五年级“三角形的面积”
小学五年级数学解析:三角形的基本性质与面积计算

小学五年级数学解析:三角形的基本性质与面积计算一、三角形的定义与分类1. 三角形的定义定义:三角形是由三条线段围成的多边形。
它的基本特性包括三条边和三个角。
2. 三角形的分类按边分类:等边三角形:三条边的长度相等,三个角的度数均为60度。
等腰三角形:有两条边长度相等,两个相等的角对着等边。
不等边三角形:三条边长度不等,三个角度数也不相等。
按角分类:锐角三角形:三个角都是锐角(小于90度)。
直角三角形:其中一个角是直角(90度)。
钝角三角形:其中一个角是钝角(大于90度)。
二、三角形的基本性质1. 三角形的内角和性质内角和:所有三角形的三个内角的和总是180度。
应用:已知两个角的度数,可以求出第三个角的度数。
例题解析:例题1:一个三角形的两个角分别是45度和65度,求第三个角的度数。
解答:第三个角度数 = 180度 - 45度 - 65度 = 70度。
2. 三角形的稳定性稳定性:三角形是唯一一个即使所有边长度固定,也不会因外力作用而变形的多边形。
这个性质使得三角形在建筑设计中具有重要的应用。
例子:桥梁结构中使用三角形支撑,确保结构在重压下不变形。
3. 三角形的边长关系任意两边之和大于第三边:这是三角形成立的必要条件。
例题解析:例题2:判断边长为3cm、4cm、8cm的三条线段能否构成一个三角形。
解答:3cm + 4cm = 7cm < 8cm,不能构成三角形。
三、三角形的面积计算1. 面积公式公式:三角形的面积 = 底×高÷ 2。
推导:通过将三角形复制并拼成一个平行四边形,得出三角形面积是平行四边形面积的一半。
2. 面积计算例题例题解析1:题目:已知三角形的底边长为10cm,高为5cm,求三角形的面积。
解答:面积 = 10cm × 5cm ÷ 2 = 25平方厘米。
例题解析2:题目:一个等腰三角形的底边长为8cm,高为6cm,求三角形的面积。
解答:面积 = 8cm × 6cm ÷ 2 = 24平方厘米。
五年级数学三角形的面积

第6单元多边形的面积第3课时三角形的面积【教学内容】:教材P91~92例2及练习二十第1、2题。
【教学目标】:知识与技能:掌握三角形的面积计算公式.并能正确计算三角形的面积。
过程与方法:经历探索三角形的面积计算公式的过程.能用三角形的面积计算公式解决简单的实际问题。
情感、态度与价值观:培养学生观察、比较、推理和概括能力。
【教学重、难点】重点:探索并掌握三角形的面积公式.能正确计算三角形的面积。
难点:三角形的面积计算公式的推导过程和实际应用。
【教学方法】:动手实践、自主探索、合作交流【教学准备】:多媒体。
【教学过程】一、复习导入1.出示长方形、正方形、平行四边形、三角形的图片。
提问:我们学过了哪些平面图形的面积?计算这些图形的面积公式是什么?学生回答:长方形的面积=长×宽;正方形的面积=边长×边长;平行四边形的面积=底×高。
2.师:今天我们就一起来研究“三角形的面积”。
(板书课题:三角形的面积)3.学习新知识之前.我们共同回忆一下平行四边形的面积计算公式是怎样得出的?(演示推导过程)(我们把一个平行四边形转化成一个长方形.它的面积与原来的平行四边形的面积相等。
这个长方形的长与平行四边形的底相等.这个长方形的宽与平行四边形的高相等.因为长方形的面积等于长乘宽.所以平行四边形的面积等于底乘高。
)二、互动新授l.谈话:成为一名少先队员后.我们每个人都要佩带红领巾。
红领巾是什么形状的?(三角形)如果要想知道它用多少面料.要怎样解决呢?(求出三角形的面积。
)追问:怎样求三角形的面积?引导学生利用平行四边形的面积公式的推导猜测.可以把三角形转化成我们已经学过的图形。
2.请每个小组拿出三角形学具.并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两个。
)师提出操作要求:用两个同样的三角形拼一拼.并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?(这里不让学生回答.而是通过动手操作得出结论。
五年级求三角形的面积知识及练习题

五年级求三角形的面积知识及练习题work Information Technology Company.2020YEAR求三角形的面积知识及练习题两个完全相同的三角形通过重叠、旋转、平移可以拼成一个与它等底等高的平行四边形。
平行四边形的面积是与它等底等高的三角形面积的2倍。
三角形的面积是与它等底等高的平行四边形面积的一半。
用字母表示的三角形面积计算公式是:S=ah÷2求三角形的面积要注意:(1)知道三角形的底和高,且底与高要互相对应。
(2)底与高的长度单位要统一。
1、填空题。
(1)一个三角形的底是4分米,高是30厘米,面积是()平方分米。
(2)一个三角形的高是7分米,底是8分米,和它等底等高的平行四边形的面积是()平方分米。
(3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是()(4)一个三角形的面积比与它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是()平方分米,三角形的面积是()平方分米。
(5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是()米;如果平行四边形的高是10米,那么三角形的高是()米。
2、判断对错。
(1)两个面积相等的三角形可以拼成一个平行四边形。
()(2)等底等高的两个三角形,面积一定相等。
()(3)三角形面积等于平行四边形面积的一半。
()(4)三角形的底越长,面积就越大。
()(5)三角形的底和高都扩大3倍,面积就扩大6倍。
()(6)用两个直角三角形可以拼成一个长方形,也可以拼成一个平行四边形()(7)两个三角形面积相等,它们的形状也一定相同()(8)一个三角的底是1.2分米,高0.8分米,面积是0.96平方分米。
3、一块三角形地,底长38米,高是27米,如果每平方米收小麦0.7千克,这块地可以收小麦多少千克4、人民医院用一块长60米,宽0.8米的白布做成底和高都是0.4米的包扎三角巾,一共可做多少块5、如图,一个三角形的底长5米,如果底延长1米,那么面积就增加1.5平方米。
五年级三角形的面积教学设计

五年级三角形的面积教学设计篇一:人教版五年级上册,三角形的面积五边形教学内容设计与反思人教版高三上册《三角形的面积》教学设计与反思教学内容: 84----85页教材分析:三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算结果的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先问题怎样计算红领巾的面积这样一个实际由引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出有面积计算公式,这样一方面使教师初步体会并使到几何图形的位置变换和转化是有规律的,另一方面有利于发展学生的空间观念。
学情分析:学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、直角的面积计算,学生学习时并不似曾相识,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法思考有关图形的知识,在学习方法上也很高有一定的基础,教学时从日常生活学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变为有趣的、充满想象和富有推理的活动。
教学目标:1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和正方形三角形之间的彼此之间。
2、通过逐步操作使学生进一步学习用转化的思想方法解决新问题。
3、推论三角形的面积与形状无关,与底和高有关,会建构面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新品牌意识。
教学重点:理解并掌握三角形面积的计算公式。
教学难点:想像三角形面积的推导过程。
教法与学法:教法:演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:三角形卡片、多媒体课件教学过程:一、情境引入师:同学们,我们每天就早晚佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那一条你知道做一条丝带需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样算出三角形的面积呢?这节课我们就一起来研究的计算方法(板书课题)[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地可以参与到学习活动之中。
五年级上册数学《三角形的面积》教案

五年级上册数学《三角形的面积》教案五年级上册数学《三角形的面积》教案4篇作为一名人民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。
来参考自己需要的教案吧!下面是小编为大家整理的五年级上册数学《三角形的面积》教案,欢迎阅读与收藏。
五年级上册数学《三角形的面积》教案1教学内容:人教版小学数学教材五年级上册第91页主题图、92页例2、“做一做”,“你知道吗?”教学目标:1、知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。
教学重点:理解并掌握三角形面积的计算公式教学难点:理解三角形面积计算公式的推导过程考点分析:能根据具体情况应用三角形面积公式解决实际问题教学方法:创设情境——新知讲授——巩固总结——练习提高教学用具:多媒体课件、三角形学具教学过程:一、创设情境师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。
同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)师:同学们,红领巾是什么形状的?生:三角形的师:你们会算三角形的'面积吗?这节课我们就一起来研究,探索这个问题。
板书:三角形的面积二、新知探究1、课件出示一个平行四边形师:平行四边形的面积怎么计算?生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)师:平行四边形的面积公式是怎样得到的?生说推导过程师:在研究平行四边形的面积的时,我门是把平行四边形转化成学过的长方形来研究的,那三角形的面积你打算怎么研究呢?生1:我想把它转化成已学过的图形。
生2:我想看看三角形能不能转化成长方形或平行和四边形。
2、动手实验师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。
五年级上册数学三角形的面积教案优秀6篇

五年级上册数学三角形的面积教案优秀6篇五年级上册数学《三角形的面积》教案篇一【设计理念】新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情景激发学生的`参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。
这样,字生不仅可以掌握知识,而且可以积累探究数学问题活动经验,发展空间观念和推理能力。
【教材分祈】三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算的基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础。
学生只有领会了基本的数学思想和方法,才能有效地应用知识解决问题,形成能力。
本节课再次利用转化的思想方法引领学生探索三角形面积的计算公式。
因此,转化方法的习得和转化思想的应用仍然是本节课教学的重要目标。
教材的编排是为学生提供两个完全一样的三角形,让他们尝试拼成已学会面积计算的图形进行面积公式的推导。
【学情分析】五年级的学生初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学过运用折、剪、拼、量、算等方法来探究有关图形的知识,能与同伴合作并交流想法,对图形的相互转化有了初步的感知,具有一定的自学和合作交流的能力,这是五年级学生的共性。
【教学目标】1、使学生理解和掌握三角形面积计算的公式,能够应用公式计算三角形的面积;2、经历探索三角形面积计算方法的过程,培养学生抽象概括的能力。
3、在解决实际问题的过程中体验数学与生活的联系【教学重难点】重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
难点:理解三角形面积公式的推导过程。
【教学方法】小组合作、探究交流【教学准备】课件【课时安排】1课时【教学过程】一、创设情境,揭示课题师:老师今天给大家带来了一个你们比较熟悉的朋友——红领巾,那你们知道做一条红领巾需要多少布料吗?师:同学们,求需要多少布料也就是求红领巾的什么?(面积)红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们就一起研究、探索这个问题。
五年级数学《三角形的面积》教案(优秀6篇)

作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
我们应该怎么写教案呢?下面是白话文的小编为您带来的五年级数学《三角形的面积》教案(优秀6篇),希望能够给予您一些参考与帮助。
五年级数学《三角形的面积》教案篇一【活动目标】1.认识三角形的特征,知道三角形由3条边,三个角。
2.能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
3.发展幼儿观察力,空间想象力。
【活动准备】PPT一份,大三角板一个,长短不同的小棒,雪糕棒等【活动过程】一.导入:手指游戏:快乐的小鱼二.学习三角形特征1、认识三角形(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。
123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征(1).引导幼儿观察图形,发现三角形的特征。
前几天张老师去旅游。
到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)(3)引导幼儿在活动室里找一找三角形的物品3、老师小结三角形特征,使幼儿获得的知识完整化。
(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。
五年级数学《三角形的面积》教学设计

教学设计:三角形的面积一、教学目标1.知识目标:掌握计算任意三角形的面积的方法。
2.能力目标:能够灵活运用所学的方法计算三角形的面积,并应用到实际生活中。
3.情感目标:培养学生学习数学的兴趣,激发他们对数学的学习热情。
二、教学内容三角形的面积三、教学重难点1.教学重点:通过计算任意三角形的面积的方法,培养学生的计算能力。
2.教学难点:将所学的方法运用到实际生活中,解决实际问题。
四、教学过程Step 1:导入新知1.导入问题:同学们知道什么是三角形吗?请举例说明。
2.针对学生回答的三角形的例子,板书出几个常见的三角形:等边三角形、等腰三角形、一般三角形。
3.跟学生讨论三角形的特点:有三条边、三个角等。
Step 2:引入概念1.将一张任意形状的三角形贴在黑板上,并标出三条边和三个角。
2.引导学生思考三角形的面积:我们如何计算这个三角形的面积呢?3.通过学生的思考和回答,引入计算三角形面积的方法。
Step 3:计算等边三角形的面积1.引导学生回忆等边三角形的特点:三条边相等,三个角都是60°。
2.引导学生思考如何计算等边三角形的面积,提示学生可以用底边乘以高再除以23.讲解计算公式,并通过例题进行演示。
4.练习:完成练习册上的若干道题目。
Step 4:计算等腰三角形的面积1.引导学生回忆等腰三角形的特点:两条边相等,两个底角相等。
2.引导学生思考如何计算等腰三角形的面积,提示学生可以根据三角形的对称性可以将等腰三角形分割成两个等边三角形。
3.讲解计算公式,并通过例题进行演示。
4.练习:完成练习册上的若干道题目。
Step 5:计算一般三角形的面积1.引导学生思考如何计算一般三角形的面积。
2.提示学生可以根据海伦公式计算一般三角形的面积。
3.讲解计算公式,并通过例题进行演示。
4.练习:完成练习册上的若干道题目。
Step 6:应用实际问题1.分组讨论:给学生们出示一些关于三角形的实际问题,让他们分组讨论如何计算三角形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的面积教学预案
执教:张贤均
教学内容:西师版教材第九册三角形面积的计算及练习
教学目标:
1、理解三角形面积公式推导过程,掌握三角形面积公式,能正确计算三角形的面积。
2、经历操作、观察、分析、比较、推理的过程,发展学生的空间观念和渗透平移、转化的数学思想。
3、在探究过程中让学生获得成功体验,坚定学生学好数学的信心。
教学重点:
1、三角形面积公式的推导。
2、使学生掌握转化的求知方法。
教学难点:摆拼过程中旋转方法的掌握及公式的推导过程。
教具准备:多媒体课件
学具准备:全等直角三角形、锐角三角形、钝角三角形各两个。
教学过程
一、创设情境,引导学生猜想
1、创设情境
每个小方格为边长 1 厘米的正方形
用电脑显示上面情境,由学生先确定三个平行四边形的底和高,求出它们的面积,再沿对角线截去一半,得到三个三角形,让学生确定三角形的底和高,根据情况,产生问题。
2、提出问题
1、三角形的面积与平行四边形的面积有关系吗?有什么关
系?
2、两者之间有关系的条件是什么?
3、猜一猜三角形的面积怎样计算?(这仅仅是我们的直觉,
没有经过科学的验证。
)
4、我们用什么方法去验证我们的猜想对不对呢?
5、既然平行四边形都能分割成两个完全一样的三角形,那么,
两个完全一样的三角形能不能转化成一个平行四边形呢?……
二、验证“猜想”获取结论。
1、引导转化
师:本节课要运用转化的思想,通过实验,动手想办法把三角形转化为我们已学过的图形,找出它们的关系,从而寻求解决三角形面积的计算方法。
实验1:比较一下你们手中的两个直角三角形,看看它们有什么关系?两人为一组动手把两个全等的直角三角形拼成一个图形(长方形、平行四边形、三角形)。
(学生汇报展示;要求把拼好的图形摆放在桌面上)
实验2:用两个全等的钝角三角形旋转、平移,拼成平行四边形。
(教师演示后学生操作)
实验3:用两个全等的锐角三角形,运用旋转、平移的方法,拼成平行四边形。
(教师课件演示。
)
2、引导推理,获取结论。
解决问题 1 依次说出(直、钝、锐)三角形与拼成的平行四边形有那些关系?
(1)三角形与平行四边形底相等,高相等。
(2)三角形的面积是拼成的平行四边形面积的一半解决问题2 三角形面积与平行四边形面积有关系的先决条件是什么?
解决问题 3 综合上面的实验:所有的三角形都能转化成平行
四边形。
(直、钝、锐)三角形与拼成的平行四
边形都具有共同的关系:
(1)三角形的底等于拼成的平行四边形的底。
(2)三角形的高等于拼成的平行四边形的高。
(3)三角形的面积等于拼成的平行四边形的
面积的一半。
(4)平行四边形的面积怎样计算?
(5)与它等底等高的三角形的面积又应该怎
样计算?
平行四边形面积=底×高
三角形面积=底×高÷2
解决问题4 这里的“底X高”表示什么?为什么要除以2?
3、回顾验证过程。
(1)我们用三种三角形做了实验,验证了“猜想”,得出了结论,这种计算方法对任何三角形都适用。
(2)一个合理的“猜想”要用科学的方法验证后才成立。
三、应用公式解决问题:教科书例题2
四、课堂练习
1、巩固练习:练习十九第2题。
(强调:为什么要除以2)
2、发展练习(判断)
(1)两个完全一样的三角形可以拼成一个平行四边形。
( )
(2)两个钝角三角形,可以拼成一个平行四边形。
( )
(3)三角形的面积等于平行四边形面积的一半。
( )
(4)下面图形的面积都是6x4÷2=12(平方厘米) ( )(单位:厘米)
3、拓展练习:从下面的情境图中,你可以得出那些结论?
五、全课小结
1、通过这节课的学习,你收获到了什么?
2、你还有其它的方法推导三角形的面积公式吗?
6 4 6 4 6 4 A B C D
E F
板书设计
三角形(正方形、长方形)
特殊↓
平行四边形的面积= 底 X 高
转化↑‖‖
(直、锐、钝)三角形的面积= 底 X 高÷2
三角形的面积教学反思
1、如何根据教学内容的不同,创设适合的数学情境,这对教师的素质与能力都是一种新的挑战。
本节课就是根据三角形与平行四边形之间的内在联系,认真分析思考,精心创设了本课时的数学情境,让学生抓住情境中所孕伏的三角形与平行四边形的内在联系这条主线,由此及彼,触类旁通,举一反三,敏锐地发现情境中潜在的数学问题。
学生提出的数学问题,都有一个核心,这就是本节课所要贯穿的一条主线。
学生揭示和把握住三角形与平行四边形之间的关系,就抓住了问题的实质,解决问题就变得顺理成章。
这样的情境创设,可以给学生一双慧眼,能用数学眼光去洞察世界,从而体现数学的艺术与魅力。
这节课的情境创设,为本课时的教学起到了举足轻重的作用。
2、大量的实践活动,是这一节课的又一亮点,同样是根据教学内容的特点,安排了学生的动手操作,让学生在实践中揭示这节课的知识规律,概括出三角形面积的计算公式,通过实践,充分发挥了学生的主体作用,让学生切实感受到自己的能力。
增强学生的自信,这对数学学习是一种不可估量的动力。
3、这一节课的又一特点,是给学生留下了课外数学思考,体现在不单纯足限于教材上的公式推导方法上,而是除了书上的推导方法外,鼓励学生用不同的方法进行推导,大大激发了学生的学习兴趣,把学生的思维积极性调动起来。
学生各种不同方法的推导,不仅反映出学生的数学能力,更重要的是培养了学生的创新
意识和能力。
4、本节课的板书设计简单明了,重点突出,清楚地呈现了三角形面积公式的推理过程,起到了板书与学生思维的同步作用,给学生和听课教师留下了难以泯灭的印象。
同样,一节课下来,也存在一些不足和遗憾之处,它主要体现在:
(1)合作学习是新的教育理念倡导的一种学习方法,能起到集思广益,群策群力,团结协作的好作用。
这一方法运用得当,对学生的数学学习有很大的促进。
但本节课在这一环节上还欠火候,体现在本来学生的操作过程应该是一个合作探索的过程,要体现合作精神,但大部分学生的操作都是各自为阵,发表看法也是自己的见解,不代表小组的意见,使合作显得流于形式。
这一问题的出现对我来说已是一个老问题了,引起我的警惕和重视。
我将在以后的教学中,对合作学习这一环节专门制订一个子方案,力争每一次合作都实实在在。
(2)在让学生利用两个全等的钝角三角形、锐角三角形运用平移、旋转的方法转化成平行四边形时,我的方法演示不够到位,导致部分学生没有掌握平移、旋转的转化方法。
(3)我只顾着给学生留下充分的数学思考时间和语言的组织时间,没有把控好课堂教学时间,导致拖堂的现象。
这一问题的出现又给我们教师一个提醒,如何精心设计教学,最大限度地利用好每一分钟,也是值得我们认真对待的一个课题。
(4)本课中,我发现学生从教学情境中发现数学问题和提出数学问题上的能力还不够强。
我将在以后的教学中加强学生的“发现问题、提出问题、分析问题、解决问题”能力的训练。
教学也是一门艺术,有成功,也存在缺漏,只有不断地进行反思,才能保持活力,不断前进。