地层压力预测技术

合集下载

泥页岩地层孔隙压力的预测方法

泥页岩地层孔隙压力的预测方法

泥页岩地层孔隙压力的预测方法左 星1 何世明1 黄 桢2 范兴亮2 李 薇1 曾永清3(11西南石油大学,四川成都610500;21四川石油管理局川东开发公司,重庆400021;31塔里木油田公司勘探事业部,新疆库尔勒841000) 摘 要 勘探开发过程中,由于地层孔隙压力预测不准,时常造成井眼坍塌、破裂,这不但影响了工程的进行,而且带来了巨大的经济损失。

因此,准确预测地层孔隙压力,对钻井设计中钻井液密度的选择和合理的井身结构设计起着重要作用,同时也是打好一口井的重要因素。

文中概述了关于地层孔隙压力预测的一系列方法,并通过实例来说明如何准确预测,最后针对预测方法的局限性提出了一些建议。

关键词 勘探开发 预测 地层孔隙压力 钻井液密度  地层孔隙压力预测方法的理论基础是压实理论、均衡理论及有效应力理论,预测方法有钻速法、地球物理方法(地震波)、测井法(声波时差)等。

目前单一应用某一种方法是很难准确评价一个地区或区块的地层孔隙压力,往往需要运用多种方法形成一种规范的预测准则[1],来进行综合分析和解释。

地层孔隙压力评价方法可分为2类:一类是利用地震资料或已钻井资料进行预测,建立单井或区块地层压力剖面,用于钻井工程设计、施工;另一类是钻井过程中监测地层压力,掌握地层压力实际变化,确定现行钻井措施及溢流监控。

3 目前常用的地层孔隙压力预测方法有钻前预测地层压力、随钻检测地层压力和钻井后检测地层压力。

1 钻前预测地层压力由于在钻某一区块的第一口井时没有可用的测井资料及邻井相关数据,所以只能通过地震资料来估算地层压力[2]。

预测原理:地震波在地层中的传播速度与地层岩石的岩性压实程度、埋藏深度以及地质时代等因素有关。

一般情况下,地震波的传播速度随地层的埋藏深度的加大而增加,地震波在地层介质中的传播速度与岩层埋藏深度、岩石沉积时代和岩石密度成正比关系,与岩石孔隙度成反比关系,利用这些特性就可以对地层压力进行预测。

地层孔隙压力

地层孔隙压力

在等效深度处,d指数相等
PP—所求深度的地层压力,MPa; H—所求地层压力点的深度,m; G0—上覆地层压力梯度,MPa/m; HE—等效深度,m; Gn—等效深度处的正常地层压力梯度,MPa/m。
地层压力计算步骤
钻井参数录入
钻速、钻压、转速、地层水密度、钻井液密度
H
计算dc指数
回归正常趋势线
计算地层压力
而地层孔隙内流体(水)的压力为: p=0.00981ρh =0.00981×1.07×3000 =31.547MPa
主要内容
地层孔隙压力的概念 地层孔隙压力的预测方法
孔隙压力计算实例
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
二、地层孔隙压力的预测方法
基于压实理论、均衡理论及有效应力理论,地层压力预测方法主要有: (1)地球物理方法(地震波法)——钻前 (2)钻速法(dc指数法)——钻井中 (3)测井法(声波时差法)——钻后
二、地层孔隙压力的预测方法
2、dc指数法
(1)原理:机械钻速是井底压差、钻压、转速、钻头类型及尺 寸、水力参数、钻井液性能、地层岩性等因素的函数。当其它因 素一定时,只考虑压差对钻速的影响,则机械钻速随压差减小而 增加。
(2)适用范围:岩性为泥岩、页岩;钻进过程中的地层压力监
测和完钻后区块地层压力统计分析。
标准钻速方程:
d
P e V = KN D 有缘学习更多+谓ygd3076考b 证资料或关注桃报:奉献教育(店铺)
二、地层孔隙压力的预测方法
3、声波时差法
(1)原理:声波在地层中的传播速度与岩性密
切相关,当岩性一定时,声波的速度随岩石孔
隙度的增大而减小。在正常地层压力井段,随

地层三个压力剖面预测技术现状与发展趋势教学内容

地层三个压力剖面预测技术现状与发展趋势教学内容

计算坍塌压力和破裂压力
特点:数据来源广泛、成本低、相关性 好、精度较高。
(3.4)页岩比表面积法
基本原理
恒定地应力梯度
页岩比表面积
强度参数
计算坍塌压力和破裂压力
特点:处理过程复杂、成本较低、相关 性较差、精度较低。
(3.5)人造岩心法
基本原理
恒定地应力梯度
人造岩心强度
实际岩心强度参数
计算坍塌压力和破裂压力
直井非线性井眼围岩应力分布
直井弹塑性井眼围岩应力分布
直井线弹性井眼围岩应力分布规律
假设:地层为线性、均质、各向同性弹 性体。
h H
h H
h
h H- h
则,井眼围岩应力分布规律为:
r
H
h
2
1
r2 a2
r2 a2
3
r4 a4
cos2
a2 r2
pm pp
H h
2
1
r2 a2
H
h
2
13
需求:钻井全过程地层三个压力 如何确定所有钻遇地层的力学参数 如何确定所有钻遇地层的地应力 如何考虑水基钻井液对地层参数的影响。
四、我们研究的创新性
分层地应力确定技术 反分析法确定地层的原位强度 关联数据库 可分层确定地应力、弹性模量、泊松比、强 度、有效应力系数、地层三个压力 定井深计算 分段推荐地层三个压力
2.4 破裂压力的计算
•拉伸破坏准则:
3 t
t
破裂压力表达式:
p f 3 h H p p t
三、地层三项压力研究历史及现状(1)
八十年代以前,地层孔隙压力以监测为 主,如页岩密度法、DC指数法等。地层 破裂压力预测处于经验模式阶段,如马 修斯-凯利模式、伊顿模式等。没有地层 坍塌压力的概念。 八十年代,提出了地层坍塌压力的概念, 并从理论上对地层三个压力进行了公式 推导。 九十年代,实用技术开发阶段。

地层压力检测技术知识讲解

地层压力检测技术知识讲解
H
(3)Sigmalog法 ①简介: Sigmalog法是1984年,美国AGP公司开发的一种
地层压力检测方法。此法克服了因井径、参数变化、岩 性等因素对检测精度的影响。较适合4000m以上的深井。
②原理:利用欠压实地层岩石强度不按压实规律变化的特 性检测地层压力。
岩石强度公式: (未考虑钻井液及地层流体的影响)
a、加岩屑于钻井液密度秤钻井液杯中,加盖后,使游 码指示读数为1g/cm³。 b、加清水充满钻井液杯,加盖后测定密度值ρT
c、计算页岩密度值ρsh=1/(2- ρT ) e、列表作H- ρsh关系曲线
ρsh
H
f、用标准透明密度图版覆盖于 H- ρsh图上,使图版的正常 地层压力当量钻井液密度线与H- ρsh上的正常密度趋势
② dc指数方程: dc=
㏒(0.0547R/N) ρn
㏒(0.0673W/D) ρm
式中:R---机械钻速 m/h
N---转速
r/min
W---钻压 KN
D---钻头直径 mm
ρn—该地区地层流体密度
ρm—钻井液密度
③dc指数方程中各参数录取原则: a、在钻速慢的地层中,可按1.5-3m录取; b、在钻速快的地层中,可按7.5或15m录取; c、求dc指数时,各参数的录取必须在泥页岩井段,其它岩 层的参数不能用。 ④数据处理
求出岩石总强度(σt)¹⁄² 通过(σr) ¹⁄²=aH/1000+b,求该深度在正常趋势线上
所对应的岩石强度(σr) ¹⁄² 设Y=(σr) ¹⁄²/(σt)¹⁄²
则地层压力梯度为: Gp=Gm- [ 20(1-Y)]/ [nY (2-Y)H ] 式中: Gm---钻井液压力梯度 100kpa/m n=3.25/ [640 (σt)¹⁄²] 当 ((σt)¹⁄²≤1)时 n=(1/640 ) [4-0.79/(σt)¹⁄²]当((σt)¹⁄²>1)时

庆深气田火山岩地层三个压力预测技术研究

庆深气田火山岩地层三个压力预测技术研究

Qn —ag ( rl gE g er gadT cnl yR sac s t e f a i rl g n xlr i nier g o p— i g n Dii ni ei eh o g eerhI tu qn D ln dE poao E g e n m a g ln n n n o n ito D g i i a tn n i C n ,D qn el gag13 1 , hn ) y a i H i nj n 6 4 3 C ia g o i
井工程设计的一项重要 内容 。分析了火山岩地层 的压力预测技术 , 首次将 国外 先进的岩石力学 理论应用 于庆深气
田火 山岩地层 , 建立 了 3个压力预测模型 , 针对模型和庆深气 田火 山岩地层特性提 出 了新 的修正方 法 ; 编制 了庆深 气 田火 山岩地层 3个压力预测软件 , 该模型软件精度满足现场施 工要 求 , 为大庆地 区钻井工程设计提供 了参 考。 关键词 : 山岩 ; 火 孔隙压力 ; 坍塌压力 ; 破裂压力 ; 预测模 型 ; 大庆地 区
o ed s no d ln n nei a i ae. frh ei f rl ge g er gi D qn ra t g i i i n n g
Ke r s:v l a i o k;p r r s u e o lp ig p e s r y wo d oc nc r c o e p e s r ;c l sn rs u e;b e k o r su e;p e it n mo e ;Da i g a e a ra d w p es r n rd ci d l o qn a r
o r su e p e it n s f r ewe e w r e u ,a d t e p e iin me h o s u t n r q e t ,i p o i e e rf r n e fp e s r r d ci ot o wa r o d o t n h rc s t e c n t ci e u ss t r vd s t ee e c d o t r o h

地层三个压力预测、监测技术发展现状及展望

地层三个压力预测、监测技术发展现状及展望

(4.2)常规测井资料法
基本原理 纵横波时差、密度、自然γ 纵横波时差、密度、自然γ 计算坍塌压力和破裂压力
地应力 强度参数
特点:数据来源广泛、成本低、相关性 特点 好、精度较高。
(4.3)地震层速度法
基本原理 地震层速度 地应力 地震层速度 强度参数 计算坍塌压力和破裂压力 特点:数据来源广泛、成本低、单因素 特点 相关性差、精度低。
20
10
0 0 10 20 30 40 50 60 70 80 90
sita
3.2 强度破坏准则
应力
强度
•拉伸破坏 拉伸破坏 •剪切破坏 剪切破坏
拉伸破坏
最大拉应力破坏准则 σ3=-σt 是水力压裂的起点或井漏的起点。
σmin σmax
σθ
剪切破坏准则
• Coulomb-Mohr强度准则 强度准则 •Lades强度准则 强度准则 •Hoek-Brown强度准则 强度准则 •Drucker-Prager准则 准则
地层三个压力预测、监测技术 发展现状及展望
石油大学(华东) 石油大学(华东)石油工程学院 教授/ 程远方 教授/博士生导师
汇报内容
前言 地层三个压力在钻井中的重要性 地层三个压力分析的基本原理 地层三个压力研究历史及现状 自适应井壁稳定分析技术 井壁稳定的力学/ 井壁稳定的力学/化学耦合研究 自适应井壁稳定技术的应用 岩屑声波法地层三个压力监测
0 产生膨胀压/水化应力 产生膨胀压 水化应力 pπ

水基钻井液作用下泥页岩的膜效率
高浓度 水溶液
低浓度 水溶液
p π = αp π
页岩 α=0-1
0
力学力学-化学耦合研究方法
水力压差 化学势差

钻井过程中地层压力预测与监测

钻井过程中地层压力预测与监测[摘要]钻井过程中异常高压研究在石油勘探行业给予了足够的重视是因为它在石油勘探开发中具有十分重要的理论和实际意义。

本文提出了以地质研究为基础,综合测井、地震和录井等资料,进行区块研究,建立压力分布的宏观模型,为随钻预测与监测提供静态预测模型,并根据实时录井资料进行适当修正,将预测与监测紧密结合,达到准确压力预测的目的。

[关键词]超压成因超压预测 dc指数定量预测方法设计中图分类号:te271 文献标识码:a 文章编号:1009-914x(2013)11-0164-011 异常高压的基本成因及压力预测的理论依据对超压成因的认识是我们进行压力预测与监测的基础,不同成因类型的超压,决定了我们所采用预测和监测方法的适应程度。

超压体的成因是由多种因素造成的,可归纳为沉积型和构造型两类。

沉积型成因以快速沉积造成的不均衡压实作用为主,带动水热增压作用、蒙脱石变成伊利石的成岩作用和烃类生成作用等。

构造型成因主要是由区域性抬升隆起等构造应力作用形成的。

目前的压力预测水平分析,主要都是根据地震、测井、钻速等三个方面的资料来进行定量预测和监测的,而这些方法的根本理论依据就是超压起因于压实与排液的不平衡,我们的讨论也仅限于压实成因的超压预测问题。

2 地层压力定量预测方法设计异常高压带的预测方法按类别可分为钻井法、测井法和地震法等。

这些方法的一个共同特点就是通过对欠压实地层的检测来间接地求取地层压力。

我们的研究主要通过钻井资料、测压资料进行标定,以地震资料和测井资料研究和处理为主,开展岩性组合、泥岩过剩压力、储层流体势的预测,在压力预测的基础上,将预测结果应用于现场dc 指数的实时地层压力监测。

2.1 地层压力预测应用等效深度法,将测井解释的泥岩压实曲线或地震速度曲线变换为地层压力曲线,进而获取地层的地层压力、过剩压力、压力系数、压力梯度等参数,达到异常压力预测的目的。

并将计算结果按点、线、面(目标层段)成图。

地层压力预测方法

一、地层压力预测软件有:1.JASON软件Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。

Jason 的重要特点就是随着越来越多的非地震信息(测井,测试,地质)的引入,由地震数据推演的油气藏参数模型的分辨率和细节会得到不断的改善。

用户可根据需要由Jason 的模块构建自己的研究流程。

其反演模块包括:InverTrace:递归反演稀疏脉冲反演InverTrace_plus:稀疏脉冲反演RockTrace:弹性反演InverMod:特征反演(主组分分析)StatMod:随机模拟随机反演FunctionMod:函数运算压力预测原理:由JASON反演出地层速度,速度计算垂直有效应力,进而求出孔隙流体压力。

2、地层孔隙压力和破裂压力预测和分析软件DrillWorks/PREDICTGNG软件功能:•趋势线(参考线)的建立--手工--最小二乘方拟合--参考线库•页岩辨别分析•上覆岩层梯度分析--体积密度测井--密度孔隙度测井--用户定义方法(程序)•孔隙压力分法--指数方法电阻率、D一指数声波、电导率地震波--等效深度方法电阻率、D--指数声波--潘尼派克方沾--用户定义方法(程序)•压裂梯度分法--伊顿方法--马修斯和凯利方法--用户定义方法(程序)•系统支持项目和油井数据库•系统支持所有趋势线方法•系统包括交叉绘图功能•用户定义方法(程序)•包括全套算子•系统支持井与井之间的关联分析•系统支持岩性显示•系统支持随钻实时分析•系统支持随钻关联分析•多用户网络版本数据装载功能:•斯仑贝谢LIS磁盘输入•斯仑贝谢LIS磁带输入•CWLS LAS输入•ASCII输入•离散的表格输入•井眼测斜数据•测深/垂深表格用户范围:•美国墨西哥湾•北海•西部非洲•南美•尼日利亚三角洲•南中国海•澳大利亚DrillWorks/PREDICTGNG 与其它软件的区别•世界上用得最多的地层压力软件•钻前预测、随钻监测和钻后检测•用户主导的软件系统•准确确定--上覆岩层压力梯度--孔隙压力梯度--破裂压力梯度•使用下列数据的任何组合来分析地层:-地震波速度-有线测井-MWD、LWD数据-重复地层测试(RFT)-泄漏试验(LOT)数据-录井资料-地质资料•面向现实世界中数据资料不尽人意、而新的方法又层出不穷的用户而设计的•地层压力软件平台:新的预测压力方法可通过"用户定义方法(程序)"编入系统软件用途:•准确预测地层压力•有效降低钻井成本•提高经济效益•优化井眼尺寸•优化泥浆和水力学•避免井涌和卡钻•减少地层污染•延伸套管鞋深度•减少套管数目•保障施工安全3、GeoPredict地层孔隙压力预测软件本程序基于当量深度法,根据钻进过程中钻时的快慢,并结合岩屑的岩性,由操作人员在图中用拖动鼠标的方式挑出的泥/页岩段,完成压力预测原理中首先选取泥/页岩段的过程。

地层孔隙压力检测预测技术

异常地层孔隙压力定量确定技术
樊洪海
2006 年11月17日
二、异常高压的形成机制与分类
1、不平衡压实作用
①沉积速率;②孔隙空间减小速率;③地层渗透率的大小;④流体排出情况; 平衡压实形成正常压力,平衡压实形成异常高压。

快速沉积是造成不平衡压实的主要原因之一,由于沉积速率过快,造成沉积颗粒排列不规则(没有足够的时间),排水能力减弱,继续增加的上覆沉积载荷部分由孔隙流体承担,形成异常高压,同时造成地层的欠压实。

原始加载曲线关系卸载曲线关系沉积压实过程力学关系
3. 存在的问题:
◆dc的求法:钻头磨损(牙齿磨损、轴承磨损)、水力因素等影响不易消除;
◆正常趋势确定:非直线
◆Eaton指数确定
◆仅限于泥岩使用
正常压实地层:式中:Δt: h 处的时差,us/m.
Δt 0: 地表时差,us/m.
c —系数。

若将上式在半对数坐标(Δt 为对数、h 为常规坐标),则Δt 与h 成直线。

在非正常压实地层:Δt 偏离(大于)正常趋势线,意味着高压地层。

2.算法:
c 、确定正常趋势线(选泥岩声波时差)
d 、定性判断异常高压
e 、定量计算。

ch
e t t −Δ=Δ0。

地层压力预测方法

地层压力预测方法地层压力预测是地质工程领域的一项重要任务,对于石油勘探和开发、地下工程建设等具有重要的指导意义。

目前,地层压力预测方法主要包括地质学、地球物理学、工程地质学和数学建模等多个学科领域。

下面将介绍几种常用的地层压力预测方法。

1.地质学方法:地质学方法是通过对地层中岩石类型、岩性、孔隙度、渗透率等参数进行研究,通过地质剖面、钻孔揭示、岩心剖面和地层分析等手段,结合实验室试验数据,来预测地层压力。

地质学方法的优点是具有相对较低的成本,但缺点是预测结果受到地质条件的限制。

2.地球物理学方法:地球物理学方法是通过对地下岩石的密度、速度、弹性模量等进行测量和解释,来预测地层压力。

常用的地球物理学方法包括地震反演、重力测量、地电场测量等。

地球物理学方法的优点是可以对大范围地区进行预测,但缺点是需要高精度的仪器设备和复杂的数据处理。

3.工程地质学方法:工程地质学方法是通过地质工程勘探和地层测试,获取地层岩石、土层、岩石层序等信息,结合现场观测数据,来预测地层压力。

常用的工程地质学方法包括钻孔测量、压汞测试、孔隙压力测试等。

工程地质学方法的优点是能够针对具体工程进行预测,但缺点是成本较高且实施周期长。

4.数学建模方法:数学建模方法是通过建立数学模型来预测地层压力。

常用的数学建模方法包括地层力学模型、模拟算法等。

数学建模方法的优点是可以量化地层压力的变化和分布规律,但缺点是对实际情况的复杂程度要求较高。

综上所述,地层压力预测方法是一项复杂的任务,需要综合应用地质学、地球物理学、工程地质学和数学建模等多个学科领域的知识和方法。

在实际应用中,通常需要结合多种方法进行验证和交叉验证,以提高地层压力预测结果的准确性和可靠性。

另外,随着技术和方法的不断进步,地层压力预测方法也在不断演化和改进,以适应不同地质条件和工程需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地层压力预测技术第一章油田的地质特点油田位于松辽盆地北部,其储油层属于陆湖盆地叶状复合三角洲沉积,是一个大型的多层砂岩油田,共有三套含油组合,即上部黑帝庙、中部萨葡高和下部扶含油组合。

由于湖盆频繁而广泛的变化,形成了泛滥平原、分流平原、三角洲外前缘等不同的沉积相带,在萨尔图、葡萄花、高台子含油层段,由于不同的沉积时期和不同的沉积环境,又形成了不同类型的沉积砂体和沉积旋回,因此造成其平面上和垂向上的严重非均质性。

由于这种特定的陆湖相沉积环境,构成了油田的许多基本特点。

一是油层多,含油井段长,储量丰度高。

萨尔图、葡萄花、高台子油层组,约有49~130多个单层,含油井段几十米到几百米,每平方公里的储量从几十万吨到几百万吨不等。

二是油层厚度大,差异也大,最薄的0.2m,一般1m~3m,最大单层厚度可达10m~13m。

三是渗透率差异大,空气渗透率最低0.02μm2,最高达5μm2。

在纵向剖面上,形成了砂岩与泥岩,厚层与薄层,高渗透层与低渗透层交错分布的复杂情况。

第二章浅气层分布规律及下表层原则2.1 浅气层的分布规律浅气层在油田尤其是油田长垣北部的喇、萨、杏油田具有广泛的分布。

在构造轴部的嫩二段顶部粉砂岩及泥质粉砂岩层,嫩三段的粉砂岩及泥质粉砂岩层,嫩四段的细砂岩及粉砂岩层,只要具备以下三条件,就能形成浅气层(在外围就是黑帝庙油层)。

1)具备2.5m视电阻率为10Ω·m,自然电位3mv的砂岩。

2)该砂岩必须在一定海拔深度以上才能形成气层。

3) 同时形成一定的局部构造圈闭及断层遮挡条件(即断层断裂后相对隆起的下盘被断层遮挡),有利于浅气层的聚集。

,萨尔图、杏树岗油田浅气含气围见表1-1,喇嘛甸油田浅气含气围见表1-2。

图1-1 浅气层分区示意图表1-1 萨尔图、杏树岗油田浅气层分布及防喷地质要求表1-2 喇嘛甸油田浅气层分布及防喷地质要求储集在各储集层的浅气层的产状有很大的差别,嫩二段顶部砂岩的浅气层产状以纯气层为主,而嫩三段、嫩四段砂岩中的浅气层则以气水同层为主,在钻井过程中,如果不采取防措施或采取措施不当,极易发生气浸、井涌、井喷甚至井喷失控等复杂情况,重者造成钻机陷入地下,固后管外喷冒而报废井,轻者套管外冒气、冒水而影响油水井投产,使企业、国家蒙受重大经济损失,地下资源遭到人为破坏,环境遭受严重污染,人民群众生命受到严重威协,因此必须引起足够的重视。

2.2 下表层的原则下表层装防喷器是防喷的基础技术措施,是二次井控的必备条件,根据中国石油天然气集团公司的《石油与天然气钻井井控规定》,结合油田钻井生产实际,于2003年2月制定了《油田井控技术管理实施细则》。

细则规定凡属下列情况之一者,必须下表层装防喷器。

1)新区第一口探井;2)深层及外围探井;3)探气井和开发气井;4)其它预探井;5)有浅气层地区的开发井、调整井;6)设计钻井液密度超过1.90g/cm3的调整井、开发井;7)位于居民区的调整井、开发井;8)在铁路、公路干线、主要工业及民用建筑物100m围以的调整井、开发井;9)特殊作业或试验井。

第三章钻井前降低地层压力的方法近年来,油藏评价钻井在长垣部调整井区加深钻探扶油层的井越来越多,由于中部萨葡高含油组合注水开发,给尚处于原始状态的扶油层钻井带来了很大难度。

钻井前,若能把中部萨葡高含油组合的高压层的压力降下来,使用较低的钻井液密度钻井,既可以减少对油层的污染,也可以有效地减少钻井中井喷、井漏和卡钻等复杂情况发生,这对提高固井质量也有一定的好处,同时还可以降低钻井成本,提高钻井速度。

因此研究钻井前降压方法,也是钻井中很重要的一项技术工作。

老区加深钻探实际上相当于中部萨葡高含油组合钻调整井,因此介绍几种调整井降压方法。

3.1 分区块提前降压钻调整井应是一个区块一个区块进行,以便给分区块提前降压创造条件。

1)降低注水井的注水泵压注水开发的油田,油层压力的来源是注水井长期注水,在钻调整井前,有目的的把注水泵压相对降低一些,注水量就减少了,地层压力也就会降低一些。

2)采油井加大日产液量在同样长的时间里,采出较多的液量,是有利于降低地层压力的。

3)采油井打开堵水层堵水层一般是高压层,钻调整井之前,打开堵水层,使采油井对其采液,就可以降低堵水层的压力。

4)对套管错断的注水井放溢流对应在套管错断层位的高压层,通过套断注水井放溢流,可以很快的把地层压力降下来。

5)对采油井高压层射孔后采液有些套断的注水井,井筒被岩石碎块等杂物堵死,不能放溢流,为了把套断层位对应的高压层的地层孔隙压力降下来,在采油井上,对准套断层位进行射孔后采液,也可以起到降压作用。

3.2 注水井控制注水量它适用于注水层位单一、吸水层单层厚度大、分布面广、渗透率高而且注采平衡的层。

如的喇嘛甸油田,注P1组油层的注水井,就可以采用控注的办法,在短时间局部降低注水井附近区域的地层压力,以满足钻调整井的需要。

3.3 注水井关井停止注水或停止注水并放溢流油田老区调整初期~1995年基本执行:钻关距离600m,开钻前,300m以注水井井口恢复压力不超过 2.0MPa;300m -600m之间的注水井井口恢复压力不超过3.0MPa 。

1995年开始,陆续在不同区块进行了钻关现场试验,在老区钻关距离基本控制在450 m围,即开钻前,300 m以注水井井口恢复压力不超过 2.0MPa;300m-450m之间的注水井井口恢复压力不超过3.0MPa。

当然,对不同区块、不同层位的注水井钻关方案差别也较大。

3.4 钻泄压井对高压层进行泄压在油、水井成片的套管损坏区,套损的注水井和采油井,对套损层位的高压层,都不能降压时,就必须有目的钻一些泄压井。

而后射开套损层位的高压层,以达到降压的目的。

第四章地层压力与固井质量的关系油田已进入高含水后期开采,其二、三次加密调整方案已经陆续展开。

随着油田开发的不断调整,井网越来越密,不同的开发层系,几套开发井网相互作用,使储层的地层压力在平面上和纵向上分布更加复杂,沿用采油厂提供的笼统的静压值来指导调整井钻井工作已不能满足需要。

第一,目前影响固井质量的主要地质因素之一是单层高压,而笼统的静压不能反映单层的压力。

第二,就1口井而言,笼统的静压,是高压层、欠压层、常压层的平均值,因此它低于高压层的压力。

第三,高压层压力和静压值之间相差多少,不是一个定值,光凭经验,在静压值上加上一个差值就等于高压层的压力,盲目性太大。

第四,高压层都是注多采少或光注不采的憋压层,在平面上无规律可言,但在钻井之前,如果不弄清楚,会给钻井和固井造成影响,因此,应当研究小层的压力与固井质量的关系,确定合理的套管下深和井身结构,制定合理的固井设计和施工方案,从而确定合理的固井液密度,以确保调整井的固井质量。

4.1 钻井液密度的确定平衡压力钻井中钻井液密度的确定,以地层孔隙压力当量钻井液密度为基数,再增加一个安全附加值。

选择附加值时要考虑地层孔隙压力预测精度、地层破裂压力、地层坍塌压力、H2S含量和井控设备配套情况,附加值按以下两种原则之一确定(欠平衡井或其他特殊井执行钻井工程设计给定的附加值)。

1) 油水井为0.05 g/cm3~0.10g/cm3,气井为0.07 g/cm3~0.15g/cm3。

2) 油水井为1.5 MPa~3.5MPa,气井为3.0 MPa~5.0MPa。

4.2 地层压力与固井质量的关系4.2.1地层压力与固井质量关系的研究利用模拟装置进行了室试验研究,如图1-2所示,试验装置主要由外套、模拟岩心、环空(水泥环)、套管、声幅仪、数据采集系统等部分组成。

图1-2 室模拟装置图地层压力对固井质量的影响表现在两个方面:一个是环空压差,即液柱压力与地层压力之差值;另一个是层间压差,即高压层与低压层之间孔隙流体压力的差值。

油田由于长期的注水开发,地下已形成高压层、常压层、低压层等并存的多压力层系。

在固井过程中,不同地层的孔隙压力与液柱压力之差值不同(即环空压差不同),环空压差的变化反映了地层压力的变化。

在模拟装置上,进行了不同环空压差下水泥环胶结质量室试验,试验条件:地层状态为钢壁+325目筛网+60目筛网;水泥浆为A级水泥,水灰比0.44,密度1.90g/cm3;养护条件为45℃×水浴养护;滤饼情况为憋压2h×2MPa,浸泡24h,厚度2mm~3mm。

结果见图1-3。

图1-3 环空压差与固井质量关系图由图1-3可见,液柱压力和地层压力的压差在1MPa~8MPa之间,固井声幅检测其幅度值小于5%。

当环空压差大于9.5MPa(相当于低压层固井)时,A级水泥原浆的水泥环胶结质量的声幅值将大于10%。

当环空压差小于1.0MPa(相当于高压层固井)时,水泥浆在固井过程中将不能阻止地层流体的侵入,地层流体将侵入环空,引起声幅值的升高或二界面的窜槽,从而破坏环空的胶结质量。

4.2.2地层压力影响水泥环胶结质量的机理在钻井固井生产过程中,地层压力对水泥浆胶结质量的影响可以分为下列2种情况:一是高压层的固井(相当于室试验的环空低压差<1.0 MPa,二是低压层固井(相当于室试验的环空高压差>9.0MPa)。

高压层固井地质因素对水泥环胶结质量的影响机理是:高压层固井时地层压力较高,环空压差较小,水泥浆在凝固过程中水泥颗粒饺合强度的发展引起环空阻渗能力的降低。

当环空阻渗能力降至低于地层侵入能力,而水泥石孔隙毛细管力的发展不能补偿环空阻渗能力的降低时,地层流体侵入环空,破坏水泥环的胶结质量,引起二界面的窜槽甚至空套管。

取环空压差试验的水泥环进行结构分析。

通过矿相分析可知,环空压差<1.0MPa作用下形成的水泥环,其水泥石的显微结构与环空压差在1.0MPa~9.0 MPa形成的水泥石相比,水泥颗粒胶结疏松,孔隙度较大,胶结物(主要是氢氧钙石)不发育,水泥颗粒之间的胶结作用减弱,氢氧钙石在孔隙中自形发育,水泥石的渗透率和孔隙度较高,毛细管力较小,水泥石的胶结质量较差。

所以高压层固井时必须保证环空压差大于1MPa,以防止地层流体在水泥浆候凝过程中侵入环空。

低压层固井地质因素对水泥环胶结质量的影响机理是:低压层由于地层压力较低,环空压差较高,水泥浆的阻渗能力明显增大,结果造成水泥浆的滤失。

由室试验,取高压差下水泥浆失水后形成的水泥石进行显微结构矿相分析可知,高压失水后形成的水泥石水化颗粒堆积,水化产物不发育,水泥颗粒自形程度较高,胶结物氢氧钙石含量较少,颗粒间的饺合强度低。

失水后形成的水泥石再放入水浴中养护,由矿相分析可见,水泥颗粒继续水化,颗粒间胶结作用增强,水化产物进一步发育,导致水泥石处于高应力场中,在应力集中处水泥颗粒间原有的胶结结构被破坏,局部可见微裂缝。

故当水泥浆的滤失量达到水泥浆体积的13%时,水泥颗粒堆积,环空水泥浆的容积变小,相互胶结很快形成结构,环空中水泥石具有一定的颗粒饺合强度,环空的阻渗能力降低,环空中的水泥浆滤失将减弱乃至停止。

相关文档
最新文档