

六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。

有理数运算的十种技巧

有理数运算的十种技巧

2 ( 1 一 而 1) = 而 2 0 0

孚: ÷( 1 + 2 + 3 + …+ 5 9 ) : 了 1 ×
=8 8 5 .
说 明 : 形 如 面的 分 数 。 可 以 拆 成 ÷ (
— -) I 的形 式 . , l + 口
二、 巧用饲序法
例 2 计算
解: 设 =
I 、
解 : 设 s = 1 + ( ÷+ 丁 2 ) + ( ÷+ 2 + 3 ) +
(1

即 2 A =2 X4 01 1 .
了 了 了 了 ) 一 +【 丽


4、
,1

+ ‘ 一 丽 丽 ) ’
4 8 4 9、
辽一 一 一
有理数的运算是初 中代数运算 中 的基 础运算 , 它有

‘ . .
A =4 0 1 1 . . . .原 式 = 4 0 1 1 .
定规律 和技 巧. 只要 认 真 分析 和研 究题 目的 内在 特
三、 巧 用 拆 项 法
征, 并根据这些特 征灵活 巧妙 地运 用运算 法则 、 运算 定 律和有针对性地运用 一定 的方法和技巧 , 不但可 以使运
解 : 因 为 ( ÷ + 西 1 一 ÷ 一 ) ÷ = ( ÷ + 去 一 ÷


1、
) ,
嘉) 嘉 9 3 — 1 4 一 l 一 3 ,
所以原式 = 一 ÷一 3 :一 3 ÷
八、 巧 用 添项 法
两式相加得 2 S = 1 + 2 + 3 + 4+… + 4 9 .
解 : 原 式 = } + ( ÷+ 号 ) + ( }+ ÷ + ÷ ) + …

(完整版)初一有理数的运算法则

(完整版)初一有理数的运算法则

一、有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。

有括号时、先算小括号里面的运算,再算中括号,然后算大括号。

在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加例如:+2+3=5 (-2)+(-3)=-52、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零3、减去一个数等于加上这个数的相反数例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=14、异号相减可理解为同号相加例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5 补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。

-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。

4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6 (+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。

有理数运算常用的技巧

有理数运算常用的技巧

有理数运算常用的技巧理数运算是数学中的基本运算之一,它包括加法、减法、乘法、除法等。

在进行理数运算时,掌握一些常用的技巧能够帮助我们更快更准确地计算,提高计算效率。

本文将介绍一些常用的理数运算技巧。

1.加法与减法的技巧:(1)加法交换律:a+b=b+a,即两个数相加的结果与顺序无关。

(2)减法的加法法则:a-b=a+(-b),即减法可以转化为加法计算。

(3)加法结合律:(a+b)+c=a+(b+c),即三个数相加的结果与计算顺序无关。

(4)减法的结合律:(a-b)-c=a-(b+c),即减法可以按顺序进行多次运算。

2.乘法的技巧:(1)乘法交换律:a*b=b*a,即两个数相乘的结果与顺序无关。

(2)乘法结合律:(a*b)*c=a*(b*c),即三个数相乘的结果与计算顺序无关。

(3)0的乘法法则:a*0=0,即任何数乘以0都等于0。

(4)乘法的分配律:a*(b+c)=a*b+a*c,即一个数乘以两个数的和等于这个数分别乘以两个数后的和。

3.除法的技巧:(1)除法的定义:a/b=c,即a除以b等于c。

(2)除法的乘法法则:a/b=a*(1/b),即除法可以转化为乘法计算。

(3)0的除法法则:0/a=0,即0除以任何非零数都等于0。

(4)除法的分配律:(a+b)/c=a/c+b/c,即两个数的和除以一个数等于每个数除以这个数后的和。

4.有理数的比较:(1)相同符号的两个有理数,绝对值越大,值越大。

(2)不同符号的两个有理数,正数大于负数。

(3)当一个有理数与它的绝对值相等的另一个数相比,绝对值大的数更小。

5.分数的运算技巧:(1)相同分母的分数相加减,只需将分子相加减,分母保持不变。

(2)不同分母的分数相加减,需要先找到它们的最小公倍数作为新的分母,然后按比例进行转化。

转化后再按相同分母的分数相加减。

(3)分数相乘,将分子相乘,分母相乘。

(4)分数相除,将除数的倒数作为乘法计算。

以上是常用的理数运算技巧,掌握了这些技巧,我们在进行理数运算时可以更加灵活和高效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数运算技巧
山西省朔州市朔城区四中 贾孝伟
学习目标
能够运用运算律对现有的计算进行简便运算. 学习重点(难点):运算律的灵活运用. 教学过程: 一、学前准备:
有理数的乘法运算法则;(两数相乘,同号得正,异号得负,同零、同1相乘)
?
小学学过的有关的乘法的运算律:(乘法交换律、乘法结合律、乘法分配律) 二、自学指导
计算:____)3()5(____)5()3(=-⨯+=+⨯-; 
____)]3()6[()4(____)3()]6()4[(=-⨯+⨯-=-⨯+⨯-; 
____)3
1()6()21()6(____)]31()21[()6(=-⨯-++⨯-=-++⨯-; 
概括:有理数的乘法仍满足交换率、结合律和乘法分配律. 乘法交换律:两个数相乘,交换因数的位置,积不变. ba ab =
:
乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变. )()(bc a c ab =
乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加. ac ab c b a +=+)(
根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘.
三、例题讲解:
(一)、巧用交换律与结合律
/1、互为倒数的两数结合
例1、-3×(-
5
7
)×(-
3
1
)×
7
4
解:原式=【-3×(-
3
1
)】【(-
5
7
)×
7
4
】=1×(-
5
4
)=-
5
4
2、能互相约分的两数结合
例2、-
2
3
×(-
7
8
)×
4
15
×
5
2
×(-
8
9
)×
15
11
解:原式=(-
2
3
×
5
2
)×【(-
7
8
)×(-
8
9
)】×(
4
15
×
15
11

=-
5
3
×
7
9
×
4
11
=-
140
297
=-2
140
17
#
3、能凑成整数、十、百等两数结合
例3、-125×(-25)×(-5)×2×(-4)×(-8)解:原式=-(125×8)×(25×4)×(5×2)
=-1000×100×10
`
(二)、逆用乘法的分配律 例4、3.59×(-74)+2.41×(-7
4)-6×(-74

原式=-74×(3.59+2.41-6)=-7
4
×0=0
(三)、应用分配律
1、一个和或差与一个数相乘,且和或差中的分母是这个数的约数。

`
2、把一个整数拆成两个数的和或差,再利用乘法的分配律。

3、把一个接近1的分数拆成1与另一个分数的差
例5、-36×(-94+65-127)
解:原式=-36×(-94)+65×(-36)-12
7
×(-36)
=16-30+21=7
例6、57×56
55+27×
2827
解:原式=(56+1)×56
55+(28-1)×
2827
=82+56
1
=
56182
(四)、逆用分数的减法性质
例8、计算

=1-
=
例9、计算
例7、57×56
55+27×
2827
解:原式=57×(1-56
1
)+27×(1-281)
=57-5657+27-2827
=84-15655=82
56
111x2+12x3+13x4+...+12016x2017
原式=1-21+21-3
1
+…+12017
20162017
11x3+13x5+15x7+...+12015x2017
解:12016-1
2017
解:原式=
1
2
11-13
()12
13-15
()
+1x3+13x5+15x7
+..1201

+
+...
12
15-17
(
)
=
=
<
=
=
四、课堂练习 (1) ()()4
3
85.08⨯
-⨯-+; (2) ()()25.0541653-⨯⎪⎭⎫ ⎝⎛-⨯⨯-;。

(3) )8
7(05)43
(⨯⨯⨯-; (4) ⎪⎭

⎝⎛+-⨯4.0322130; (5) ()54.98-⨯;
12
12015-12017
(
)
+
1
2
11-12017
(
)
12
11-13+13-15+15-17+...+12015-12017
(
)
12
20162017
()
10082017
(6) 16)8()5()12(4+-⨯-+-⨯; (7) )15
143118(43--⨯.

五、学习体会:
本节通过结合小学学过的运算律,并对其中数的范围扩充到有理数的范围,在运算中主要要培养学生灵活运用运算律的习惯,并能在运算中把握住运算的准确性. 六、课后作业: 1.计算
(1) -9×(-11)-12×(-8);(2) ()714
13
2-⨯.
(3) ()825.12014
-⨯⨯⎪⎭⎫ ⎝⎛-;(4) ()5
34.265⨯-⨯; (4)(5) 105527531⨯⎪⎭

⎝⎛--。

相关文档
最新文档