含有绝对值的方程

合集下载

含绝对值的一元三次方程解法

含绝对值的一元三次方程解法

含绝对值的一元三次方程解法1. 引言一元三次方程是数学中常见的方程形式之一。

当方程中含有绝对值时,解方程的方法可能会有所不同。

本文将介绍含有绝对值的一元三次方程的解法。

2. 解法步骤解含有绝对值的一元三次方程可以按照以下步骤进行:步骤一:确定绝对值的取值范围首先需要确定方程中绝对值的取值范围。

可以通过观察方程的系数和常数项来得到。

步骤二:分情况讨论根据绝对值的取值范围,我们将方程分为不同的情况进行讨论。

- 当绝对值的取值范围满足某个条件时,将绝对值去掉并恢复原方程形式。

- 当绝对值的取值范围不满足某个条件时,将绝对值去掉并取反,得到一个新的方程。

步骤三:解方程根据分情况讨论的结果,我们可以得到新的一元三次方程。

然后,可以采用通常的解方程的方法来求解。

步骤四:检验解的合法性在得到方程的解后,需要对解进行检验,确保解是符合原方程的。

3. 实例演示下面以一个具体的例子来演示含有绝对值的一元三次方程的解法:假设我们要解方程:|x|³ + 2x = 9步骤一:确定绝对值的取值范围。

由于绝对值函数的结果始终为正数,所以我们可以得出绝对值的取值范围为x ≥ 0。

步骤二:分情况讨论。

- 当x ≥ 0 时,绝对值去掉并恢复原方程形式。

得到方程 x³ + 2x = 9。

- 当 x < 0 时,绝对值取反。

得到方程 -x³ + 2x = 9。

步骤三:解方程。

- 对于第一种情况,我们可以采用传统的解一元三次方程的方法求解。

得到解 x = 2。

- 对于第二种情况,我们同样可以采用传统的解一元三次方程的方法求解。

得到解 x = -1。

步骤四:检验解的合法性。

将求解得到的解代入原方程,检验两边是否相等。

在这个例子中,将 x = 2 和 x = -1 代入方程均可以得到等式成立。

4. 总结含有绝对值的一元三次方程的解法可以通过分情况讨论和传统的解方程的方法来求解。

在解方程后,需要对得到的解进行检验,确保解是符合原方程的。

初中数学重点梳理:含绝对值的方程组

初中数学重点梳理:含绝对值的方程组

含绝对值的方程组知识定位绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程,本讲主要介绍解含有绝对值的方程四种方法:定义法、平方法、零点分区法、数轴、取这几个方程的公共解。

知识梳理从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,任一个绝对值都是表示两个不同数的绝对值.即一个数与它相反数的绝对值是一样的。

由于这个性质,所以含有绝对值的方程与不等式的求解过程又出现了一些新特点。

一个实数a的绝对值记作|a|,指的是由a所唯一确定的非负实数:含绝对值的不等式的性质:(2)|a|-|b|≤|a+b|≤|a|+|b|;(3)|a|-|b|≤|a-b|≤|a|+|b|.注意:由于绝对值的定义,所以含有绝对值的代数式无法进行统一的代数运算.通常的手法是分别按照绝对值符号内的代数式取值的正、负情况,脱去绝时值符号,转化为不含绝对值的代数式进行运算,即含有绝对值的方程与不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.例题精讲【试题来源】【题目】设|﹣|≥0,||≥0,求x+y【答案】1【解析】解:分析从绝对值的意义知≥0,≥0,两个非负实数和为零时,这两个实数必须都为零,可得:,解得x=﹣y,把③代入①得﹣﹣=0,解之得y=﹣3,所以x=4,故有x+y=4﹣3=1.【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】4【试题来源】【题目】解方程组【答案】,,或.【解析】解:由①得x﹣y=1或x﹣y=﹣1,即x=y+1或x=y﹣1.与②结合有下面两个方程组,(1),把x=y+1代入|x|+2|y|=3得,|y+1|+2|y|=3.去绝对值符号,可得y=﹣或y=﹣,再将其代入x=y+1可求出方程组(1)的解为:或,(2),把x=y﹣1代入|x|+2|y|=3得,|y﹣1|+2|y|=3.去绝对值符号,可得y=﹣或y=﹣,再将其代入x=y﹣1可求出方程组(1)的解为:或.故原方程组的解为:,,或.【知识点】含绝对值的方程组【适用场合】当堂练习【难度系数】4【试题来源】【题目】解方程组:【答案】、【解析】解:原方程,把②代入①得:4y﹣4+|y﹣1|=5③,当y﹣1≥0时,③式=4y﹣4+y﹣1=5,解得y=2;把y=2代入②得:x=3或﹣5;当y﹣1≤0时,③式=4y﹣4﹣y+1=5,解得无解.综上得原方程组的解为:、.【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】3【试题来源】【题目】解方程组【答案】、、、【解析】解:1.当x>0,y>0时,原方程组为,方程组无解;2.当x>0,y<0,且|x|>|y|,原方程组为,解得;3.当x>0,y<0,且|x|<|y|,原方程组为,解得;4.当x<0,y<0时,原方程组为,方程组无解;5.当x<0,y>0,且|x|>|y|,原方程组为,解得;6.当x<0,y>0,且|x|<|y|,原方程组为,解得.综上得原方程组的解为:、、、【知识点】含绝对值的方程组【适用场合】当堂练习题【难度系数】4【试题来源】【题目】要使关于x的方程||x﹣3|﹣2|=a有三个整数解,则a的值是多少?【答案】2【解析】解:∵||x﹣3|﹣2|=a,∴a≥0.∴|x﹣3|﹣2=a或|x﹣3|﹣2=﹣a.当|x﹣3|﹣2=a时,|x﹣3|=2+a,∴x﹣3=2+a或x﹣3=﹣2﹣a.∴x1=5+a,x2=1﹣a,当|x﹣3|﹣2=﹣a时,|x﹣3|=2﹣a,a≤2,∴x﹣3=2﹣a或x﹣3=﹣2+a,∴x3=5﹣a,x4=1+a,若方程有3个不同的整数解,则x1,x2,x3,x4中必有2个相同.当x1,x2=2时,a=﹣2,与a≥0矛盾;当x1=x3时,a=0,此时原方程有2个解;当x1=x4时,a无解;当x2=x3时,a无解;当x2=x4时,a=0,此方程有2个解;当x3=x4时,a=2.综上有:当a=2时,原方程有3个不同的解【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】5【试题来源】【题目】解方程|x-2|+|2x+1|=7【答案】x=8/3或x=-2【解析】解:(1) 当x≥2时,原方程化为(x-2)+(2x+1)=7,-(x-2)+(2x+1)=7.应舍去.-(x-2)-(2x+1)=7.【知识点】含绝对值的方程组【适用场合】当堂练习题【难度系数】4【试题来源】【题目】若|m|=m+1,则(4m+1)2011=【答案】-1【解析】解:根据题意,可得m的取值有三种,分别是:当m>0时,则|m|=m+1可转换为m=m+1,此种情况不成立.当m=0时,则|m|=m+1可转换为0=0+1,此种情况不成立.当m<0时,则|m|=m+1可转换为﹣m=m+1,解得,m=﹣.将m的值代入,则可得(4m+1)2011=[4×(﹣)+1]2011=﹣1.【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知|x+1|=4,(y+2)2=0,则x﹣y的值【答案】5或-3【解析】解∵(y+2)2=0,∴|y+2|=0,∴y=﹣2;又∵|x+1|=4,∴x+1=±4,即x=3或﹣5.1.当x=3,y=﹣2时,x﹣y=5;2.当x=﹣5,y=﹣2时,x﹣y=﹣3;所以,x﹣y的值为5或﹣3;【知识点】含绝对值的方程组【适用场合】当堂练习题【难度系数】3习题演练【试题来源】【题目】解方程组【答案】【解析】解:由①得,x+y=|x﹣y|+2.∵|x﹣y|≥0,∴x+y>0,∴|x+y|=x+y.③把③代入②,有x+y=x+2,∴y=2.将y=2代入①,有|x﹣2|=x,∴x﹣2=x ④x﹣2=﹣x ⑤.方程④无解,解方程⑤,得x=1.故原方程组的解为.【知识点】含绝对值的方程组【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】使方程|x﹣1|﹣|x﹣2|+2|x﹣3|=c恰好有两个解的所有实数c范围【答案】c>3或1<c<3【解析】解:(1)当x<1时,原方程可化为:﹣x+1+x﹣2﹣2x+6=c,解得:x=,由<1,得:c>3;(2)当1≤x<2时,原方程可化为:x﹣1+x﹣2﹣2x+6=c,解得:c=3,有无数多解;(3)当2≤x<3时,原方程可化为:x﹣1﹣x+2﹣2x+6=c,解得:x=,由2≤<3,得:1<c≤3;(4)当x≥3时,原方程可化为:x﹣1﹣x+2+2x﹣6=c,解得:x=,由≥3,得:c≥1.故当c>3时,原方程恰有两解:,;当1<c<3时,原方程恰有两解:,【知识点】含绝对值的方程组【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】方程丨x+3丨+丨3﹣x丨=丨x丨+5的解【答案】x1=,x2=﹣【解析】解:①当x>3的时,原方程可化为:x+3+x﹣3=4.5 x+5整理得:2x=4.5x+5解出来显然x<0,(矛盾)②当0<x<3时,原方程可化为:x+3+3﹣x=4.5x+5解得:x=(满足条件);③当﹣3<x<0时原方程可化为:x+3+3﹣x=﹣4.5x+5解得:x=﹣(满足条件);④当x<﹣3时,原方程可化为:﹣x﹣3+3﹣x=﹣4.5x+5解得:x=2(不满足条件);∴x有两个解,为x1=,x2=﹣.【知识点】含绝对值的方程组【适用场合】随堂课后练习【难度系数】4。

含绝对值的函数方程解法

含绝对值的函数方程解法

含绝对值的函数方程解法
对于含有绝对值的函数方程,求解的过程需要考虑绝对值的两种情况:正数和负数。

下面将介绍两种常见的解法。

1. 正数解法
当绝对值中的变量取正数时,可以将绝对值去除,直接求解函数方程。

例如,对于方程 $f(x) = |x - a| + b = c$,其中 $a,b,c$ 都是已知的实数常数,我们可以按照以下步骤求解:
1. 当 $x - a > 0$ 时,$|x - a| = x - a$,因此方程可转化为 $f(x) = x - a + b = c$;
2. 将方程整理为 $x = c - b + a$。

因此,当 $x - a > 0$ 时,方程的解为 $x = c - b + a$。

2. 负数解法
当绝对值中的变量取负数时,可以将绝对值去除,并加上负号,再求解函数方程。

例如,对于方程 $f(x) = |x - a| + b = c$,我们可以按照以下步骤
求解:
1. 当 $x - a < 0$ 时,$|x - a| = -(x - a)$,因此方程可转化为 $f(x) = -(x - a) + b = c$;
2. 将方程整理为 $x = a + c - b$。

因此,当 $x - a < 0$ 时,方程的解为 $x = a + c - b$。

需要注意的是,在求解含有绝对值的函数方程时,我们需要分
别考虑正数和负数的情况,并得到两组解。

最后,我们可以将两组
解合并为一个解集。

以上就是含绝对值的函数方程的解法。

希望以上内容能对你有
所帮助!。

怎么解绝对值方程

怎么解绝对值方程

怎么解绝对值方程1. 什么是绝对值方程绝对值方程是一个包含绝对值符号的方程,形如:|x| = a,其中a为一个实数。

绝对值符号表示取绝对值,即将其内部的数去掉符号变成正数。

因此,绝对值方程|x| = a 的解就是使得|x|等于a的x的取值。

2. 解一元一次绝对值方程2.1 绝对值的定义首先我们需要了解绝对值的定义。

一个数x的绝对值(记作|x|)定义如下:•如果x大于等于0,则|x| = x•如果x小于0,则|x| = -x所以,当我们遇到一个带有绝对值符号的表达式时,我们需要根据其内部的数是正数还是负数来分情况讨论。

2.2 解法步骤下面介绍解一元一次绝对值方程的步骤:1.将方程拆分为两个不同情况下的等式,并去掉绝对值符号。

–如果 x 大于等于 0,则 |x| = x–如果 x 小于 0,则 |x| = -x2.对每个情况下得到的等式进行求解。

3.得到的解即为原方程的解。

2.3 示例假设我们需要解方程 |x - 2| = 3。

按照上述步骤,我们可以进行如下计算:情况1:x - 2 大于等于 0根据绝对值的定义,得到 |x - 2| = x - 2。

将其代入原方程,得到:x - 2 = 3解这个一元一次方程,可以通过移项和合并同类项的方法得到结果:x = 5情况2:x - 2 小于 0根据绝对值的定义,得到 |x - 2| = -(x - 2)。

将其代入原方程,得到:-(x - 2) = 3同样地,解这个一元一次方程,可以通过移项和合并同类项的方法得到结果:•x + 2 = 3•x = 1所以,绝对值方程 |x - 2| = 3 的解为 x = 5 和 x =1。

解多元一次绝对值方程当绝对值符号出现在多元一次方程中时,我们也可以通过分情况讨论来求解。

解法步骤下面介绍解多元一次绝对值方程的步骤:1.将每个含有绝对值符号的表达式拆分为两个不同情况下的等式,并去掉绝对值符号。

2.对每个情况下得到的等式进行求解。

绝对值方程 二元一次方程

绝对值方程 二元一次方程

绝对值方程二元一次方程
绝对值方程是指方程中含有绝对值符号的方程,通常形式为|ax + b| = c,其中a、b、c为实数且a不等于0。

而二元一次方程是
指含有两个未知数的一次方程,通常形式为ax + by = c,其中a、b、c为实数且a和b不全为0。

当我们谈到绝对值方程和二元一次方程时,通常是指解这两种类型的方程。

解绝对值方程的一般步骤是将绝对值号内部的表达式分成两种情况进行讨论,分别取正负号,然后解出方程。

而解二元一次方程则可以利用代入消元法、加减消元法、和用克莱姆法则等方法来求解。

当绝对值方程和二元一次方程结合在一起时,可能会出现一些复杂的情况。

比如,可能会出现含有绝对值的二元一次方程,或者是含有二元一次方程的绝对值方程。

在这种情况下,我们需要根据具体情况,先解决其中一种方程,然后将解代入另一种方程中,进而求得未知数的值。

总的来说,解绝对值方程和二元一次方程需要灵活运用代数知识和方程求解技巧,结合具体的数学问题来综合运用。

在解决复杂
问题时,可能需要分步骤进行,逐步化繁为简,最终得出方程的解。

希望这样的回答能够全面地解答你的问题。

带有绝对值的曲线方程

带有绝对值的曲线方程

带有绝对值的曲线方程
带有绝对值的曲线方程可以有多种形式,以下是一些常见的例子:
1. 绝对值函数(V型曲线):
y = |x|
这是一个以原点为对称中心的V型曲线,x和y的取值范围可以是实数。

2. 绝对值方程(折线):
y = |x - a| + b
这是一个以点(a, b)为顶点,两边呈V型的折线,x和y 的取值范围可以是实数。

3. 绝对值平方函数(U型曲线):
y = (|x|)^2
这是一个以原点为对称中心的U型曲线,x和y的取值范围可以是实数。

4. 绝对值指数函数:
y = e^(-|x|)
这是一个以y轴为渐进线的指数函数,x和y的取值范围可以是实数。

这些是常见的带有绝对值的曲线方程示例,您可以根据具体需求和条件来选择适合的方程形式。

请注意,实际应用中可能会有更多特定需求的方程形式,这些仅是一些常见的例子。

七年级数学下册综合算式专项练习题解含有绝对值的方程

七年级数学下册综合算式专项练习题解含有绝对值的方程

七年级数学下册综合算式专项练习题解含有绝对值的方程练习一:解绝对值方程1. 解方程:|3x - 2| = 5首先,我们可以将绝对值方程分为两种情况来求解。

当3x - 2 > 0时,方程可以简化为3x - 2 = 5,解得 x = 7/3。

当3x - 2 < 0时,方程可以简化为-(3x - 2) = 5,解得 x = -1。

所以,绝对值方程 |3x - 2| = 5 的解集为{x | x = 7/3 或 x = -1}。

2. 解方程:|2x + 1| = 3同样地,我们按照两种情况分别求解。

当2x + 1 > 0时,方程简化为2x + 1 = 3,解得 x = 1。

当2x + 1 < 0时,方程简化为-(2x + 1) = 3,解得 x = -2。

因此,绝对值方程 |2x + 1| = 3 的解集为{x | x = 1 或 x = -2}。

练习二:解含有绝对值的方程组1. 解方程组:|3x - 2| = 5y = 2x + 1我们可以利用已知的 y = 2x + 1,将其代入第一个方程。

|3x - 2| = 5 可以分为两种情况:情况一,当3x - 2 > 0时,方程可简化为 3x - 2 = 5。

解得 x = 7/3,并代入 y = 2x + 1,得到 y = 2(7/3) + 1 = 17/3。

情况二,当3x - 2 < 0时,方程可简化为 -(3x - 2) = 5。

解得 x = -1,并代入 y = 2x + 1,得到 y = 2(-1) + 1 = -1。

因此,方程组的解为 {(7/3, 17/3), (-1, -1)}。

练习三:解含有两个绝对值的方程1. 解方程:|x - 3| + |2x + 1| = 4同样地,我们按照不同情况来解这个方程。

情况一,当 x - 3 > 0 且 2x + 1 > 0 时,方程简化为 x - 3 + 2x + 1 = 4。

七年级数学竞赛题:含绝对值符号的一次方程

七年级数学竞赛题:含绝对值符号的一次方程

七年级数学竞赛题:含绝对值符号的一次方程绝对值符号中含有未知数的一次方程叫含绝对值符号的一次方程,简称绝对值方程.解这类方程的基本思路是:脱去绝对值符号,将原方程转化为一元一次方程求解,其基本类型与解法是:1.形如∣ax+b∣=c(c≥0)的最简绝对值方程这类绝对值方程可转化为两个普通一元一次方程:ax+b=c或ax+b=一C2.含多重或多个绝对值符号的复杂绝对值方程这类绝对值方程可通过分类讨论转化为最简绝对值方程求解.解绝对值方程时,常常要用到绝对值的几何意义、去绝对值符号法则、常用的绝对值基本性质等与绝对值相关的知识、技能与方法.例1 方程∣x一5∣+2x=一5的解是_______.(四川省竞赛题) 解题思路设法脱去绝对值符号,将原方程转化为一般的一元一次方程求解.例2 适当∣2a+7∣+∣2a-1∣=8的整数a的值的个数有( ).(A)5 (B)4 (C)3 (D)2解题思路发现常数的内在联系,从绝对值的几何意义入手,本例能获得简解.例3 已知关于x的方程|x|=ax+1同时有一个正根和一个负根,求整数a的值.(第12届“希望杯”邀请赛试题) 解题思路去掉绝对值的符号,把x用a的代数式表示,首先确定a的取值范围.例4解下列方程:.(1)|x-|3x+1∣∣=4;(天津市竞赛题) (2)|x+3|-|x-1|=x+1(北京市“迎春杯”竞赛题) (3|x-1|+|x-5|=4(“祖冲之杯”邀请赛试题) 解题思路多重绝对值解法的基本方法是,根据绝对值定义,从内向外化简原方程;零点分段讨论法是解多个绝对值方程的有效手段.例5讨论关于x的方程|x-2|+|x-5|=a的解的情况.(南京市竞赛题)解题思路方程解的情况取决于a的情况,口与方程中常数2,5有一定的依存关系,这种关系决定了方程解的情况.因此,探求这种关系是解本例的关键,借助数轴、利用绝对值的几何意义是探求这种关系的重要工具.A 级1.若x=9是方程|31x -2|=a 的解,则a=_______;又若当a=l 时,则方程|31x -2|=a 的解是_______.2.方程|31y +2|-|2y -53|的解是_______,方程3(|x|一1)=5x +1的解是_______. 3.已知|3990x +1995|=1995,那么x=_______(北京市“迎春杯”竞赛题) 4.已知|x|=x +2,那么19x 99+3x +27的值为_______.(“希望杯”邀请赛试题)5.方程|||x|-2|-1|=2的解是_______.6.满足(a -b)2+(b -a)|a -b|=ab(ab ≠0)的有理数a 和b ,一定不满足的关系是( )(A)ab<O (B)ab>O (C)a+b>O (D)a+b<O7.有理数a 、b 满足|a +b|<|a -b|,则( ).(A)a +b 6≥O (B)a +b<0 (C)ab<O (D)ab≥O8.若关于x 的方程|2x -3|+m=0无解,|3x -4|+n=0只有一个解,|4x -5|+k=0有两个解,则m 、n 、k 的大小关系是( ).(A)m>n>k (B)n>k>m (C)k>m>n (D)m>k>n9.方程|x -5|+x 一5=O 的解的个数为( ).(A)不确定 (B)无数个 (C)2个 (D)3个(“祖冲之杯”邀请赛试题)lO .若关于x 的方程||x -2|-1|=a 有三个整数解,则a 的值是( ).(A)0 (B)2 (C)1 (D)3. (全国初中数学联赛试题)11.解下列方程:(1)4-2|21x +1|=3; (2)|21x -1|=x -3; (3)|x -|2x +11||=|x +1|;(五城市联赛题) (4) |2x -1|+|x -2|=|x +1|(全国通讯赛试题)12.求关于x 的方程||x -2|-1|-a=0(0<口<1)的所有解的和. .(陕西省竞赛题)B 级1.关于x 的方程|a|x=|a +1|-x 的解是x=0,则a 的值是_______;关于x 的方程|a|x=|a+1|-x 的解是x=l ,则有理数a 的取值范围是_______.2.若O<x<10,则满足条件|x -3|的整数a 的值共有_______个,它们的和是_______.(第十届“希望杯”邀请赛试题)3.若a>0,b<0,则使|x -a|+|x -b|=a -b 成立的x 的取值范围是_______.(武汉市选拔赛试题)4.已知|a|+a=0且a ≠一l ,那么11+-a a =_______.5.若有理数x 满足方程|1-x|=1+|x|,那么化简|x -1|的结果是( ).(A)1 (B)x (C)x 一1 (D)1一x6.适合关系式|3x -4|+|3x +2|=6的整数x 的值有( )个.(A)0 (B)l (C)2 (D)大于2的自然数7.当a>0,且|x -2|+|x -5|<以时,则以下结论正确的是( ).(A)0.001<a<3 (B)O<a<0.01 (C)0<a<3 (D)a>38.已知方程|x|=ax+l 有一个负根,而没有正根,那么a 的取值范围是( ).(全国初中数学联赛试题)(A)a=1 (B)a>-1 (C)a ≥1 (D)a<19.设a 、b 为有理解,且|a|>O ,方程||x -a|-b|=3有三个不相等的解,求b 的值.(“华罗庚金杯”赛邀请赛试题)10.当a 满足什么条件时,关于x 的方程|x -2|-|x -5|=a 有一解?有无数多解?无解?(江苏省竞赛题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档