信息光学(1)02-常用函数、傅立叶变换;03-相关、卷积、线性系统、二维光场-66精讲

合集下载

信息光学(第二版)01-引言

信息光学(第二版)01-引言

光电子
光电子成为现代产业的主角
机械领域: 激光加工: 打孔、切割、焊接、表面处理 激光光刻、激光微细加工、X射线光刻 能源领域: 太阳能电池、激光核聚变 —— 空间卫星的能源,地球能源
光信息科学
光 是最重要的信息载体,人类感官接收 客观世界总信息量的 90%以上通过眼睛 光纤通信: 以低损耗石英光纤和半导体激光器为基础, 成为当今通信的主体和方向 显示技术:液晶大屏幕显示成为下一代电视的主流;
存储 1万 幅二维图像,数据量达到10Gbit 计算机控制,快速存储
全息信息存储
探测器 参考光束 成像透镜 空间光 调制器 记录介质 变换透镜 数据页 信号 光束 激光器 待存储 的信息
中国的光学(光子学)已经对高科技、国民 经济与人民生活产生了影响。可以预期,光学 (光子学)在21世纪将会像20世纪的电子学 (微电子学)那样大发展。让我们一起为迎接 光学(光子学)方面的重大突破而欢呼吧! --王大珩 你们这一代人 将成为最有希望的力量 是一支强大的生力军
光学领域的扩展 应用功能的扩展 研究内容的扩展 应用范围的扩展
20世纪光学的 主要特点 1、光学领域的扩展
• 波段: 向两端扩展
可见光 X射线 新学科
紫外
近红外 中红外 远红外
紫外光学、X射线光学、微光夜视、红外光学
• 波长:单色性、相干性
研究方向
激光器
激光全息
• 光强:单光子
激光光源
星际光源
20世纪光学的 主要特点 1、光学领域的扩展
信息光学 Information Optics
享受光 享受光学
光学科学与技术的成果已深深渗透到我们的生 活中
--王大珩
王大珩先生说:
• 20世纪以前的光学

《现代光学》课件第1章

《现代光学》课件第1章
(1.1-28)
29
第1章 现代光学的数学物理基础
可将r0、r1和r的表达式作泰勒展开,取旁轴近似为 (1.1-29)
30
第1章 现代光学的数学物理基础
由于振幅随r的变化比较缓慢,故振幅因子中的r可作 近似: r≈d,于是得到旁轴近似条件下轴外点光源发出的 球面波在(x,y,z1)面上的复振幅分布的表达式为
(1.1-22)
21
第1章 现代光学的数学物理基础
3. 柱面波 均匀无限长同步辐射的线光源发出的光波为柱面波。 柱面波的特征是: 相位间隔为2π的等相面是一组等间距同 轴柱面,光波场中各点的振幅与该点到轴线的距离的平方 根成反比。
22
第1章 现代光学的数学物理基础
图1.1-3 柱面波示意图
23
第1章 现代光学的数学物理基础
复振幅为
令 (1.1-24)
25
第1章 现代光学的数学物理基础
对于给定的观察面,z1为常量,则U0也是与x、y无关 的常量。显然U0不影响该面上复振幅的相对分布。于是该 观察面上的复振幅可简写为
(1.1-25)
26
第1章 现代光学的数学物理基础
2. 球面光波场中任意平面上的复振幅 这里以发散球面波为例讨论。如图1.1-4所示,点光源 Q(x0,y0)在(x0,y0,z0)面内,观察点P(x,y)在(x,y,z1)面内,两平 面间距离为d=z1-z0。Q到P的矢径为r,z0到P的矢径为r0, Q到z1的矢径为r1,这些矢径的长度分别为
由式(1.1-4)与式(1.1-2),可以给出相应的光学拉格朗 日函数定义:
(1.1-5) 此处,z可假定起着与拉格朗日力学中的时间相同的作用。 与经典力学中的情况类似,我们同样能够引入哈密顿量。 根据经典力学中广义动量p和q的定义:

信息光学简介

信息光学简介

信息光学是现代光学前沿阵地的一个重要组成部分。

信息光学采用信息学的研究方法来处理光学问题,采用信息传递的观点来研究光学系统,这之所以成为可能,是由于下述两方面的原因。

首先,物理上可以把一幅光学图象理解为一幅光学信息图。

一幅光学图象,是一个两维的光场分布,它可以被看作是两维空间分布序列,信息寓于其中。

而信息学处理的电信号可以看作是一个携带着信息的一维时间序列,因此,有可能采用信息学的观点和方法来处理光学系统。

然而,仅仅由于上述原因就把信息学的方法引入光学还是远远不够的。

在光学中可以引入信息学方法的另一个重要原因是光学信号通过光学系统的行为及其数学描述与电信号通过信息网络的行为及其数学描述有着极高的相似性。

在信息学中,给网络输入一个正弦信号,所得到的输出信号仍是一个正弦波,其频率与输入信号相同,只不过输出波形的幅度和位相(相对于输入信号而言)发生了变化,这个变化与、且仅与输入信号的性质以及网络特点有关。

在光学中,一个非相干的光强按正弦分布的物场通过线性光学系统时,所得到的像的光强仍是同一频率的正弦分布,只不过相对于物光而言,像的可见度降低且位相发生了变化,而且这种变化亦由、且仅由物光的特性和光学系统的特点来决定。

很显然,光学系统和网络系统有着极强的相似性,其数学描述亦有共同点。

正因为如此,信息学的观点和方法才有可能被借鉴到光学中来。

信息学的方法被引入光学以后,在光学领域引起了一场革命,诞生了一些崭新的光学信息的处理方法,如模糊图象的改善,特征的识别,信息的抽取、编码、存贮及含有加、减、乘、除、微分等数学运算作用的数据处理,光学信息的全息记录和重现,用频谱改变的观点来处理相干成像系统中的光信息的评价像的质量等。

这些方法给沉寂一时的光学注入了新的活力。

信息光学和网络系统理论的相似是以正弦信息为基础的,而实际的物光分布不一定是正弦分布,因此,在信息光学中自然必须引入傅里叶分析方法。

用傅里叶分析法可以把一般光学信息分解成正弦信息,或者把一些正弦信息进行傅里叶叠加。

信息光学公式整理1

信息光学公式整理1

信息光学公式 1·矩形函数⎪⎩⎪⎨⎧≤-=⎪⎭⎫ ⎝⎛-其它,021,100a x x a x x rectF { a sinc(a x ) } = rect(f /a )F ⎪⎭⎫ ⎝⎛Λ=b f b 1(bx)}{sinc22·inc s 函数()()a x x a x x a 000sin x x sinc --=⎪⎭⎫ ⎝⎛-ππ 3·三角形函数 ⎪⎩⎪⎨⎧≤-=⎪⎭⎫ ⎝⎛Λ其它,0,1a x a xa x4·符号函数()⎪⎩⎪⎨⎧<-=>=0,10,00,1sgn x x x x5·阶跃函数()⎩⎨⎧<>=0,00,1x x x step6·圆柱函数⎪⎩⎪⎨⎧<+=⎪⎪⎭⎫⎝⎛+其它,0,12222ayx a y x circ极坐标内⎩⎨⎧><=⎪⎭⎫ ⎝⎛ar o a r a r ,,1circ7·δ函数的定义 普通函数形式的定义()()⎪⎪⎭⎪⎪⎬⎫=⎩⎨⎧==∞≠≠=∞∞-⎰⎰1,0,0,0,0,dxdy y x y x y x y x δδ广义函数形式的定义()()()0,0,,φφδ=∞∞-⎰⎰dxdy y x y x其中()y x ,φ在原点处连续 δ函数的性质设函数()y x f ,在()00,y x 点出连续,则有 筛选性质()()()y x f dxdy y y x x y x f ,,,00=--∞∞-⎰⎰δ坐标缩放性质 ()()y x abby ax ,1,δδ=可变性 ()()()y x y x δδδ=, 8·梳状函数性质()()()∑∑∞-∞=∞∞-=-=m nx j m x x πδ2exp comb()∑∞∞-∆-∆=⎪⎭⎫ ⎝⎛∆x m x x x x δcomb()∑∞-∞=⎪⎭⎫⎝⎛∆-∆=∆m xm x x δ1xx comb ()()ξcomb x comb −−→←ℑ()ξx comb x x comb ∆∆−−→←⎪⎭⎫ ⎝⎛∆ℑx ()()()y x comb comb y x,comb =9·傅里叶变换()()(){}dxdy y x j y x f F ηξπηξ+-=∞∞-⎰⎰2exp ,, ()()()[]ηξηξπηξd d y x j F y x f +=∞∞-⎰⎰2exp ,,10·阶跃函数step(x)的傅里叶变换(){}(){}()⎭⎬⎫⎩⎨⎧-=+=ℑℑπξξδj 21x sgn 121x step11·卷积的定义()()()()()x h x f d x h f x g *=-=⎰∞∞-ααα定义()x f 和()x h 的二维卷积:()()()()()y x h y x f d d y x h f y x g ,*,,,,=--=⎰⎰∞∞-βαβαβα卷积的几个重要性质: 线性性质:{),(),(),(),(),()},(),(y x g y x bh y x g y x af y x g y x bh y x af *+*=*+卷积符合交换律:,(),(),(),(y x f y x h y x h y x f *=*卷积符合结合律:[][]),(),(),(),(),(),(y x g y x h y x f y x g y x h y x f **=**卷积的坐标缩放:若),(),(),(y x g y x h y x f =*,则),(1),(),(by ax g abby ax h by ax f =*(a,b 均不等于0)卷积位移不变性:若),(),(),(),(y x f y x h y x h y x f *=*,则),(),(),(),(),(000000y y x x g y y x x h y x f y x h y y x x f --=--*=*--函数),(y x f 与δ函数的卷积: ),(),(),(0000y y x x f y y x x y x f --=--*δ12·米尔对称性()()ηξηξ--=*,,FF13·卷积定理()()()x rect x rect *=Λx(){}(){}(){}()ξ2sinc x rect x rect ==Λℑℑℑx()(){}()()()ξξξrect rect rect sin x sinc ==*ℑx c()()(){}()x sinc rect sinc sinc 1==*-ℑξx x14·线性平移不变系统()()()()()y x h y x f d d y x h f y x g ,,,,,*=--=∞∞-⎰⎰βαβαβα15·函数变换输入函数 ()()y x y x f 002cos ,ηξπ+= 其频谱函数()()()[]0000,,21,ηηξξδηηξξδηξ-++--=F16·单色光波场的复振幅复振幅 ()()r k j ra P U *=exp 0光强 *==UU UI 217·X 方向的空间频率的相关公式等相线位方程 c kx =αcos λπ2=k αλc o s =X X 方向的空间频率λαξcos 1==X 18·整个空间的空间频率()()[]z y x j a Z Y X U ζηξπ++=2exp ,, 221λζηξ=++2219·泰伯效应()()jkz d n c n nG exp ⎪⎭⎫ ⎝⎛-=∑∞-∞=ξδξ 泰伯距离 λ22dz T =20·相干截止频率 f D λρ2c =非相干截止频率 f D λρρ22c oc == 21·相干面积 ()()SSC A Z A Ω≈=λλ2第二章2·1夫琅禾费近似()()()()⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡+=y y x x z k j y x z k j zj jkz y x y x h 002200exp 2exp exp ,,λ; 2·2菲涅尔衍射()()()()()0020200002exp ,exp ,dy dx z y y x x jk y x U zj jkz y x U ⎥⎥⎦⎤⎢⎢⎣⎡-+-=∞∞-⎰⎰λ傅里叶变换()()()()()()00002020000222exp 2exp ,2expexp1,dy dx y y xx z jy x z k j y x Uy x z k j jkz zj y x U ⎥⎦⎤⎢⎣⎡+-⨯⎥⎦⎤⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡+=∞∞-⎰⎰λπλ2·3透镜系统(1)输入平面位于透镜前焦面 这时f d =0得 ()()000000exp ,,dy dx f y y x x jk y x t c y x U ⎪⎪⎭⎫⎝⎛+-'=∞∞-⎰⎰ (2)输入面紧贴透镜 这时00=d 得 ()()00000022exp ,2exp ,dy dx q y y x x jk y x t qy x jk c y x U ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+'=∞∞-⎰⎰ (3)物在透镜后方()()()0000000022exp ,2exp ,dy dx d q y y x x jk y x t d q y x jk c y x U ⎪⎪⎭⎫⎝⎛-+-⎥⎦⎤⎢⎣⎡-+'=∞∞-⎰⎰ 4·1希尔伯特变换可看成是一个线性平移不变系统,该系统的脉冲响应为t t h π1)(-= 而 )()()(t u t j t t u r *⎥⎦⎤⎢⎣⎡+=πδ脉冲响应对应的传递函数为()()νπνn j t F H sg 1=⎭⎬⎫⎩⎨⎧-=4·2互相干函数时间的平均值⎰-∞→=TTT dt t f Tt f )(21lim)(光场的互相干函数())(,),(),(),(12**2*12211ττΓ=+--t P u t P u t t P u t t P u *=光场的自相干函数)(),(),(111*1ττΓ+=t P u t P u复相干度()()()()()21122/122111212]00[I I τττγΓ=ΓΓΓ=Q 点的光强为()()()()(){}τγ122121Re 2)(I Q I Q I Q I Q I Q ++=干涉条纹的可见度为min ma x m i n m a x I I I I +-=V ()()()()()τγ1221212Q I Q I Q I Q I +=Imax 和Imin 是Q 点附近干涉条纹的极大值和极小值()()()()()()()()Q I Q I Q I Q I I Q I Q I Q I Q I I 2121min 2121max 22-+=++=光源的光谱密度分布 ()()()()⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∞→∞→2T 2T2*,lim ,,lim v P v P v P v T T TTT U U UG相干时间vc ∆=1τ 相干长度c c c l τ= 时间延迟t =2h/c4·3确定像点坐标:i z 为正表示发散球面波,i z 为负表示会聚球面波1012121-⎪⎪⎭⎫ ⎝⎛±=z z z z r p i λλλλ p pi r i i i x z zx z z x z z x +±=2120012λλλλp pi r i i i y z z y z z y z z y +±=2120120λλλλ4.4)⎪⎪⎭⎫⎝⎛--=-±-⎰∞∞-A B AC A dx C Bx Ax 22exp 2exp π积分公式:4·5 范西泰特——策尼克定理()()()()[]()()()()βαβαβαβαλπβαψd d I d d y x z j I j y x I y x I y xy x y xy x J u ,2exp ,exp ,,,;,,;,221122112211∞∞-∞∞-⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡∆+∆-==4·6 傅里叶透镜的截止频率、空间带宽积和视场 1. 截止频率 传播方向角u 最大为 ()()fD D fD D u 22211-=-≈相应的空间频率 f D D uuλλλξ2sin 1-=≈=传播方向角u 最小为 ()()fD D f D D v 22211+=+≈相应的空间频率 fD D v vλλλξ2sin 1+=≈=2.空间带宽积δξξ单频线宽频带宽度信息容道∆=NfD D λξξ12-==∆11D =δξ SW N =∆=δξξSW 就是空间带宽积3.视场 21DD =4正弦条件 ηλf u f h ==sin。

信息光学习题答案及解析

信息光学习题答案及解析

信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。

1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。

1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。

于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。

解:设卷积为g(x)。

当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。

《傅里叶光学基础》课件

《傅里叶光学基础》课件
《傅里叶光学基础》PPT 课件
傅里叶光学是光学领域的重要基础知识,本课程将介绍傅里叶光学的基本原 理和应用领域,包括光通信、计算机技术和医疗影像。
傅里叶光学基础知识
1 传输函数
了解传输函数的概念以及在傅里叶光学中的作用。
2 光学变换
学习傅里叶变换和反变换,以及它们在光学领域的应用。
3 频谱分析
掌握频谱分析的方法和技巧,以及如何应用于光学系统的研究。
总结与展望
本课程回顾了傅里叶光学的基础知识和应用,介绍了其在光通信、计算机技 术和医疗影像中的重要性。希望通过本课程的学习,您能深入了解傅里叶光 学的原理和应用,并在相关领域取得更好的成就。
数据压缩
了解傅里叶光学在数据压缩领域的应用,如JPEG图像压缩算法。
频谱分析
学习傅里叶光学在信号处理和频谱分析中的作用。
傅里叶光学在现代医疗影像中的应用
1
CT扫描
掌握傅里叶光学在CT扫描中的重建算法和图
磁共振成像
2
像重建技术。
了解傅里叶光学在磁共振成像中的采样技术
和图像重建方法。
3
超声成像
学习傅里叶光学在超声成像中的频域分析和
傅里叶光学在光通信中的应用
高速数据传输
了解傅里叶光学在光通信中的高 速数据传输方案和技术。
光纤通信系统
探索调制与解调
学习傅里叶光学在光调制和解调 中的原理和技术。
傅里叶光学在现代计算机技术中的应 用
图像处理
探索傅里叶光学在图像处理中的应用,如图像滤波和频域图像增强。
分子影像学
4
图像增强技术。
探索傅里叶光学在分子影像学中的应用,如 光学断层成像和荧光成像技术。
傅里叶光学的发展现状

第一章 傅里叶分析

第一章 傅里叶分析
普通高等教育“十一五”国家级规划教材 《傅里叶光学•第2版》电子教案
第一章主要内容
1、常用函数
2、卷积和相关 3、空间频率及空间频谱 4、傅里叶级数 5、傅里叶变换
本章教学目标
1、本章及下一章内容都将介绍傅里叶光学中基础理论, 包括常用函数、常见的光学运算,以及傅里叶变换方 法和线性系统理论。
圆孔光瞳的非相干脉冲响应 以及圆孔的夫琅和费衍射图样
1、一些常用函数
需要特别说明的是,上面提到的常用函数有的本身就是二维函
数,而那些只给出一维形式的函数也具有二维形式,这里不再赘 述,只给出这些常用二维函数的图形化表示。 二维矩形函数
x x0 y y 0 x x0 y y0 rect ( , ) rect ( )rect ( ) b d b d
x y Circ r0
2 2
应用
1 0 x 2 y 2 r0 others
常用来表示圆孔的透过率。
1、一些常用函数 * 8)斜坡函数( Ramp function) 定义 应用
x x0 常用来表示边界透过率的灰阶变化。 0, x x0 b b ram p( ) x x0 x x0 b , b b b
( x n, y m) comb x comb y


n m


( x na, y mb)

1 x y comb comb ab a b
应用 常用二维梳状函数表示点 光源阵列或小孔阵列的透 过率函数。
1、一些常用函数
二维高斯函数
Gauss( x x0 y y0 x x0 y y0 , ) Gauss( )Gaus( ) b d b d

苏州大学光信息处理(信息光学)期末复习题解

苏州大学光信息处理(信息光学)期末复习题解

1、进行傅里叶变换。 2、物体放置于透镜的前焦面,在透镜的后焦面上可得到物体的准确傅里叶频谱。 系统传递函数为 1,对任何频率的传递都是无损的。
5、CTF 物理意义:表征相干成像系统在频域中的效应。 OTF 物理意义:表征非相干成像系统在频域中的效应。其 MTF 描述系统对各频率分 量对比度的传递能力,PTF 描述系统对各频率分量产生相移。 联系:OTF 是 CTF 的归一化自相关函数。对于同一系统而言,前者的截止频率是后 者的两倍。
第2章
重点 1、空域与频域的基尔霍夫衍射规律。 2、角谱的概念和计算。 3、经简化后两类典型的衍射-菲涅尔衍射与夫琅禾费衍射。 4、一些典型孔径的夫琅禾费衍射花样的计算。 4、单缝、双缝、矩孔、余弦型振幅光栅 思考题 1、当一束截面很大的平行光束遇到一个小小的墨点,有人认为它无关大局,其
影响可以忽略,后场基本上还是一束平行光。这个看法对吗?为什么? 2、在白光照明下夫琅禾费衍射的零级斑中心是什么颜色?零级斑的外层呈什么
L2
激光器
L1
针孔
3、在相干照明的 4f 系统中,如何实现两个函数 f(x,y)和 s(x,y)的卷积和相关运算? (画出系统光路简图并标出输入函数、滤波函数以及输出函数的位置和表达式)。 4、匹配滤波相关器和联合变换相关器,二者在识别原理上有何异同?各有什么 优缺点? 5、试讨论相干光学处理、非相干光学处理的特点和局限性。 6、光栅在光信息处理中有何作用?
颜色? 3、你认为能否获得理想的平行光束?为什么? 4、如何理解孔径对频谱的展宽效应? 5、简要说明夫琅禾费衍射与菲涅尔衍射二者的联系与区别。
1、不对,光束在透过墨点是会产生衍射,各个方向的衍射光使得原来的平行光场 发生改变。 2、白色。在外层,各衍射级的位置将随波长变化,波长越长,其位置距衍射斑中 心越远,从而按波长分布顺序形成彩虹颜色,波长最长的红色在同级衍射分量的最 外端。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅里叶变换的意义
傅里叶变换是一种解决问题的方法,一种工具,一种 看待问题的角度:一个连续的信号可以看作是一个个 小信号的叠加,从时域叠加与从频域叠加都可以组成 原来的信号,将信号这么分解后有助于处理。 时阈信号:将信号从时间角度的分割和叠加。
傅里叶变换:将信号从频率的角度叠加。
傅里叶变换的意义
傅立叶变换就是把一个信号,分解成无数的正弦波 (或者余弦波)信号。也就是说,用无数的正弦波,可 以合成任何所需要的信号。
逆变换
f x, y


F ( , ) exp j 2 ( x y)d d
把非周期函数分解为复指数函数 在整个连续频率区间上的积分和
极坐标下的傅里叶变换
G( , ) g (r , )
2 0 0 2
rg (r , ) exp[ j 2 r cos( )]drd
信 息 光 学
南京邮电大学 光电工程学院
几个常用非初等函数
矩形函数( Rectangle function )
x x0 1 1 x x0 1, x 1, rect( x) ) a 2 2 , 标准型 : rect( a 其它 0, 其它 0,
特点: rect(0)=1, 矩形宽度=1,矩形面积=1, 偶函数
n
exp( j 2 nx)

comb x comb( )
原函数
缝函数
频谱函数
asinc( af )
absinc(af x )sinc(bf x )
aJ 1 ( 2a f x f y )
2 2
傅 里 叶 变 换 对
二维矩形函数
x2 y2 1 ) 圆函数 circ( a 0
1. 画出 二个 rect() 2. 将rect()折叠后不变; 3. 将一个rect(-)移位至给定的x, rect[-( -x)]= rect( - x); 4. 二者相乘;乘积曲线下 面积的值 即为g(x).
-1/2
1
rect()
1
rect()

0 1/2 1 -1/2 rect() 0 1/2
f ( x) lim f n ( x)
且: 则:
n
Fn ( ) fn ( x)
f ( x) lim f n ( x)
n
广义傅里叶变换
(2) δ函数的傅里叶变换 根据δ函数的定义式,可直接求出它的傅里叶变换
( x) ( x)e j 2 x dx 1
傅里叶变换与光学
在光学信息处理中,光学系统所传递和处理的 信息是随空间变化的函数。 一幅图像是一种光的强度和颜色按空间的分布, 这种分布的特征可用空间频率表明。把图像看作 是由各种方向、各种间距的线条组成。
傅里叶变换与光学
例:振幅型透射光栅的傅里叶级数展开 光栅常数: 透射率
d 2b
--空间周期为d 的函数
2.分配律
vx wx* h( x) vx* hx wx* hx
3.结合律
傅里叶变换与光学
以一束单色平行光照射光栅,在其后的透镜焦平面上得到的 光强分布与该光栅本身的透射函数的傅里叶功率谱相同。 在焦面上的亮点代表直流成分,每一对亮点 代表光栅的一个空间频率。
x v f
卷积
f ( x) h( x) f ( )h( x )d

翻转、平移、相乘、积分 rect(x)*rect(x)
x2 y 2 circ a r 1 circ a 0 1 0 ra ra x2 y 2 a 其它
a 0
1 0
y x
特点:circ函数是不可分离变量的二元函数
用途:描述无穷大不透明屏上半径为1的圆孔的透过率
0

广义傅里叶变换
(2) 广义傅里叶变换举例 x 梳状函数:comb a ( x na) a n

n
exp( j 2 nx

a)
x comb acomb(a ) a
特例: comb x
用途:快门; 单缝, 矩孔,区域限定
矩形函数
x x0 rect ( ) a
y
x x0 y y0 rect ( ) rect ( ) a b
y
x0
a b y0
0
x0 a
x
0
a
Sinc 函数
x x0 sin ( x x0 ) / a 标准型:sin c ( x x0 ) / a a
法国数学家、物理学家
1807年-《热的传播》推导出热传导方程 ,提出任一函数 都可以展成三角函数的无穷级数。 1822年-《热的分析理论》中解决了热在非均匀加热的固 体中分布传播问题
频域
在你的理解中,一段音乐是什么呢?
时域:
频域:
傅里叶级数
傅里叶级数
周期为
1
1 f ( x) a0 (an cos n x bn sin n x) 2 n 1

数学上,sinc函数和rect函数互为傅里叶变换 物理上,单一矩形脉冲rect(t)的频谱是sinc函数; 单缝的夫琅和费衍射花样是sinc函数

三角形函数
x x0 1 x , x 1 x x0 , 1 原型 : tri( x) , 标准型 : tri( ) a a 其它 0, 0, x x0 1 a 其它
广义傅里叶变换
周期函数:1. 只有有限个极值点和间断点, 2. 绝对可积 非周期函数: 延拓为周期函数,
光学中不少有用的函数,如:脉冲函数、阶跃函 数等,不能满足以上条件,因此必须把以上傅里 叶变换定义推广,才能求出其傅氏变换式
广义傅里叶变换
极限意义下的傅里叶变换和δ函数的傅里叶变换 (1)极限意义下的傅里叶变换 函数 f ( x ) 不存在狭义傅里叶变换,但有:
x0 x0 x0
-1
x
用途:代表“
”相移器、反相器
阶跃函数( Step Function )
1 step( x) 1 2 0 x0 x0 x0
1
0 Step(x) x
与符号函数关系:
Sgn(x)=2 Step (x)-1
用途:开关;无穷大半平面屏
圆柱(域)函数( Circular Function )
傅里叶变换简单理解就是把看似杂乱无章的信号考虑成 由一定振幅、相位、频率的基本正弦(余弦)信号组合而 成。傅里叶变换的目的就是找出这些基本正弦(余弦)信 号中振幅较大(能量较高)信号对应的频率,从而找出杂 乱无章的信号中的主要振动频率特点。
例如:减速机故障时,通过傅里叶变换做频谱分析,根
据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以 快速判断哪级齿轮损伤。
δ函数
0 ( x, y ) x 0, y 0 x 0, y 0




( x)dx 1
f ( x) ( x)dx f (0)


δ函数 ----性质
筛选性质



f ( x) ( x x0 )dx f ( x0 )
函数是偶函数

的函数 f ( t )可以展开为三角级数
由正弦和余弦 函数线性组合 成的无穷级数
an bn
22源自0f ( t )cos 2 n tdt , f ( t )sin 2 n tdt

0
理论意义:把复杂的周期函数用简单的三角级数表示; 用三角函数之和近似表示复杂的周期函数。
指数傅里叶级数
fx fy
2
2
( f ) ( f f0 ) ( f f0 )
1 2
1 2
高斯函数
g ( x) exp(ax 2 )
(x)
1
1
函数
常数
傅里叶变换的意义
数学意义: 从一个函数空间(集合)到另一个函数空间(集合)的映射; f(x)称为变换的原函数(相当于自变量),F(ω)称为象函数。 应用意义: 把任意函数分解为简单周期函数之和,F(ω)的 自变量为频率,函数值为对应的振幅。 物理意义: 把一般运动分解为简谐运动的叠加; 把一般电磁波(光)分解为单色电磁波(光)的叠加。
( x) ( x )
比例变换性质
1 (ax) ( x) a
梳状函数(Comb Function)
傅里叶(1768-1830 )
9岁父母双亡, 被教堂收养。12岁由主教送入 地方军事学校读书。17岁回乡教数学。26岁到 巴黎,成为高等师范学校的首批学员,次年到 巴黎综合工科学校执教。30岁随拿破仑远征埃 及时任军中文书和埃及研究院秘书,33岁回国 后任伊泽尔省地方长官。51岁当选为科学院院 士,54岁任该院终身秘书,后又任法兰西学院 终身秘书和理工科大学校务委员会主席。
0 2 / d
v0 0 / 2 1 / d
空间频率:单位长度内变化的次数。
表示一个周期为d 的黑白光栅可看成由频率 0 1/ d 及3 0 , 5 0 许多正弦光栅(强度按正弦分布)组成。
令 / 0 k
k 0
d sin 2 2 sin d sin x v 2 f


-1/2
x-1/2 x x+1/2
0 1/2
1 -1 0
g(x) x 1
卷积效应
展宽:一般来说,卷积的宽度
等于被卷积函数的宽度之和。
平滑:被积函数经过卷积运算,
其微细结构在一定程度上被消除, 函数本身的起伏变得平缓圆滑。
相关文档
最新文档