小升初奥数专题训练
小升初奥数题必考100道及答案(完整版)

小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初奥数题大全100道附答案(完整版)

小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小升初奥数练习题【5篇】

小升初奥数练习题【5篇】1.小升初奥数练习题1、用一个小杯子向空瓶倒水,如果倒5杯水,连瓶共重50克;如果倒进7杯水(水没溢出来),连瓶共重66克,求一杯水和空瓶各重多少克?解答:杯子从加入5杯水,到加7杯水,多加入了2杯水,总重量就增加了66-50=16克,所以可以求出1杯水的重量是16÷2=8(克),由此可以算出5杯水重:5×8=40(克),那么空瓶重:50-40=10(克)2、四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?解答:因为第一根和第四根只有一头打结,第二根和第三根有两头打结,所以一共要用去6个1厘米。
4×8-6=26(厘米)3、昨天是11月3日,今天是星期三,那么11月29日是星期几?解答:昨天是星期二,29-3=26(天)。
26÷7=3……5,星期二再过5天是星期日,所以11月29日是星期日。
2.小升初奥数练习题1、从9开始,把9的倍数依次写下去,一直写到999,成了一个很大的数:91827364554637281……990999,这个数一共有多少位?解答:999是9的111倍。
9的倍数中,一位数的只有一个,两位数从9×2=18到9×11=99,共10个,其它都是三位数,共111-1-10=100个。
1×1+2×10+3×100=321(位)2、两个四位数的差是2009,那么这两个四位数的和是多少?最小是多少?解答:就是9999-2009=7990,9999+7990=17989。
最小就是2009+1000=3009,3009+1000=4009。
3、甲、乙两地相距346千米,某车从早上7点出发,以每小时60千米的速度从甲地出发去乙地。
在中途丙地修车用了18分钟,修车以后用每小时80千米的速度行驶,结果在中午12点到达乙地。
小升初奥数练习题五篇

1、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?
2、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?
3、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?
小升初奥数练习题五篇.doc
3、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
4、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
5、(周期问题)2006年7月1日是星期六,求10月1日是星期几?
5.小升奥数练习题
1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?
3、单独完成一项工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙两人合做2天后,剩下的由乙独做,那么刚好在规定时间内完成。甲乙两人合做需要多少天完成?
4、一项工程,甲先独做2天,然后与乙合做7天,这样才完成全工程的一半,已知甲、乙工效的比是2:3,如果这项工程由乙单独做,需要多少天才能完成?
小升初奥数练习题五篇
1.小升初奥数练习题
1、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?
小升初数学常考奥数题100道附答案(完整版)

小升初数学常考奥数题100道附答案(完整版)1. 计算:1+2-3-4+5+6-7-8+9+10-11-12+...+2017+2018-2019-2020答案:-2020思路:每4 个数的计算结果为-4,2020÷4 = 505,所以结果为-4×505 = -20202. 某数除以4 余3,除以5 余2,除以6 余1,这个数最小是多少?答案:57思路:满足除以4 余3 的数有3、7、11、15、19...;满足除以5 余2 的数有2、7、12、17、22...;满足除以6 余1 的数有1、7、13、19、25...。
所以这个数最小是573. 鸡兔同笼,鸡比兔多15 只,共有脚180 只,鸡兔各有多少只?答案:鸡45 只,兔30 只思路:设兔有x 只,则鸡有x + 15 只。
4x + 2×(x + 15) = 180,解得x = 30,鸡有45 只4. 一个数减去7 的差再乘以7,所得的结果与它减去13 的差再乘以13 的结果相同,这个数是多少?答案:20思路:设这个数为x,(x - 7)×7 = (x - 13)×13,解得x = 205. 甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次在离 B 地55 千米处相遇,A、B 两地相距多少千米?答案:170 千米思路:第一次相遇时,甲走了75 千米,两人共走了一个全程;第二次相遇时,两人共走了三个全程,所以甲走了75×3 = 225 千米,此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米6. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个相同的长方形的面积,一个面的面积为56÷4 = 14 平方厘米,长方形的长(即正方体的棱长)为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米7. 有三根铁丝,一根长54 米,一根长72 米,一根长36 米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?答案:18 米思路:求54、72、36 的最大公因数,为188. 一个最简分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是2/3,原来的分数是多少?答案:21/29思路:设分子为x,则分母为50 - x,(x - 5) / (50 - x - 5) = 2 / 3,解得x = 21,分数为21/299. 小明买了3 支铅笔和2 支钢笔,共用去22 元,钢笔的单价是铅笔的6 倍,钢笔和铅笔的单价各是多少元?答案:钢笔12 元,铅笔2 元思路:设铅笔单价为x 元,则钢笔单价为6x 元,3x + 2×6x = 22,解得x = 2,钢笔单价12 元10. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩16 千克,这桶油有多少千克?答案:60 千克思路:设这桶油有x 千克,x - 1/5x - 1/5x - 20 = 16,解得x = 6011. 某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第三车间少40 人,三个车间共有多少人?答案:560 人思路:设总人数为x 人,第三车间人数为3/7×(3/4x + x),则3/7×(3/4x + x) - 1/4x = 40,解得x = 56012. 学校组织数学竞赛,按参赛人数的1/5 颁奖,分设一、二、三等奖,已知获二等奖的人数比一等奖多20 人,且获二等奖的人数是三等奖的4/5,一共有多少人参赛?答案:1500 人思路:设参赛总人数为x 人,二等奖人数为1/5x×4/9,一等奖人数为1/5x×1/9,1/5x×4/9 - 1/5x×1/9 = 20,解得x = 150013. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:9 块思路:设原来糖果总数为x 块,45%x = 25%(x + 16),解得x = 20,奶糖有45%×20 = 9 块14. 修一条路,已修的和未修的长度比是1∶3,再修300 米后,已修的和未修的长度比是1∶2,这条路全长多少米?答案:3600 米思路:设已修的长度为x 米,未修的长度为3x 米,(x + 300) / (3x - 300) = 1 / 2,解得x = 900,全长4x = 3600 米15. 甲、乙两仓库存货吨数比为4∶3,如果从甲库中取出8 吨放到乙库中,则甲、乙两仓库存货吨数比为4∶5,两仓库原存货总吨数是多少吨?答案:63 吨思路:设甲仓库原存货4x 吨,乙仓库原存货3x 吨,(4x - 8) / (3x + 8) = 4 / 5,解得x = 9,总吨数7x = 63 吨16. 在一个底面半径是10 厘米的圆柱形杯中装水,在水中放一底面半径为5 厘米的圆锥形铝锤,使铝锤全部被水淹没,当铝锤从杯中取出后,杯里水面下降了 5 毫米,求铝锤的高是多少厘米?答案:6 厘米思路:下降的水的体积等于圆锥形铝锤的体积,3.14×10×10×0.5 = 1/3×3.14×5×5×h,解得h = 6 厘米17. 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1 小时到达,如果以原速行驶120 千米后,再将速度提高25%,则可提前40 分钟到达,那么甲、乙两地相距多少千米?答案:270 千米思路:设原速度为v,原时间为t,vt = 1.2v×(t - 1),解得t = 6 小时。
小升初奥数题5篇

小升初奥数题5篇1.小升初奥数题篇一1、765×213÷27+765×327÷272、(101+103+......+199)-(90+92+ (188)3、9×17+91÷17-5×17+45÷174、(9999+9997+......+9001)-(1+3+ (999)5、9039030÷430436、(873×477-198)÷(476×874+199)7、12+16+111112+20+30+428、99999×22222+33333×333349、1000+999-998+997+996-995+……+106+105-104+103+102-10110、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.小升初奥数题篇二老师从写有1~13的13张卡片中抽出9张,分别贴在9位同学的额头上。
大家能看到其他8人的数但看不到自己的数。
(9位同学都诚实而且聪明,且卡片6、9不能颠倒)老师问:现在知道自己的数的约数个数的同学请举手。
有两人举手。
手放下之后,有三个人有如下的对话:甲:我知道我是多少了。
乙:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。
丙:我的数比乙的小2,比甲的大1。
那么,没有被抽出的四张牌上数的和是?【答案】首先,列举1~13所有数约数个数。
每个人只能看到另外8个人头上的数,而要看到8个数就确定自己的数的约数个数,只能是吧约数个数为1、3、4、6的都看到了。
所以没抽出的四张牌必定约数个数为2个,都是质数。
也就是举手的两名同学头上的数。
甲说:我知道我是多少了。
所以甲头上的数不是质数。
乙说:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。
小升初奥数计算题专项训练

小升初奥数计算题专项训练一、四则运算基础1. 题目- 计算:25×(4 + 8)×125- 解析:- 根据四则运算顺序,先算括号里的式子。
4 + 8=12。
- 然后再利用乘法结合律,将式子变形为(25×4)×(125×3)(因为12 =4×3)。
- 计算可得100×375 = 37500。
2. 题目- 计算:1999+999×999- 解析:- 把1999拆分为1000+999,则原式变为1000 + 999+999×999。
- 根据乘法分配律的逆运算,可得1000+999×(1 + 999)。
- 先算括号里的1+999 = 1000,再算999×1000=999000,最后加上1000,结果为1000000。
二、分数计算1. 题目- 计算:(1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)- 解析:- 分析每个分数的特点,(1)/(2)=1-(1)/(2),(1)/(6)=(1)/(2)-(1)/(3),(1)/(12)=(1)/(3)-(1)/(4),(1)/(20)=(1)/(4)-(1)/(5),(1)/(30)=(1)/(5)-(1)/(6)。
- 将原式转化为:(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+((1)/(4)-(1)/(5))+((1)/(5)-(1)/(6))。
- 去括号后可以发现很多项可以相互抵消,最后结果为1-(1)/(6)=(5)/(6)。
2. 题目- 计算:(3)/(4)×(8)/(9)+(3)/(4)÷(9)/(4)- 解析:- 先将除法转化为乘法,(3)/(4)÷(9)/(4)=(3)/(4)×(4)/(9)。
- 则原式变为(3)/(4)×(8)/(9)+(3)/(4)×(4)/(9)。
小升初最常考奥数题100道及答案(完整版)

小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲数的整除问题
教学目标
数的整除性是数论的基础内容,学生能否熟练掌握该内容对以后进一步深入学习数论至关重要.
本讲需要教授的内容有:
1、掌握并熟练运用能被
2、
3、
4、
5、
6、9、11等整除的自然数性质,这类知识在(Ⅰ、Ⅱ类)题中运用很多.
2、训练学生对自然数的快速分解,记住并会运用几个特殊数(111、1001等)的分解情况对于解决(Ⅲ类)有很大的帮助.
3、自然数乘法末位数规律.
4、基础好的学生还应该掌握分式的化简方法.
基本概念和知识点
1.整除——约数和倍数
一般地,如a、b、c为整数,b≠0,且a÷b = c,即整数a除以整数b(b≠0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b︱a。
否则,称为a不能被b整除(或b不能整除a)。
如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数(或因数)。
2.数的整除性质
性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
性质2:如果b与c的积能整除a,那么b与c都能整除a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
性质4:如果c能整除b,b能整除a,那么c能整除a。
3.数的整除特征
①能被2整除的数的特征:个位数字是0、2、4、6、8的整数。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
⑥能被11整除的数的特征:这个整数的奇数数位上的数字之和与偶数数位上的数字之和的差(大减小)是
11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减
小)能被7(11或13)整除。
4.部分特殊数的分解
111=3×37; 1001=7×11×13; 11111=41×271; 10001=73×137;
1995=3×5×7×19; 1998=2×3×3×3×37; 2007=3×3×223; 2008=2×2×2×251;
2007+2008=4015=5×11×73; 10101=3×7×13×37.
【例1】(全国希望杯数学邀请赛)若四位数9a8a能被15整除,则a代表的数字是.
【例2】把三位数3ab接连重复地写下去,共写1993个3ab,所得的数33 (3)
(19933)
ab ab ab
ab
个
恰是91的倍数,求ab=?
【例3】如果有一个九位数A1999311B 能被72整除,试求A、B两数的差(大减小).例题详解
【例4】(2003年祖冲之杯小学数学邀请赛)三个连续自然数的和能被13整除,且三个数中最大的数被9除余4,那么符合条件的最小的三个数是_____,________,_______
【例5】要使15ABC6能被36整除,而且所得的商最小,那么A、B、C分别是多少?
【例6】求能被26整除的六位数___________ 1991
x y。
【例7】(2005年全国小学数学奥林匹克竞赛)如果20052005 (200501)
n
144424443
个2005能被11整除,那么n最小值是_____.
【例8】(1998年香港圣公会小学数学奥林匹克竞赛)一个六位数,前四位是2857,即2857,这个六位数能被11和13整除,请你算出后两位数.
【例9】(2001年全国华罗庚金杯少年数学邀请赛)在算式+91=☺中,已知盖住的是一个能被9整除的两位数,☺盖住的是7的倍数,问☺盖住的数是多少?
【例10】(香港圣公会小学数学奥林匹克)这个199位整数:19910010010011001L 144424443位
被13除,余数是多少?
分数裂项求和方法总结
(一) 用裂项法求
1
(1)
n n +型分数求和 分析:因为
11
1n n -
+=11(1)(1)(1)
n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:
111
(1)1
n n n n =-++
【例1】 求111
(101111125960)
+++
⨯⨯⨯的和。
111111()()......()101111125960111060112
=-+-++-=-= (二) 用裂项法求
1
()
n n k +型分数求和 分析:
1
()
n n k +型。
(n,k 均为自然数)
因为
11111()[]()()()
n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111
()
()n n k k n n k =-++
【例2】 计算11111577991111131315++++
⨯⨯⨯⨯⨯
111111*********()()()()()25727929112111321315
=
-+-+-+-+-
11111111111[()()()()()]2577991111131315
=
-+-+-+-+- 111[]2515
115
=-=
(三) 用裂项法求
()
k
n n k +型分数求和 分析:()
k
n n k +型(n,k 均为自然数)
11
n n k -
+=()()n k n n n k n n k +-++=()
k n n k + 所以
()k n n k +=11
n n k
-+
【例3】 求
2222
(1335579799)
++++
⨯⨯⨯⨯的和
1111111(1)()()......()
3355797991
1999899
=-+-+-++-=-=
(四) 用裂项法求
2()(2)
k
n n k n k ++型分数求和
分析:2()(2)
k
n n k n k ++(n,k 均为自然数)
211
()(2)()()(2)k n n k n k n n k n k n k =-
+++++
【例4】 计算:
4444
(135357939597959799)
++++⨯⨯⨯⨯⨯⨯⨯⨯
11111111()()......()()1335355793959597959797991113979932009603
=-+-++-+-⨯⨯⨯⨯⨯⨯⨯⨯=-⨯⨯=
(五) 用裂项法求
1
()(2)(3)
n n k n k n k +++型分数求和
分析:
1
()(2)(3)
n n k n k n k +++(n,k 均为自然数)
1111
()()(2)(3)3()(2)()(2)(3)
n n k n k n k k n n k n k n k n k n k =-++++++++
【例5】 计算:111
......1234234517181920+++
⨯⨯⨯⨯⨯⨯⨯⨯⨯
1111111
[()()......()]3123234234345171819181920111[]3123181920
113920520
=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=--⨯⨯⨯⨯=
(六) 用裂项法求
3()(2)(3)
k
n n k n k n k +++型分数求和
分析:
3()(2)(3)
k
n n k n k n k +++(n,k 均为自然数)
311
()(2)(3)()(2)()(2)(3)
k n n k n k n k n n k n k n k n k n k =-++++++++
【例6】 计算:
333
(1234234517181920)
+++⨯⨯⨯⨯⨯⨯⨯⨯⨯
111111
()()......()12323423434517181918192011
12318192011396840
=-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=--⨯⨯⨯⨯=
(七)用裂项法求复合型分数和(例题略)。