空调冷源方案的比较和探讨

合集下载

某医院工程空调冷热源方案比较

某医院工程空调冷热源方案比较

某医院工程空调冷热源方案比较我们得明确,医院作为一个公共场所,其空调冷热源系统的选择至关重要。

既要考虑到病人的舒适度,也要兼顾到医院运营的成本。

那么,我们就来比较一下常见的几种方案。

一、冷水机组+热泵机组这种方案在目前市场上应用较为广泛。

冷水机组负责提供空调制冷,热泵机组则负责提供空调制热。

两者相互独立,互不干扰。

优点是系统稳定,制冷制热效果良好。

但缺点也显而易见,那就是初期投资较大,且运行成本较高。

想象一下,在炎炎夏日,冷水机组全力工作,为医院提供凉爽的环境;而到了寒冷的冬天,热泵机组则开始发挥作用,为医院带来温暖。

这种方案虽然成熟,但成本确实让人有些犹豫。

二、水源热泵系统水源热泵系统利用地下水源或地表水源作为冷热源,具有节能、环保的特点。

这种方案适用于水源丰富的地区。

优点是运行成本低,且可以有效利用可再生能源。

但缺点是水源条件受限,且初期投资较高。

想象一下,医院建在一个水源充足的地区,水源热泵系统充分利用这些资源,为医院提供冷热源。

这种方案既环保又节能,但水源条件限制了它的普及。

三、溴化锂吸收式冷水机组溴化锂吸收式冷水机组是一种以溴化锂溶液为工质的空调制冷设备。

它利用热源驱动,实现制冷效果。

优点是运行成本低,且对环境友好。

但缺点是制冷效率较低,且初期投资较高。

想象一下,医院采用溴化锂吸收式冷水机组,运行过程中几乎无声,为病人提供了一个安静的修养环境。

但这种方案的制冷效率让人有些担忧。

四、多联机系统多联机系统是一种分布式空调系统,具有灵活、高效的特点。

它通过一台室外机连接多台室内机,实现制冷制热。

优点是安装方便,且可以根据需求调整室内机数量。

但缺点是运行成本较高,且制冷制热效果受室外环境影响较大。

想象一下,医院采用多联机系统,室内机可以根据科室需求灵活安装,为病人提供舒适的就医环境。

但运行成本和室外环境因素让人有些纠结。

经过一番比较,我认为水源热泵系统是最适合医院工程空调冷热源的方案。

它既节能环保,又能有效降低运行成本。

空调冷热源方案比较及实际工程综合分析研究

空调冷热源方案比较及实际工程综合分析研究

空调冷热源方案比较及实际工程综合分析研究空调系统的设计方案对其投资、运行能耗及运行效果都起着决定性影响。

随着空调技术的发展, 空调冷热源形式多种多样, 在实际工程中根据具体情况, 对空调冷热源方案进行比较分析具有重要意义。

本论文结合作者所负责设计、施工的实际空调工程——商丘市公安局通信指挥中心, 对空调系统的主要设计环节进行了介绍, 着重对空调冷热源方案进行了定量化比较分析。

本工程空调计算冷负荷为3100KW, 空调计算热负荷为2200KW。

空调房间的冷负荷、热负荷、湿负荷是确定空调系统送风量和空调设备容量的基本依据;而整个建筑的冷负荷、热负荷、湿负荷是确定空调冷、热源的基本前提。

本文对办公室、健身房、110指挥中心和大会议室等典型房间进行了冷热负荷计算及气流组织分析;针对负荷计算结果, 根据《公共建筑节能设计标准》(GB50189-2005)进行了节能经济比较。

根据负荷计算结果进行空调冷热源比较分析, 对集中空调冷热源三种方案重点分析比较, 方案包括:离心冷水机组+城市热网;溴化锂吸收式制冷机组+城市热网;风冷热泵机组。

笔者从一次投资、能耗和运行费用等方面进行了综合研究。

全面分析了各种冷热源的特性;针对能耗分析问题, 介绍了度日法、当量满负荷运行时间法、负荷频率表法(BIN法)、电子计算机模拟计算法;并采用BIN 法对三种方案的冬夏能耗进行了计算及分析。

得出结论方案一最佳。

在冷热源方案确定后, 进行气流组织设计;据各房间负荷及使用特点, 选用合适的末端空调方案。

为减少土建投资, 降低车库层高, 管理方便, 节省运行费用, 车库通风设计选用诱导通风系统。

中央空调系统冷热源方案的选择探索

中央空调系统冷热源方案的选择探索

中央空调系统冷热源方案的选择探索中央空调系统在商业和工业领域中扮演着重要的角色,它能够为大型建筑提供高效的冷热源,为室内空气进行调节。

在中央空调系统中,冷热源的选择是非常关键的,它直接影响到系统的能效、运行成本和环境影响。

本文将围绕中央空调系统冷热源方案的选择展开探讨,探究不同方案在实际应用中的优缺点,为相关行业提供冷热源选择的参考。

一、传统冷热源方案1.1 电力作为冷热源传统的中央空调系统使用电力作为冷热源是非常常见的选择。

电力作为冷热源的优势在于使用方便、成本相对较低,并且能够灵活控制室内温度。

但相对而言,电力作为冷热源也存在诸多不足,首先是能源利用不高,电力系统研究表明电能只有30%~40%转换为制冷或制热能,其次在发电、输配电、转换等环节都存在一定的能量损耗。

电力发电对环境的影响也不可忽视,大量使用电力作为冷热源将增加综合能耗和环境负荷。

1.2 水源热泵系统水源热泵系统利用地下水或地表水进行热能交换,实现制冷或制热功能。

相比传统电力作为冷热源,水源热泵系统具有能量利用效率高、环境友好等优点。

而且水源热泵系统还可以实现冬暖夏凉、节能环保的目标,是一种比较理想的冷热源选择。

水源热泵系统也存在着一些缺点,比如在使用过程中需要考虑地下水位和水质等因素,而且系统的投资成本相对较高,需要额外考虑建设和运维成本。

1.3 地源热泵系统地源热泵系统利用地下土壤或岩石中的热能进行制冷或制热,是一种环保、高效的冷热源方案。

地源热泵系统在工作过程中没有排放废气或废水,对环境没有负面影响。

而且地热资源是相对稳定的,对于大型建筑的中央空调系统来说具有很好的稳定性。

但地源热泵系统也存在着一些不足,比如耗能较高、建设周期长、需要占用一定的土地资源等问题。

地下温度的变化也会影响系统的性能,需要综合考虑地埋管的设计和散热方式。

二、综合分析与新思路2.1 综合能源利用传统的中央空调系统冷热源选择通常考虑单一能源的利用,如电力、水源或地源。

空调冷热源方案

空调冷热源方案

空调冷热源方案1. 概述空调冷热源方案是指利用不同的能源来提供空调系统中的冷热源。

传统的空调系统通常使用电力作为冷热源的能源,但随着绿色环保意识的增强,越来越多的人开始关注可再生能源,希望利用更加环保的能源来提供冷热源。

本文将介绍几种常见的空调冷热源方案,包括传统电力方案、光热方案、地源热泵方案和太阳能方案,并对它们的优缺点进行比较评估。

2. 传统电力方案传统的空调冷热源方案通常使用电力作为能源。

这种方案使用电力提供所需的制冷或制热效果,通过空调系统中的压缩机、蒸发器等部件来实现。

优点: - 使用简单,便于实施和维护。

- 能够稳定地提供冷热源,并满足各种规模的空调系统的需求。

缺点: - 对环境影响较大,电力在生产和传输过程中会产生大量的二氧化碳等温室气体,增加了全球变暖的风险。

- 能耗较高,电力作为传统能源,其利用效率较低,部分能量会以热量形式散发。

3. 光热方案光热方案利用太阳能作为冷热源的能源。

通过光热集热器或太阳能板将太阳辐射能转换为能够提供制冷或制热效果的热能。

优点: - 环保,太阳能是一种可再生能源,不会产生温室气体或其他污染物。

- 能耗低,太阳能可以直接转化为热能,无需额外的转换设备,能源利用效率高。

缺点: - 受天气影响较大,太阳能依赖于阳光的强度和持续时间,天气阴沉或夜晚无法提供稳定的热能。

- 对空间要求较大,光热设备需要占用较大的面积,因此在安装光热方案时需要考虑场地的条件。

4. 地源热泵方案地源热泵方案利用地下的地热能源来提供冷热源。

通过埋设地源热泵系统中的地埋管,地热能被采集并利用。

优点: - 高效稳定,地下的地热能源稳定可靠,可以提供长时间的稳定热能。

- 环保,地热能源可再生且无污染。

缺点: - 安装成本高,地埋管的铺设和地源热泵系统的安装需要一定的成本投入。

- 对场地要求较高,地下地热能源的开采需要适合的地质条件。

5. 太阳能方案太阳能方案是指利用太阳能光伏发电作为空调系统的冷热源。

空调冷热源方案的选择及分析(2)

空调冷热源方案的选择及分析(2)

能效比。

空调制冷是能耗大户,量多面广,提高产品效率、采用节能型产品,是摆在我们面前的重要课题。

空调系统能耗在建筑能耗中占有很大的比例,虽然在运行费用中己包含能源消耗的费用,但是各种能源的价格并不完全反映能源消耗的多寡。

节能是我国的基本国策,因此,在选择冷热源方案时,还应注意减少系统的能量消耗,单独作为一项予以考虑。

能源的发展规划,能源是我国现代化建设的战略重点,一直被放在优先发展的地位,能源的发展规划也是可持续发展战略的重要内容。

因此,必须重视选择对环境有利的能源技术,特别是清洁煤利用技术,提高能源利用率。

环境污染,保护环境已受到全世界范围内的广泛重视,也已成为我国的一项基本国策。

因而,将环境污染单独作为一项(独立于社会效益)评选指标,是很有必要的。

运行的可靠性、安全性、操作维护的方便程度、经济寿命,是冷热源系统正常工作的基本前提和根本保障。

节省的机房面积(包含燃油锅炉房要求的储煤、渣面积,燃油锅炉房贮油条件等),尽管在计算初投资时已考虑了场地占用费,但土地价格受影响因素较多,且建筑用地逐年扩张,土地价格变化较大,节约使用土地、合理利用机房面积有着重要意义,故单独考虑。

电力调荷潜力,空调系统的能耗占电力总消耗的比重越来越大,造成城市电力供需矛盾十分尖锐。

目前大多城市电力系统峰谷差急剧增加,电网负荷率明显下降,高峰电力严重不足等问题,致使电网经常拉闸限电。

因此.选择将高峰需求尽可能抑制到最低或转移高峰需求的冷热源设备,不但对能源利用、电厂投入、电网经济运行有利,而且通过削峰或移峰,将潜力季节性电能、低谷电能、弃水电能充分利用起来,促进新技术、新产品的开发与应用和用能结构调整。

综上所述,将空调冷热源方案的影响因素归纳为经济性因素、技术条件、环境影响、社会效益四个因素,构成方案选择的准则层。

在比较准则时还要综合考虑节省初投资、节省运行费用、节省的机房占地面积,能效比、区域电力调荷潜力、环境污染、安全可靠性、经济寿命、能源发展规划等九个因素。

空调冷热源设备得选择与比较

空调冷热源设备得选择与比较

空调冷热键设备的选择与比较一、冷热源类型:(一)冷(热)水机组1、电动压缩式冷(热)水机组(1)往复式(2)蜗旋式(3)螺杆式(4)离心式2、溴化锂吸收式冷(热)水机组(1)蒸汽型冷水机组(2)热水型冷水机组(3)直燃型冷(热)水机组(二)热源1、电力:(1)电热炉(2)热泵2、燃气、燃油、燃煤等矿物原料。

3、可再生能源,如太阳能、地热能、河水等以及工业余热、生活废热。

(三)热泵从室外环境介质吸热并向室内放热,使室内空气升温的制冷系统。

大型热泵—模块式组合,用于中小型公共建筑空气源热泵多联机—一个室外机可配置几个到几十个室内机小型户式机—用于住宅,分(1)风一水型(2)风一风型热泵水环热泵—用一个循环水环路作为加热源和排热源废热水热泵—利用工厂余热或废热以及生活污水作为热泵水侧加热源水源热泵太阳能热泵—利用太阳能热水作为水侧加热源地下水热泵—通过地下水进行加热或冷却地表水热泵—通过江河地表水进行加热或冷却地源热泵土壤热泵—以土壤作为吸热源和排热源二、各种冷热源优缺点(-)“冷水机组”加“换热器”夏季用冷水机组制冷,冬季用锅炉烧热水供暖,也可以由热电厂或集中供热站供应蒸汽,经换热器转换成60℃热水,供空调机组。

l、优点:(1)初投资为各种系统最低的(房间空调器除外),供电总容量比水源热泵、多联机少。

(2)运行费比蒸汽溴化锂机低。

(3)主机寿命最长,按美国ASHRAE标准为23年。

(4)由于制冷机和水泵以及冬季换热器全部集中在一个机房内,因此维保方便。

2、缺点:(1)系统庞大,不便于分户计量、分户控制和假日个别房间使用。

可以另配几套多联机,保证加班多的房间使用,也可以采用多机头冷水机组或大小搭配,以满足低负荷的需求。

(2)机房空间大,管道占空间多。

(3)冷却塔有一定噪声,放裙房顶上时必须妥善处理。

冷却塔也有损美观。

(二)空气源热泵冬季从室外空气中吸热并向室内放热,夏季则放热给室外空气。

l、优点:(1)冬夏共用,设备利用率高,不需另设锅炉房。

空调冷热源方案比较

空调冷热源方案比较

空调冷热源方案优缺点比较随着我国改革开放的迅速发展,空调技术日新月异,尤其是市场经济促使空调设备得到了空前的发展,各种新技术、新设备层出不穷。

具体到空调冷热源系统,各种型式的电制冷机组、溴化锂吸收式机组、热泵机组、蓄冷设备等,品种繁多,各有特色。

为了配合党校项目及房地产开发项目的空调设计,选择具有节能、环保的空调冷热源系统,同时保证空调的运行可靠性,工程三部相关人员在近三个月的时间里走访考察了多家使用单位,有利用地源热泵空调系统的宁波市鄞州区合作银行大楼、宁波市鄞州区国税大楼以及PARKER上海产业基地办公楼等,有利用冰蓄冷空调系统的杭州华庭云溪度假酒店以及拱墅区行政中心等。

通过考察,对常用冷热源方式的优缺点进行了总结分析,简述如下:1.水冷压缩式冷水机组在民用建筑空调中,压缩式制冷是目前应用比较广泛的一种制冷方式。

从压缩机的结构来看,大型压缩式制冷机大致可分为螺杆压缩式和离心压缩式两大类。

螺杆式冷水机组是一种回转容积式制冷压缩式机组。

虽然螺杆式冷水机组已有多年的发展和应用历史,但作为民用建筑空调中的应用则是近十年才逐渐有所发展的。

目前运行的螺杆式冷水机组中,大部分为双螺杆式,其使用已有相当长的一段时间。

离心式冷水机组是目前大、中型民用建筑空调系统中使用最广泛的一种机组,目前常见机组所采用的冷媒是R22、R123、R134a(环保冷媒)。

离心机组相对于其它压缩式冷水机组有制冷量大、制冷系数高、运行平稳、噪声低,维修及运行管理都较为方便的优点,缺点是随着负荷变化的冷量调节不是很灵活。

2. VRV空调系统VRV空调系统是中央空调的主要机型之一,具有系统简单、结构紧凑、节能、舒适等优点,各房间独立调节、运行,能满足不同房间不同空调负荷的要求。

VRV空调系统的工作原理与普通蒸汽压缩式制冷系统相同,由压缩机、冷凝器、节流机构和蒸发器组成。

与普通蒸汽压缩式制冷装置不同的是,热泵型(包括热回收型)VRV空调系统室内、室外侧换热器都具有冷凝器和蒸发器的双重功能。

空调冷热源的方案选择对比

空调冷热源的方案选择对比

空调冷热源的方案选择一、影响空调冷热源方案决策的因素很多,要选择一个最优的设计方案,我们需要综合考虑各种因素的影响。

一般情况下,选择冷热源方案时应考虑以下因素:1.初投资。

不同冷热源方案的初投资有较大差别,在选择方案时应进行仔细的分析比较。

2.运行费用。

其中包括运行能耗,运行管理费,设备维修费等。

空调运行能耗在建筑能耗中占有很大比例,空调运行过程中的管理人员工资、设备故障维修费等都是应该在冷热源选择时考虑的因素。

3.环境影响。

为了解决环境污染问题,保护环境已经成为我国的一项基本国策。

4.运行的可靠性、安全性、操作维护的方便程度、使用寿命。

5.机房面积,燃煤锅炉房要求的储煤、渣面积,储油条件等。

6.增容费。

各城市根据其发展情况以及地理位置,对不同能源设定不同的增容费,而且数量一般也是比较大,因此也是项重要的考虑因素。

二、冷热源的选择依据不仅包括系统自身的要求,而且还涉及工程所在地区的能源结构、价格、政策导向、环境保护、城市规划、建筑物用途、规模、冷热负荷、初投资、运行费用以及消防、安全和维护管理等许多问题。

因此,这是一个技术、经济的综合比较过程,必须按安全性、可靠性、经济性、先进性、适用性的原则进行综合技术经济比较来确定。

在进行冷热源选择论证时,应遵循一些基本原则。

1.热源应优先采用城市、区域供热或工厂余热。

高度集中的热源能效高,便于管理,有利于环保。

2.热源设备的选用应按照国家能源政策并符合环保、消防、安全技术规定,大中城市宜选用燃气、燃油锅炉,乡镇可选用燃煤锅炉。

3.若当地供电紧张,有热电站供热或有足够的冬季供暖锅炉,特别是有废热、余热可利用时,应优先选用溴化锂吸收式冷水机组作为冷源。

4.当地供电紧张,且有燃气供应,尤其是在实行分季计价而价格比较低廉的地区,可选用燃气锅炉、直燃型溴化锂吸收式冷(热)水机组作为冷热源。

直燃型溴化锂吸收式冷(热)水机组与溴化锂吸收式冷水机组相比,具有热效率高,燃料消耗少,安全性好,可直接供冷或供热,初投资、运行费和占地面积少等优点,因此在同等条件下特别是夏季有廉价天然气可利用时,应优先选用直燃型溴化锂吸收式冷(热)水机组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析空调冷源方案的比较和探讨
摘要:针对空调冷源方案设计的基础条件及一般规定,并对目前空气调节系统冷热源及设备选择常用的组合方案及选择冷水机组
过程中应考虑的问题进行了分析,最终达到提高能源利用率、节省投资的目的。

关键词:空调冷源冷水机组方案选择对比研究
中图分类号:tb657.2 文献标识码:a 文章编号:
引言:近年来,在新兴的城市建筑(尤其是高层建筑)中能耗低、智能化操作的集中空调系统倍受青睐。

我国空调制冷工业给广大使用者提供了广泛而多样化的产品选择机会。

具体到空调冷源系统,各种形式的电制冷机组、溴化锂洗手机组、热泵机组、蓄冷设备等,品种繁多,各有特色。

冷热源是一个空调系统的重要组成部分,与其设计合理与否,直接影响空调系统的使用效果、运行的经济性等问题。

在空调冷热源方案选择过程中,需要在各目标之间进行折中分析,协调矛盾,权衡利弊,进行综合考虑,在这一过程中,专家的经验和观点、用户的要求和意愿等起着重要的作用。

但是,这些经验和观点往往具有不确定性。

一、常用空调冷源方案的介绍
空调冷热源是空调系统的关键设备,冷热源的形式直接决定了建筑物空调系统的能耗特点及对外部环境的影响状况。

随着生活水平的提高,人们居住环境、办公环境的舒适性、美观性的要求越来越
高。

而对于具有较大建筑面积的宾馆、写字楼,业主一般都要求采用集中式空调系统。

且目前冷热源设备种类繁多,品牌林立,冷热源的选择是每个设计师都需要面对的问题。

近年来。

冷热源技术得到了较快的发展,在蓄冷、热泵、vrv、新型制冷剂等方面的技术均取得了一定的进步。

但由于我国油、气资源负荷量日趋加大,促使了新产品、新技术的开发应用,于是,新型、环保、节能、具有移峰填谷作用的冷热源设备层出不穷。

根据建筑物所在地区能够提供的能源、建筑物的用途、使用要求、空调冷热源形式主要有:
(1)电动冷水机组供冷+城市热网供热;
(2)电动冷水机组供冷+燃油(燃气)锅炉供热;
(3)风冷热泵冷热水机组供冷、供热;
(4)溴化锂吸收式冷水机组供冷+城市热网供热;
(5)直燃型溴化锂吸收式冷热水机组供冷、供热;
下面简单介绍下到现在为止我工作中遇到过的空调用冷源设备的性能特点:
1、溴化锂吸收式冷(热)水机组
吸收式制冷以热为能源,溴化锂制冷机组的一个主要特点是节省电能。

因此在电力紧张的地区,溴化锂制冷机组可以是一个不错的选择。

另一个特点就是由于传热面积大,传热温差小,因而机组对冷却水温的要求相对来说不如压缩式机组严格,冷却水温的变化对制冷量的影响较小,运行稳定,室外气候对其的影响不大。

溴化锂吸收式冷(热)水机组的优点有:(1)以水作为制冷剂,溴化锂溶液作吸收剂,无毒、无味、无臭,对人体无危害,对大气臭氧层无破坏作用;(2)整个装置基本上是换热器的组合体,除泵外,没有其他运动部件,所以振动、噪声比较小;(3)结构简单,制造方便,同时操作简便、维护保养费方便,易于实现自动化运行;(4)整个装置出于真空状态下,无爆炸危险;缺点是(1)溴化锂溶液有腐蚀性,对设备的密封性要求严格;(2)溴化锂价格较高,因此初投资较高;(3)溴化锂溶液吸收过程是放热过程,对外界的排热量大,因此冷却水消耗量较大,冷却塔和冷却水系统容量较大。

2、地源热泵机组
这种机组冷热源为土壤,水为载体,在封闭环路进行热交换的热泵。

地源热泵机组的特点主要有:(1)高效,节能,冬季运行时,cop约为4.2,夏季运行时,cop为5.3;(2)可再生,土壤有较好的蓄热性能,冬季通过热泵将大地浅层的低位热能提高对建筑供暖,同时蓄存冷量,以备夏用;夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量以备冬用,保证大地热量的平衡。

(3)环保,舒适,安全,一机多用。

3、vrv空调机组(一拖多)
vrv空调的优点有(1)节能高效-通过变频或数码涡旋技术使机组以较高效率运行,送风温差大,达到节能效果;(2)节省建筑空间-常设于屋顶,不着用机房面积;(3)施工安装方便,运行管理安全可靠;(4)布置灵活-只需改变室内机和配管的位置,就可实
现建筑物内任意位置供冷或供暖。

此外还有活塞式冷水机组,螺杆式、离心式冷水机组,空气源、水源热泵机组,蓄冷空调等等,空调热源设备这里只做简单陈述,包括燃油、燃气、电热、燃煤锅炉,溴化锂冷热水机组,空气源、水源、地源热泵。

vrv空调机组(一拖多)等等,这里就不做详细阐述了,随着社会的不断发展,还会有新的技术,新的能源利用到我们的生活当中。

二、设计的基础条件
考虑冷负荷条件;电力,城市煤气,天然气的条件选择合适的空调冷热水机组;水源及水质条件;地质的条件可以让我们考虑是否可用水源热泵机组。

三、空调冷源的方案选择的原则
1、若当地供电紧张,有热电站供热或有足够的冬季供暖锅炉,特别是有废热,余热可利用时,应优先选用溴化锂吸收式制冷机。

2、当地供电紧张且夏季供应廉价天然气,同事技术经济比较合理时可选用直燃式溴化锂吸收式制冷机。

3、直燃式溴化锂吸收式制冷机与溴化锂吸收式制冷机相比,具有许多优点,因此在同等条件下特别是有廉价天然气可利用时,应优先选用,一般情况下宜优先选用两用机。

4、积极发展集中供热、区域供冷供热站和热电冷联产技术。

5、按性能系数高低来选择制冷设备的顺序为:离心式、螺旋式、活塞式、吸收式、涡旋式。

因此当地供电不紧张时,从性能系数比
较来考虑,应优先选用电力制冷机。

大型系统以离心式为主,中型系统以螺杆式为主。

6、考虑建筑全年空调负荷分布规律和制冷机部分负荷下的调节特性,合理选择机型、台数和调节方式,提高制冷系统在部分负荷下的运行效率,以降低全年总能耗。

7、为平衡供电峰谷差,有条件时积极推广蓄冷空调和底纹送风或大温差供水相结合的系统。

8、保护大气臭氧层,积极采用cfc和hcfc替代制冷剂。

在选用冷热源设备时,应注意其所使用工质符合环保指标要求。

上述8个选型原则,并非选型中考虑的全部因素和问题,但是极为重要的,不能违背的。

结语:冷热源选择需要综合考虑多方面的因素,在技术可靠、满足系统冷、热量的前提下,系统初投资及今后长期的运转费用是影响决策的重要指标。

在今后的工作中,我会遇到更多更困难的问题,从中我也会更深入的研究在空调设计工作中对于冷热源的选择用
这些方法找到性价比最优的设计方案。

参考文献
(1)陆耀庆主编.《实用供热空调设计手册》(第二版)(下册)北京:中国建筑工业出版社,2007
(2)缪道平,吴业正.《制冷压缩机》北京:机械工业出版社,2001
(3)王平利.《空调冷热源方案选择方法的研究》成都:研究生
学位论文,2002
(4)叶盛.《空调冷热源的选择与评估》上海:工学硕士学位论文,2007
(5)《采暖通风与空气调节设计规范》 gb 50019-2003
(6)李先瑞.《对影响供热空调冷热源方案选择若干问题的分析》,沈阳工程学院学报,2005
(7)魏鉴,张维亚.《空调冷热源方案经济技术比较》,华北科技学院学报,2004
(8)高立新,陆亚俊.《空调冷热源方案的模糊优选》,建筑热能通风空调,2001。

相关文档
最新文档