伽马射线暴探测器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、VeLa:

VeLa一词取自西班牙语,意思是守护者。这一系列的卫星共计6组12颗,于1959年开始研制,1963至1965年间陆续发射。它们纯粹是冷战时代的产物,用于监视东方国家尤其是前苏联可能进行的外太空核试验,而这样的试验是被国际条约禁止的。

Vela卫星外观呈20面体,发射时两星彼此相对(如右图,图片提供:NASA),在远地点推进引擎处连接,入轨后分开。每颗卫星带有12架外置X射线探测器以及18架内置伽玛射线探测器,稍晚的Vela 5与Vela 6两对卫星还携带了光学探测器,用于探测大气层以内的核爆炸。卫星轨道高度在范艾伦辐射带之外,设计寿命只有6个月,但实际上,每颗卫星的工作时间都超过了5年。

在1969年7月至1972年7月这3年的时间里,Vela 5与Vela 6探测到的16次爆发,持续时间从0.1秒到30秒不等,来自天空的各个方向,开创了伽玛暴这样一个新的研究领域。再往前追溯,Vela 4在1967年就已经探测到了伽玛射线流量的突增,更早的时候,Vela 3似乎也发现了类似现象。一般的说法都是认为,由于Vela的观测涉及军事机密,因此直到积累了足够多的数据,确认这些现象来自地球之外的深空以后,结论才得以发表。

克莱贝萨德尔1973发表后的几年间,是伽玛暴理论研究的第一个黄金时代。各式模型纷纷出笼,总数居然比探测到的爆发数目还要多,其中就衍生出了日后的两大派系——宇宙学距离上的坍缩星起源说以及银河系脉冲星起源说。在众多天文爱好者中似乎颇为流行的黑

洞蒸发模型也是此时提出的,虽说对伽玛暴圈子的影响并不算很大。截止到1979年,Vela 5/6探测到的爆发总数是73个。这是对该现象的最早一批数据积累。

二、银河(Ginga)卫星

银河卫星于1987年在鹿儿岛发射,1991年退役。卫星在发射前原名ASTRO-C,是日本的第3颗X射线天文卫星。其上搭载的设备包括大视场计数器、全天监视器以及伽玛暴探测器,其中最后一台仪器的工作能段较宽,为1.5-500 keV,可以做到全天观测。

有人说银河是让伽玛暴这样一个年轻的领域倒退十年不止,也让许多研究者误入歧途。事情源自于几十keV回旋共振吸收线问题,还是在不止一次的爆发中发现的。之前,Mazets等支持河内起源说的人得出了类似结论,但其准确性不是太高,银河的一些数据“证明”了这一假说。因此在银河之后,宇宙学起源理论几乎沦落到了无人问津的地步,而中子星相关模型却是蜂拥而上。许多研究伽马宇宙学的学者转向了河内起源说,直接导致了伽马射线暴相关研究的倒退。

其实银河卫星的主要贡献还是在其他方面,比如发现了瞬变黑洞的候选天体、在X射线脉冲星中发现了回旋辐射的谱线、在塞佛特星系中发现铁的吸收与发射线、在银心区域探测到了6-7 keV的铁线,等等。

三、康普顿伽玛射线天文台

康普顿伽马射线天文台于1991年4月5日由亚特兰蒂斯号航天

飞机搭载升空,质量17000千克,轨道高度450公里,周期约90分钟。探测器上搭载了近7吨重的天文仪器,包括

●爆发和瞬变源试验设备(BATSE,由美国宇航局马歇尔空间飞

行中心研制),由8台同样的装置组成,分别安装在卫星的8

个角上。观测能段为20-600 keV,目的是探测持续时间很段

的伽玛射线暴。

●定向闪烁光谱仪(OSSE,由美国海军研究实验室制造),由4

台探测器组成,分为两组,每一组都可以独立观测。能段范

围为0.05-10 MeV,

●康普顿成像望远镜(COMPTEL,由德国马克斯·普朗克研究

所和美国新罕布什尔大学共同研制),观测能段为1-30 MeV,。

它在工作期间观测了铝的1.809 MeV谱线,发现它们集中在

银道面上,并且主要分布在银河系中心和旋臂附近,表明重

元素的主要来自于大质量的恒星。

●高能伽玛射线试验望远镜(EGRET),用于观测20 MeV-30 GeV

的高能伽玛射线,并具有极高的时间分辨本领。该仪器由美

国宇航局戈达德空间飞行中心、马克斯·普朗克研究所和斯

坦福大学共同开发。在工作期间,它探测了一批蝎虎座BL天

体的高能伽玛射线辐射,并使伽玛射线脉冲星的数量增加到

8个,还给出了若干个伽玛射线暴的高能辐射。

康普顿伽马射线天文台给伽马宇宙学界带来了全新的气象。现在所用的伽玛暴基本理论,大多还是在康普顿时代发展起来的。康普顿

所发现的伽玛暴各向同性分布,让河内起源说大势尽失。作出这一重要发现的是康普顿携带的BATSE,也就是爆发和瞬现源实验设备,正是为了伽玛暴的探测而设计,并可以从事谱分析。另外值得一提的是EGRET,利用对产生原理进行高能伽玛源的全天监控。在将近10年的工作期间,EGRET发现了30余个高能伽玛暴,其中GRB 940217的最高能量更是高达18 GeV。这些发现可以认为是GLAST的一大研发动力。

康普顿天文台还配备有成象设备COMPTEL以及光谱仪OSSE,它们在太阳耀斑高能辐射、超新星遗迹、银心正反物质湮灭等方面作了奠基性的观测。

2000年,星上搭载的一台陀螺仪失灵。如果第2台陀螺仪再发生故障,星体姿态将失控,有可能坠入人口密集区域。为避免事故的发生,6月4日,NASA决定人工控制让仍可正常工作的康普顿天文台脱轨,返回大气层,落入太平洋。自1991年发射以来,康普顿共探测到了2700余个伽玛暴,发现了爆发时间的双模分布以及一系列统计关系,大大促进了理论研究。此外,康普顿还进行了完整的铝26巡天以及高能巡天,发现了软伽玛射线再现源,等等,也让天文学家第一次系统准确地一窥高能宇宙。

现在对伽玛暴的观测早已进入迅速准确定位多波段后续观测的时代,但康普顿的数据仍没有完全退出历史舞台。如伽玛暴的时延仍是沿袭了康普顿时代的能段定义,而Tsutsui et al. 2007仍是用康普顿观测到的500余次爆发寻找统计关系。

相关文档
最新文档