宁波中考数学试题与答案

合集下载

2023年浙江省宁波市鄞州实验学校、惠贞学校、慈溪实验学校等校中考数学联考试卷答案解析(3月份)

2023年浙江省宁波市鄞州实验学校、惠贞学校、慈溪实验学校等校中考数学联考试卷答案解析(3月份)

2023年浙江宁波市鄞州实验学校、惠贞学校、慈溪实验学校等中考数学联考试卷一、选择题(共10小题,共40分)1.(4分)下面的数中,与2022的和为0的是()A.2022B.﹣2022C.D.﹣2.(4分)下列运算正确的是()A.2x﹣y=﹣xy B.x﹣2x=﹣xC.x2+x2=x4D.(x﹣1)2=x2﹣13.(4分)网络用语“6”是比较厉害的意思,且“6”本身是一个自然数.将数字0.000000006用科学记数法表示为()A.﹣6×109B.﹣0.6×108C.0.6×10﹣8D.6×10﹣94.(4分)中秋节上,同学设计了如图的艺术字“中秋快乐”,下面展示如图几何体“中”字的俯视图是()A.B.C.D.5.(4分)若分式有意义,则x的取值范围是()A.x>2B.x≤2C.x=2D.x≠26.(4分)一组数据x1,x2,…,x7的方差是S2=,则该组数据的和为()A.37B.73C.10D.217.(4分)我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中,正确的有()①;②;③3x+(100﹣x)=100;④y+3(100﹣y)=100.A.0个B.1个C.2个D.3个8.(4分)如图,在△ABC中,CD平分∠ACB,交AB于点D,BE平分∠ABC,交CD于点E,AE的延长线交BC于点F,若AB=AC=5,BC=6,则△BEF与△ABE的面积比为()A.B.C.D.9.(4分)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB 上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥﹣2;②当x>0时,一定有y随x的增大而增大;③当四边形ABCD为平行四边形时.;④若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3.其中正确的是()A.①④B.②③C.①②④D.①③④10.(4分)如图,∠MON=45°,点A、B分别在射线OM、射线ON上运动,四边形ABCD 是矩形,且AB=2,AD=1,则OD的最大值为()A.B.C.D.无最大值二、填空题(共6小题,共30分)11.(5分)=.12.(5分)因式分解:﹣4a2+4a﹣1=.13.(5分)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是.14.(5分)如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于N,那:S四边形ANME=.么S△DMN15.(5分)如图,在矩形ABCD中,AB=6,BC=8,E为AD上一点,且AE=2,F为BC 边上的动点,以EF为直径作⊙O,当⊙O与矩形的边相切时,BF的长为.16.(5分)如图,△COD为直角三角形,∠COD=90°,点A为斜边CD的中点,反比例函数图象经过A、C(点C在第一象限),点D在反比例函数上(点D在第二象限),过点D作x轴的垂线交y1的图象于点B,过点C作x轴的垂线交y2的图象于点E,连结BC,OE,已知△CBD的面积为16,若A,B 两点关于原点成中心对称,则a﹣b的值为,tan∠CDO=.三、解答题(共8小题,共80分,其中17、18、19题每题8分,20、21、22题每题10分,23题12分,24题14分)17.(8分)(1)化简:;(2)解不等式:.18.(8分)如图是边长为1的小正方形构成的8×6的网格,三角形ABC的顶点均在格点上.(1)将三角形ABC绕C点按顺时针旋转90°,得到三角形A1B1C,请在图1中作出三角形A1B1C.(2)在图2中,仅用无刻度尺在线段AC上找一点M,使得.(3)在图3中,在三角形内寻找一格点N,使得∠BNC=2∠A.19.(8分)从甲、乙两个企业随机抽取部分职工,对某个月月收入情况进行调查,并把调查结果分别制成扇形统计图和条形统计图.(1)在扇形统计图中,“6千元”所在的扇形的圆心角是;(2)在乙企业抽取的部分职工中,随机选择一名职工,求该职工月收入超过5千元的概率;(3)若要比较甲、乙两家企业抽取的职工的平均工资,小明提出自己的看法:虽然不知道甲企业抽取职工的人数,但是可以根据加权平均数计算甲企业抽取的职工的平均工资,因此可以比较;小明的说法正确吗?若正确,请比较甲企业抽取的职工的平均工资与乙企业抽取的职工的平均工资的多少;若不正确,请说明理由.20.(10分)长嘴壶茶艺表演是一项深受群众喜爱的民俗文化,是我国茶文化的一部分,所用到的长嘴壶更是历史悠久,源远流长.图①是现今使用的某款长嘴壶放置在水平桌面上的照片,图②是其抽象示意图,l是水平桌面,测得壶身AD=BC=3AE=24cm,AB =30cm,CD=22cm,且CD∥AB.壶嘴EF=80cm,∠FED=70°.(1)求FE与水平桌面l的夹角;(2)如图③,若长嘴壶中装有若干茶水,绕点A转动壶身,当恰好倒出茶水时,EF∥l,求此时点F下落的高度.(结果保留一位小数).参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75.21.(10分)在平面直角坐标系xOy中,P(x1,y1),Q(x2,y2)是抛物线y=x2﹣2mx+m2﹣1上任意两点.(1)求抛物线的顶点坐标(用含m的式子表示);(2)若x1=m﹣3,x2=m+2,比较y1与y2的大小,并说明理由;(3)若对于﹣3≤x1<4,x2=4,都有y1≤y2,直接写出m的取值范围.22.(10分)甲、乙两地间的直线公路长为600千米,一辆轿车与一辆货车分别沿该公路从甲、乙两地以各自的速度相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶,1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计)最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/时,轿车的速度是千米/时;(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数表达式;(3)求货车出发多长时间,两车相距120千米?23.(12分)如图,矩形EBGF和矩形ABCD共顶点,且绕着点B顺时针旋转,满足.(1)如图1,当D,E,B三点共线,且AB=8,BE=4,求的比值;(2)如图2,的比值是否发生变化,若不变,说明理由;若变化,求出相应的值,并说明理由;(3)如图3,若点F为CD的中点,且AB=8,AD=6,连结CG,求△FCG的面积.24.(14分)如图1,正方形ABCD的边长为4,点E,F分别在BC,BD上,且BE=1,过三点C,E,F作⊙O交CD于点G.(1)证明∠EFG=90°.(2)如图2,连接AF,当点F运动至点A,F,G三点共线时,求△ADF的面积.(3)在点F整个运动过程中,①当EF,FG,CG中满足某两条线段相等,求所有满足条件的BF的长.②连接EG,若=时,求⊙O的半径(请直接写出答案).2023年浙江宁波市鄞州实验学校、惠贞学校、慈溪实验学校等中考数学联考试卷参考答案与试题解析(3月份)一、选择题(共10小题,共40分)1.【分析】利用有理数的加法或互为相反数的定义计算并判断.【解答】解:与2022的和为0的数是﹣2022,故选:B.【点评】本题考查了有理数的加法法则,解题的关键是掌握有理数的加法法则.2.【分析】根据整式的运算法则即可求出答案.【解答】解:A、2x与y不是同类项,不能合并,故不符合题意;B、x﹣2x=﹣x,符合题意;C、x2+x2=2x2,故不符合题意;D、(x﹣1)2=x2﹣2x+1,故不符合题意.故选:B.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.000000006=6×10﹣9.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】找到从几何体的上面看所得到的图形即可.【解答】解:这个几何体的俯视图为:故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【分析】分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:依题意得:x﹣2>0,解得x>2.故选:A.【点评】本题考查了分式及二次根式有意义的条件,根据题意列出关于x的不等式是解题的关键.6.【分析】样本方差s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],其中n是这个样本的容量,是样本的平均数.利用此公式直接求解.【解答】解:∵一组数据的方差s2=[(x1﹣3)2+(x2﹣3)2+…+(x7﹣3)2],∴数据的个数为7个,平均数为3,∴该组数据的总和是:3×7=21.故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的计算公式及公式中的字母所表示的意义.7.【分析】设大和尚有x人,小和尚有y人,根据100个和尚分100个馒头且大和尚1人分3个馒头、小和尚3人分一个馒头,即可得出关于x,y的二元一次方程组,变形后可得出3x+(100﹣x)=100或y+3(100﹣y)=100,此题得解.【解答】解:设大和尚有x人,小和尚有y人,依题意,得:;∴y=100﹣x,∴3x+(100﹣x)=100或y+3(100﹣y)=100.∴②③④正确.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组以及由实际问题抽象出一元一次方程,找准等量关系,正确列出二元一次方程组(或一元一次方程)是解题的关键.8.【分析】先根据题意得出点E是△ABC角平分线的交点,再由等腰三角形的性质可知AF ⊥BC,故可得出BF的长,进而可得出结论.【解答】解:∵CD平分∠ACB,BE平分∠ABC,∴点E是△ABC角平分线的交点,∴△BEF与△ABE的高相等.∵AB=AC=5,BC=6,∴AF⊥BC,∴BF=BC=3.∴BF:AB=3:5,∴△BEF与△ABE的面积比为:.故选:A.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质是解题的关键.9.【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①正确;当顶点运动到y轴右侧时,根据二次函数的增减性判断出②错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,即可判断③正确;当顶点在A点时,D能取到最小值,当顶点在B点时,C能取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,判断出④正确.【解答】解:∵点A,B的坐标分别为(﹣3,﹣2)和(1,﹣2),∴线段AB与y轴的交点坐标为(0,﹣2),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≥﹣2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;令y=0,则ax2+bx+c=0,CD2=(﹣)2﹣4×=,根据顶点坐标公式,=﹣2,∴=﹣8,即=8,∴CD2=×8=,∵四边形ABCD为平行四边形,∴CD=AB=1﹣(﹣3)=4,∴=42=16,解得a=,故③正确;若点D的横坐标最小值为﹣5,则此时对称轴为直线x=﹣3,C点的横坐标为﹣1,则CD =4,∵抛物线形状不变,当对称轴为直线x=1时,C点的横坐标为3,∴点C的横坐标最大值为3,故④正确.综上所述,正确的结论有①③④.故选:D.【点评】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y轴上的情况.10.【分析】以AB为底边作等腰直角△AEB,作EH⊥CD于H,连接DE,OE,则点O在以E为圆心,AE为半径的圆上运动,将问题转化为点与圆的距离.【解答】解:以AB为底边作等腰直角△AEB,作EH⊥CD于H,连接DE,OE,∵∠MON=45°,∴点O在以E为圆心,AE为半径的圆上运动,∵AB=2,∴AE=OE=,在Rt△EDH中,由勾股定理得,DE==,∴当点D、E、O共线时,OD最大,∴OD的最大值为OE+DE=+,故选:A.【点评】本题主要考查了等腰直角三角形的性质,矩形的性质,利用定边对定角构造隐圆是解题的关键.二、填空题(共6小题,共30分)11.【分析】利用算术平方根定义计算即可求出值.【解答】解:∵22=4,∴4的算术平方根是2,即=2.故答案为:2.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.【分析】先提取公因式﹣1,再利用完全平方公式分解因式即可.【解答】角解:原式=﹣(4a2+4a+1)=﹣(2a﹣1)2.故答案为:﹣(2a﹣1)2.【点评】本题考查了因式分解﹣运用公式法,体现了整体思想,掌握a2±2ab+b2=(a ±b)2是解题的关键.13.【分析】求出圆锥的底面圆的周长,根据扇形的面积公式计算即可.【解答】解:∵圆锥的底面圆半径是1,∴圆锥的底面圆的周长=2π,则圆锥的侧面积=×2π×3=3π,故答案为:3π.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【分析】根据三角形的中位线定理,把各边的关系转化为面积的关系来解答.【解答】解:DE是中位线,M是DE中点,∴DM:BC=1:4,∴DN:DB=1:3,AN:DN=1:2,:S△ANM=1:2.∴S△NDM=S△AME,∴S△ADM:S四边形ANME=1:5.∴S△NDM=S 【点评】解答此题,首先根据相似三角形的面积比等于相似比的平方,求出S△ADE,便可找到突破口解答.△ABC15.【分析】分三种情况,一是⊙O与BC边相切,则BC⊥OF,可证明四边形ABFE是矩形,则BF=AE=2;二是⊙O与AB边相切,设切点为点G,连接OG,则OG∥AD∥BC,则==1,所以AG=BG=3,连接EG、FG,则∠EGF=90°,可证明△BFG∽△AGE,得=,求得BF=;三是⊙O与CD边相切,设切点为点M,连接OM,则DM=CM=3,连接EM、FM,则∠EMF=90°,可证明△CFM∽△DME,得=,求得CF=,则BF=BC﹣CF=.【解答】解:当⊙O与BC边相切时,如图1,则BC⊥OF,∵四边形ABCD是矩形,∴∠A=∠B=∠EFB=90°,CD=AB=6,AD=BC=8,∴四边形ABFE是矩形,∴BF=AE=2;当⊙O与AB边相切时,如图2,设切点为点G,连接OG,则AB⊥OG,∴∠OGB=∠OGB=∠A=90°,∴OG∥AD∥BC,∵EF是⊙O的直径,∴EO=FO,∴==1,∴AG=BG=AB=×6=3,连接EG、FG,则∠EGF=90°,∵∠B=∠A,∠BFG=∠AGE=90°﹣∠BGF,∴△BFG∽△AGE,∴=,∴BF===;当⊙O与CD边相切时,如图3,设切点为点M,连接OM,则CD⊥OM,∴∠OMD=∠OMC=∠D=∠C=90°,∴OM∥AD∥BC,∴==1,∴DM=CM=CD=3,连接EM、FM,则∠EMF=90°,∵∠C=∠D,∠CMF=∠DEM=90°﹣∠DME,∴△CFM∽△DME,∴=,∴CF===,∴BF=BC﹣CF=8﹣=,综上所述,BF的长为2或或,故答案为:2或或.【点评】此题重点考查矩形的判定与性质、切线的性质、直径所对的圆周角是直角、平行线分线段成比例定理、相似三角形的判定与性质、数形结合与分类讨论数学思想的运用等知识与方法,正确地作出所需要的辅助线是解题的关键.16.【分析】设A(t,)(t>0),BD与x轴交于点F,CE与x轴交于点G,过点C作CH ⊥BD于点H,可得,求得,再证得△ODF∽△COG,可得==,求得t2=,再利用三角函数定义即可求得答案.【解答】解:设A(t,)(t>0),BD与x轴交于点F,CE与x轴交于点G,过点C 作CH⊥BD于点H,如图,∵A,B两点关于原点中心对称,∴B(﹣t,﹣),∵BD⊥x轴,且点D在反比例函数y2=(b<0)上,∴D(﹣t,﹣),∵点A是CD的中点,∴点C的坐标为(3t,),∵点C在反比例函数y1=(a>0)图象上,∴3t×=a,∴5a+3b=0①,∴BD=﹣﹣(﹣)=,FG=3t﹣(﹣t)=4t,=16,∵S△CBD∴×BD×CH=16,即××4t=16,∴a﹣b=8②,联立①②,得,解得:,∴a﹣b=3+5=8,C(3t,),D(﹣t,),E(3t,﹣),∴OG=3t,CG=,OF=t,DF=,EG=,FG=3t﹣(﹣t)=4t,∵∠DFO=∠OGC=∠CHF=90°,∴四边形CGFH是矩形,∴CH=FG=4t,∵∠DFO=∠OGC=90°,∴∠ODF+∠DOF=90°,∵∠COD=90°,∴∠COG+∠DOF=90°,∴∠ODF=∠COG,∴△ODF∽△COG,∴==,即==,∴t2=,∴tan∠CDO======.故答案为:8,.【点评】本题考查了反比例函数的图象和性质,三角形面积,相似三角形的判定和性质,解直角三角形等,解题关键是熟练运用相似三角形的判定和性质建立方程求解.三、解答题(共8小题,共80分,其中17、18、19题每题8分,20、21、22题每题10分,23题12分,24题14分)17.【分析】(1)根据分式的混合运算法则计算;(2)根据解一元一次不等式的一般步骤解出不等式.【解答】解:(1)原式=(﹣)•=•=;(2)去分母,得3x﹣5(x﹣1)<15,去括号,得3x﹣5x+5<15,移项、合并同类项,得﹣2x<10,系数化为1,得x>﹣5.【点评】本题考查的是分式的混合运算、一元一次不等式的解法,掌握分式的混合运算法则、解一元一次不等式的一般步骤是解题的关键.18.【分析】(1)分别作点A、点B绕C点按顺时针方向旋转90°得到的对应点A1、B1,顺次连接A1C、B1C、A1B1,即可得到△A1B1C;(2)由图可知AP=3,CQ=2,AP∥CQ,由△AMP∽△CMQ,即可证明点M满足要求;(3)按要求找到点N,连接BN、CN、AN,由勾股定理可得,点N到点A、B、C的距离相等,即点N是△ABC的外心,以点N为圆心,BN为半径画圆,由圆周角定理即可证明点N满足要求.【解答】解:(1)如图,△A1B1C即为所求,(2)如图,点M即为所求,由图可知,AP=3,CQ=2,AP∥CQ,∴△AMP∽△CMQ,∴,∴,即点M符合要求;(3)如图,连接BN、CN、AN,由勾股定理可得,∴点N到点A、B、C的距离相等,即点N是△ABC的外心,以点N为圆心,BN为半径画圆,则∠BNC=2∠A,即点N符合题意.【点评】此题考查了相似三角形的判定和性质、圆周角定理、勾股定理、图形的旋转作图等知识,根据题意正确作图是解题的关键.19.【分析】(1)用360°乘以“6千元”所占的的百分比即可;(2)利用概率公式计算即可;(3)分别根据加权平均数和算术平均数的计算方法求出甲企业和乙企业的平均工资,然后可作出判断.【解答】解:(1)360°×(1−10%−10%−20%−20%)=144°,故答案为:144°;(2)由条形图可得:乙企业共抽取10人,其中月收入超过5千元的有3人,∴该职工月收入超过5千元的概率为:;(3)小明的说法正确,设甲企业的调查人数为m,∵“6千元”所占的百分比为:1−10%−10%−20%−20%=40%,∴甲企业的平均工资为:×(20%m×5+10%m×4+10%m×8+20%m×7+40%m×6)=6(千元),乙企业的平均工资为:=6(千元),∴甲企业的平均工资与乙企业的平均工资相等.【点评】本题考查的是条形统计图和扇形统计图的综合运用,概率公式,求加权平均数和算术平均数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【分析】(1)延长FE交l于点O,分别过点D作DM⊥l,垂足为M,过点C作CN⊥l,垂足为N,可得四边形DMNC是平行四边形,从而可得MN=CD,进而可求出AM的长度,然后在Rt△ADM中,利用锐角三角函数的定义求出∠DAO,最后利用三角形内角和定理进行计算即可解答;(2)利用图②,过点F作FH⊥l,垂足为H,过点E作EG⊥l,垂足为G,过点E作EP⊥FH,垂足为P,可得四边形PHGE是矩形,从而可得EP∥GH,PH=EG,进而可得∠FEP=∠AOE=30°,然后在Rt△FPE中求出FP,再在Rt△AEG中,求出EG,即可求出FH,利用图③,过点E作EQ⊥l,垂足为Q,在Rt△EQA中,求出EQ,最后利用FH减去EQ进行计算即可解答.【解答】解:(1)延长FE交l于点O,分别过点D作DM⊥l,垂足为M,过点C作CN ⊥l,垂足为N,∴∠AEO=∠FED=70°,∠AMD=∠BNC=90°,DM∥CN,∵CD∥AB,∴四边形DMNC是平行四边形,∴DM=CN,MN=DC=22(cm),∵AD=BC,∴Rt△ADM≌Rt△BCN(HL),∴AM=BN===4(cm),在Rt△ADM中,cos∠DAM==≈0.17,∴∠DAM=80°,∴∠AOE=180°﹣∠AEO﹣∠DAM=30°,∴FE与水平桌面l的夹角为30°;(2)过点F作FH⊥l,垂足为H,过点E作EG⊥l,垂足为G,过点E作EP⊥FH,垂足为P,∴∠EGH=∠FHG=∠EPH=90,∴四边形PHGE是矩形,∴EP∥GH,PH=EG∴∠FEP=∠AOE=30°,在Rt△FPE中,EF=80cm,∴FP=EF=40(cm),∵AD=3AE,∴AE=8(cm),在Rt△AEG中,∠DAO=80°,∴EG=AE sin80°≈8×0.98=7.84cm,∴PH=EG=7.84(cm),∴FH=FP+PH=47.84(cm),过点E作EQ⊥l,垂足为Q,∵EF∥l,∴∠FED=∠QAE=70°,在Rt△EQA中,AE=8cm,∴EQ=AE sin70°≈8×0.94=7.52(cm),∴FH﹣EQ=47.84﹣7.52=40.32≈40.3(cm),∴点F下落的高度约为40.3cm.【点评】本题考查了解直角三角形的应用,平行线的判定与性质,全等三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.21.【分析】(1)将二次函数解析式化为顶点式求解.(2)分别将x1=m﹣3,x2=m+2代入解析式求解.(3)求出点(4,y2)关于对称轴对称点为(2m﹣4,y2),根据抛物线开口向上及y1≤y2求解.【解答】解:(1)∵y=x2﹣2mx+m2﹣1=(x﹣m)2﹣1,∴抛物线顶点坐标为(m,﹣1).(2)将x=m﹣3代入y=(x﹣m)2﹣1得y=32﹣1=8,将x=m+2代入y=(x﹣m)2﹣1得y=22﹣1=3,∵8>3∴y1>y2.(3)∵抛物线对称轴为直线x=m,∴点(4,y2)关于对称轴对称点为(2m﹣4,y2),∵抛物线开口向上,y1≤y2,∴2m﹣4≤x1<4,∴2m﹣4≤﹣3,解得m≤.【点评】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.22.【分析】(1)根据题意和函数图象中的数据,可以计算出货车的速度、t的值以及轿车的速度;(2)根据函数图象中的数据,可以计算出轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数表达式;(3)根据(1)中的结果和图象,利用分类讨论的方法,可以得到货车出发多长时间两车相距120千米.【解答】解:(1)由图象可得,货车的速度为:60÷1=60(千米/时),t=(600÷60﹣1﹣1)÷2=4,轿车的速度为:360÷4=90(千米/时),故答案为:60,90;(2)当0≤x≤4时,设轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数表达式是y=kx,∵点(4,360)在该函数图象上,∴4k=360,解得k=90,即当0≤x≤4时,轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数表达式是y=90x;当4<x≤5时,y=360;当5<x≤9时,设轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数表达式是y=mx+n,∵点(5,360),(9,0)在该函数图象上,∴,解得,即当5<x≤9时,轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数表达式是y=﹣90x+810,由上可得,轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数表达式是y=;(3)设货车出发a小时时两车相距120千米,两车相遇之前:60a+90(a﹣1)=600﹣120,解得a=3.8,∵3.8﹣1=2.8<4,∴a=3.8时符合题意;两车相遇之后且轿车维修好之前:60a+90(a﹣1)=600+120,解得a=5.4,∵5.4﹣1=4.4>4,∴a=5.4不符合题意,∴60a+90×4=600+120,解得a=6,当a=6时,6﹣1=5,此时轿车刚刚维修好,符合题意;轿车维修好之后:由上可知,当货车行驶6小时时,两车相距120千米,又因为轿车速度大于货车速度,故两车越来越近,距离不可能是120千米;由上可得,货车出发3.8小时或6小时时两车相距120千米.【点评】本题考查一次函数的应用,利用数形结合的思想解答是解答本题的关键.23.【分析】(1)如图1,连接DF、AE,过点A作AM⊥DE于点M,根据题意得出BC=6,BG=3,根据矩形的性质及勾股定理得到BD=10,DF=3,根据三角形面积公式求出AM=,解直角三角形求出AE=,据此即可得解;(2)如图2,比值不变,证明AD:AB:BD=3:4:5,再证明△ABE∽△DBF,可得结论;(3)如图3,,连接BF,AE,过点G作GT⊥DC交DC的延长线于点T,,利用相似三角形的性质求出CG,解直角三角形求出GT,可得结论.【解答】解:(1)如图1,连接DF、AE,过点A作AM⊥DE于点M,∵==,AB=8,BE=4,∴BC=6,BG=3,∵四边形ABCD和四边形EBGF是矩形,∴∠DAB=90°,AD=BC=6,BG=EF=3,∠FEB=90°,∴BD==10,∠FED=180°﹣∠FEB=90°,∴DE=BD﹣BE=6,∴DF===3,=AB•AD=BD•AM,∵S△ABD∴AM===,在Rt△ADM中,DM===,∴ME=DE﹣DM=,∴AE===,∴==;(2)比值不变,理由:如图2中,连接BD,BF,∵四边形ABCD是矩形,∴∠DAB=90°,AD=BC,∵BC:AB=3:4,∴AD:AB=3:4,设AD=3k,则AB=4k,BD=5k,∴AD;AB:BD=3:4:5,同理,EF:BE:BF=3:4:5,∴△ABD∽△EBF,∴∠ABD=∠EBF,=,∴∠ABE=∠DBF,=,∴△ABE∽△DBF,∴==;(3)如图3,连接BF,AE,过点G作GT⊥DC交DC的延长线于点T.∵四边形ABCD是矩形,∴AB=CD=8,∵点F为CD的中点,∴DF=CF=4,∵DF:AE=5:4,∴AE=,∵∠ABC=∠EBG=90°,∴∠ABE=∠CBG,∵==,∴△ABE∽△CBG,∴==,∴CG=,∵∠BCF=∠BGF=90°,∴C,F,B,G四点共圆,∴∠GCT=∠FBG,∵∠T=∠BGF=90°,∴△CTG∽△BGF,∴CT:GT:CG=BG:GF:BF=3:4:5,∴GT=CG=,∴△FCG的面积=•CF•GT=×4×=.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,四点共圆等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.24.【分析】(1)利用圆周角定理解决问题即可.(2)过点F作AD的垂线分别交AD,BC于点M,N(如图1).设MF=MD=a,证明△AMF≌△FNE,推出MF=EN,构建方程求出a即可解决问题.(3)①分三种情形:EF=FG,EF=CG,FG=CG分别求解即可解决问题.②如图4中,连接EG,作EM⊥BD于M,GN⊥BD于N.由△EMF∽△FNG,可得===,设FM=x,则GN=DN=2x,EM=BM=,FM=,根据BD=4,构建方程求出a即可解决问题.【解答】解:(1)连接EG.在正方形ABCD中,得∠C=90°.∴EG为⊙O的直径,∴∠EFG=90°.(2)过点F作AD的垂线分别交AD,BC于点M,N(如图1).由(1)得:∠AFE=90°,∠ADF=45°.∴设MF=MD=a,且AD=MN,∴AM=FN,∵∠NFE+∠AFM=∠AFM+∠MAF,∴∠NFE=∠MAF,∴△AMF≌△FNE(AAS),∴MF=EN,即a=3﹣a,∴a=1.5,=×4×1.5=3.∴S△ADF(3)①Ⅰ当EF=CG时(如图2).∴EF=CG.∴EF∥CG.∴∠BEF=∠C=90°.∴BE=EF=1.∴BF=.Ⅱ当EF=FG时(如图3).∵EF=FG,∴=,∴∠ECF=∠ACE=45°,∴点A,C,E共线.∴F为对角线的交点.∴BF=BD=2.Ⅲ当GF=GC时,点F作AD的垂线分别交AD,BC于点M,N.∵∠ECG=90°,∴EG是直径,∴∠EFG=90°,∴∠ECG=∠EFG=90°,∵EG=EG,EG=GC,∴Rt△EGF≌Rt△EGC(HL),∴EF=CE,∴EF=CE=3,设FN=x.则AM=BN=x.∴EN=x﹣1.根据EN2+FN2=EF2,得:(x﹣1)2+x2=32,解得x=或(舍弃),∴BF=NF=,∴综上所述,所有满足条件的BF长分别为,2,.②如图4中,连接EG,作EM⊥BD于M,GN⊥BD于N.由△EMF∽△FNG,可得===,设FM=x,则GN=DN=2x,EM=BM=,FN=,∵BD=4,∴++3x=4,∴x=,∴DG=DN=,∴CG=CD﹣DG=4﹣=,∴EG===,∴⊙O的半径为.【点评】本题属于圆综合题,考查了正方形的性质,圆周角定理,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题。

浙江省宁波市2021年中考数学试卷(解析版)

浙江省宁波市2021年中考数学试卷(解析版)

浙江省宁波市2021中考数学试卷试题卷Ⅰ一、选择题目(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在﹣3,﹣1,0,2这四个数中,最小的数是( )A. ﹣3B. ﹣1C. 0D. 2【答案】A【解析】【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2. 计算()3a a ⋅-的结果是( ) A. 2aB. 2a -C. 4aD. 4a -【答案】D【解析】 【分析】根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.3. 2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000科学记数法表示为( )A. 73210⨯B. 83.210⨯C. 93.210⨯D. 90.3210⨯ 【答案】B【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 3.2a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到3的后面,所以8.n =【详解】解:8320000000=3.210.故选:.B【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.4. 如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是( )A. B.C. D.【答案】C【解析】【分析】根据主视图是从物体的正面看到的图形解答即可.【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:.故选:C .【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题关键.5. 甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x (单位:环)及方差2S (单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A. 甲B. 乙C. 丙D. 丁 【答案】D【解析】【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∵甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D .【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6. 要使分式12x +有意义,x 的取值应满足( ) A. 0x ≠B. 2x ≠-C. 2x ≥-D. 2x >- 【答案】B【解析】【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】解: 分式12x +有意义, 20,x ∴+≠2.x ∴≠-故选:.B【点睛】本题考查的是分式有意义的条件,掌握“分式有意义,则分母不为零”是解题的关键.7. 如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )C. 1【答案】C【解析】【分析】根据条件可知△ABD为等腰直角三角形,则BD=AD,△ADC是30°、60°的直角三角形,可求出AC长,再根据中位线定理可知EF=2AC。

2021年宁波市中考数学试卷及答案(word解析版)

2021年宁波市中考数学试卷及答案(word解析版)

2021年浙江省宁波市中考数学试卷一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求)1.(3分)(2013•宁波)﹣5的绝对值为()A.﹣5 B.5C.﹣D.考点:绝对值.分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.解答:解:﹣5的绝对值为5,故选:B.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•宁波)下列计算正确的是()A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a5考点:幂的乘方与积的乘方;合并同类项.分析:根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.解答:解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.点评:本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题.3.(3分)(2013•宁波)下列电视台的台标,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.4.(3分)(2013•宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是=.故选:D.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.(3分)(2013•宁波)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A.7.7×109元B.7.7×1010元C.0.77×1010元D.0.77×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:77亿=77 0000 0000=7.7×109,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2013•宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5B.6C.7D.8考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故选A.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.7.(3分)(2013•宁波)两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由两个圆的半径分别为2和3,圆心之间的距离是d=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两个圆的半径分别为2和3,圆心之间的距离是d=5,又∵2+3=5,∴这两个圆的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.8.(3分)(2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6B.8C.10 D.12考点:三角形中位线定理;三角形三边关系.分析:本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了.解答:解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,14<三角形的周长<20,故7<中点三角形周长<10.故选B.点评:本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.9.(3分)(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是()A.B.C.D.考点:展开图折叠成几何体.分析:根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出即可.解答:解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选:C.点评:此题主要考查了展开图折叠成几何体,培养了学生的空间想象能力.10.(3分)(2013•宁波)如图,二次函数y=ax2=bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.a bc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:A、根据图示知,抛物线开口方向向上,则a>0.抛物线的对称轴x=﹣=1>0,则b<0.抛物线与y轴交与负半轴,则c<0,所以abc>0.故本选项错误;B、∵x=﹣=1,∴b=﹣2a,∴2a+b=0.故本选项错误;C、∵对称轴为直线x=1,图象经过(3,0),∴该抛物线与x轴的另一交点的坐标是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故本选项错误;D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,则4ac﹣b2<0.故本选项正确;故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.11.(3分)(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD 的平分线交BD于点E,且AE∥CD,则AD的长为()A.B.C.D.2考点:梯形;等腰三角形的判定与性质.分析:延长AE交BC于F,根据角平分线的定义可得∠BAF=∠DAF,再根据两直线平行,内错角相等可得∠DAF=∠AFB,然后求出∠BAF=∠AFB,再根据等角对等边求出AB=BF,然后求出FC,根据两组对边平行的四边形是平行四边形得到四边形AFCD 是平行四边形,然后根据平行四边形的对边相等解答.解答:解:延长AE交BC于F,∵AE是∠BAD的平分线,∴∠BAF=∠DAF,∵AE∥CD,∴∠DAF=∠AFB,∴∠BAF=∠AFB,∴AB=BF,∵AB=,BC=4,∴CF=4﹣=,∵AD∥BC,AE∥CD,∴四边形AFCD是平行四边形,∴AD=CF=.故选B.点评:本题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质,梯形的问题,关键在于准确作出辅助线.12.(3分)(2013•宁波)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b考点:整式的混合运算.专题:几何图形问题.分析:表示出左上角与右下角部分的面积,求出之差,根据之差与BC无关即可求出a与b 的关系式.解答:解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.故选B点评:此题考查了整式的混合运算的应用,弄清题意是解本题的关键.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2013•宁波)实数﹣8的立方根是﹣2.考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案﹣2.点评:本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.14.(3分)(2011•海南)分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.15.(3分)(2013•宁波)已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为y=﹣.考点:反比例函数的性质.分析:根据图象关于x轴对称,可得出所求的函数解析式.解答:解:关于x轴对称,横坐标不变,纵坐标互为相反数,即﹣y=,∴y=﹣故答案为:y=﹣.点评:本题考查了反比例函数图象的对称性,是识记的内容.16.(3分)(2013•宁波)数据﹣2,﹣1,0,3,5的方差是.考点:方差.分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解答:解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.点评:本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].17.(3分)(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.考点:扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:综合题.分析:根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG 于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.解答:解:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,则BF=FG=2,CG=GD=2,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG为等腰三角形,∴CG=NG=2,过点N作NM⊥OF于点M,则MN=FC=2,在等腰三角形MNO中,NO=MN=4,∴OG=ON+NG=6,在Rt△OGD中,OD===2,即圆O的半径为2,故S阴影=S扇形OBD==10π.故答案为:10π.点评:本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.18.(3分)(2013•宁波)如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为(,).考点:反比例函数综合题.分析:由相似三角形的对应角相等推知△BDE的等腰直角三角形;根据反比例函数图象上点的坐标特征可设E(a,),D(b,),由双曲线的对称性可以求得ab=3;最后,将其代入直线AD的解析式即可求得a的值.解答:解:如图,∵∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E,∴∠BAC=∠ABC=45°,且可设E(a,),D(b,),∴C(a,0),B(a,2),A(2﹣a,0),∴易求直线AB的解析式是:y=x+2﹣a.又∵△BDE∽△BCA,∴∠BDE=∠BCA=90°,∴直线y=x与直线DE垂直,∴点D、E关于直线y=x对称,则=,即ab=3.又∵点D在直线AB上,∴=b+2﹣a,即2a2﹣2a﹣3=0,解得,a=,∴点E的坐标是(,).故答案是:(,).点评:本题综合考查了相似三角形的性质、反比例函数图象上点的坐标特征、一次函数图象上的点的坐标特征、待定系数法求一次函数的解析式.解题时,注意双曲线的对称性的应用.三、解答题(共8小题,满分76分)19.(6分)(2013•宁波)先化简,再求值:(1+a)(1﹣a)+(a﹣2)2,其中a=﹣3.考点:整式的混合运算—化简求值.分析:原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a的值代入计算即可求出值.解答:解:原式=1﹣a2+a2﹣4a+4=﹣4a+5,当a=﹣3时,原式=12+5=17.点评:此题考查了整式的混合运算,涉及的知识有:平方差公式,完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(7分)解方程:=﹣5.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1),得﹣3=x﹣5(x﹣1),解得x=2(5分)检验,将x=2代入(x﹣1)=1≠0,∴x=2是原方程的解.(6分)点评:本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.(7分)(2013•宁波)天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.解答:解:由题意得,∠EAC=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=90°,在Rt△CDB中,tan∠CBD=,∴BD==17米,∵AD=CD=51米,∴AB=AD+BD=51+17.答:A,B之间的距离为(51+17)米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.22.(9分)(2013•宁波)2013年5月7日浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?(2)当0≤AQI≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.考点:条形统计图;频数与频率;算术平均数;中位数;众数;极差.分析:(1)根据极差=最大值﹣最小值进行计算即可;根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.解答:解:(1)极差:80﹣37=43,众数:50,中位数:50;(2)这11个城市中当天的空气质量为优的有6个,这11个城市当天的空气质量为优的频率为;(3)=(50+60+57+37+55)=51.8.点评:此题主要考查了条形统计图,以及极差、众数、中位数、平均数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(9分)(2013•宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.考点:二次函数图象与几何变换;待定系数法求二次函数解析式.分析:(1)利用交点式得出y=a(x﹣1)(x﹣3),进而得出a求出的值,再利用配方法求出顶点坐标即可;(2)根据左加右减得出抛物线的解析式为y=﹣x2,进而得出答案.解答:解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x﹣1)(x﹣3),把C(0,﹣3)代入得:3a=﹣3,解得:a=﹣1,故抛物线解析式为y=﹣(x﹣1)(x﹣3),即y=﹣x2+4x﹣3,∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上.点评:此题主要考查了二次函数的平移以及配方法求二次函数解析式顶点坐标以及交点式求二次函数解析式,根据平移性质得出平移后解析式是解题关键.24.(12分)(2013•宁波)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)4000 2500售价(元/部)4300 3000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为15.5万元和两种手机的销售利润为2.1万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.解答:解:(1)设商场计划购进甲种手机x部,乙种手机y部,由题意,得,解得:,答:商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a部,则乙种手机增加2a部,由题意,得0.4(20﹣a)+0.25(30+2a)≤16,解得:a≤5.设全部销售后获得的毛利润为W元,由题意,得W=0.03(20﹣a)+0.05(30+2a)=0.07a+2.1∵k=0.07>0,∴W随a的增大而增大,∴当a=5时,W最大=2.45.答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元.点评:本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用及一次函数的性质的运用,解答本题时灵活运用一次函数的性质求解是关键.25.(12分)(2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.考点:四边形综合题.分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在上任意一点构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.解答:解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评:本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.26.(14分)(2013•宁波)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q 于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.考点:一次函数综合题.分析:(1)设直线AB的函数解析式为y=kx+4,把(4,0)代入即可;(2)①先证出△BOD≌△COD,得出∠BOD=∠CDO,再根据∠CDO=∠ADP,即可得出∠BDE=∠ADP,②先连结PE,根据∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再证出∠DFE=∠DPE=45°,最后根据∠DEF=90°,得出△DEF是等腰直角三角形,从而求出DF=DE,即y=x;(3)当=2时,过点F作FH⊥OB于点H,则∠DBO=∠BFH,再证出△BOD∽△FHB,===2,得出FH=2,OD=2BH,再根据∠FHO=∠EOH=∠OEF=90°,得出四边形OEFH是矩形,OE=FH=2,EF=OH=4﹣OD,根据DE=EF,求出OD的长,从而得出直线CD的解析式为y=x+,最后根据求出点P的坐标即可;当=时,连结EB,先证出△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得△BOD∽△FGB,===,得出FG=8,OD=BG,再证出四边形OEFG是矩形,求出OD的值,再求出直线CD的解析式,最后根据即可求出点P的坐标.解答:解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD,∴∠BOD=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x;(3)当BD:BF=2:1时,过点F作FH⊥OB于点H,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,∴∠DBO=∠BFH,又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB,∴===2,∴FH=2,OD=2BH,∵∠FHO=∠EOH=∠OEF=90°,∴四边形OEFH是矩形,∴OE=FH=2,∴EF=OH=4﹣OD,∵DE=EF,∴2+OD=4﹣OD,解得:OD=,∴点D的坐标为(0,),∴直线CD的解析式为y=x+,由得:,则点P的坐标为(2,2);当=时,连结EB,同(2)①可得:∠ADB=∠EDP,而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,∵∠DEP=∠DPA,∴∠DBE=∠DAP=45°,∴△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得:△BOD∽△FGB,∴===,∴FG=8,OD=BG,∵∠FGO=∠GOE=∠OEF=90°,∴四边形OEFG是矩形,∴OE=FG=8,∴EF=OG=4+2OD,∵DE=EF,∴8﹣OD=4+2OD,OD=,∴点D的坐标为(0,﹣),直线CD的解析式为:y=﹣x﹣,由得:,∴点P的坐标为(8,﹣4),综上所述,点P的坐标为(2,2)或(8,﹣4).点评:此题考查了一次函数的综合,用到的知识点是一次函数、矩形的性质、圆的性质,关键是综合运用有关知识作出辅助线,列出方程组.。

2020年宁波中考数学卷答案解析版

2020年宁波中考数学卷答案解析版

答案解析部分一、<b >选择题(每小题4分,共48分)</b>1、【答案】A【考点】无理数【解析】【解答】解:无理数就是无限不循环小数。

无理数应满足三个条件:①是小数;②是无限小数;③不循环;由无理数的定义即可得出答案为A.【分析】根据无理数的定义即可得出答案.2、【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则和去括号法则【解析】【解答】解:A.a2与a3不是同类项,不能合并,故错误;B.原式=4a2.故错误;C.原式=a2+3=a5.故正确;D.原式=a6.故错误;故选C。

【分析】利用同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,将每个数分别乘方;以及合并同类项法则即可判断正确答案。

3、【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:45万吨=4.5×105吨.故答案为B.【分析】科学计数法的定义:将一个数字表示成a×10n的形式;其中1≤|a|<10,n为整数.由此可得出正确答案. 4、【答案】D【考点】二次根式有意义的条件【解析】【解答】解:依题可得:x-3≥0.∴x≥3.故选D.【分析】根据二次根式有意义的条件:被开方数大于或等于0即可得出答案.5、【答案】D【考点】简单几何体的三视图【解析】【解答】解:俯视图是指从上往下看所得到的平面图形.由此可得出正确答案.故答案为D.【分析】由俯视图的定义即可选出正确答案.6、【答案】C【考点】概率公式【解析】【解答】解:∵从装有5个红球、2个白球、3个黄球的袋中任意摸出1个球有10种等可能结果,其中摸出的球是黄球的结果有3种,∴从袋中任意摸出1个球是黄球的概率为:.故答案为C.【分析】依题可得共有10种等可能结果,其中摸出的球是黄球的结果有3中,利用概率公式即可得出答案. 7、【答案】D【考点】平行线的性质【解析】【解答】解:∵m∥n.∴∠2=∠1+∠ABC.又∵∠1=20°,∠ABC=30°∴∠2=50°.故答案为D.【分析】根据平行线的性质即可得出内错角相等,由题目条件即可得出答案.8、【答案】C【考点】中位数、众数【解析】【解答】解:依题可得:x=7.将这组数据从小到大排列为:2,3,5,7,7.∴中位数为5.故答案为C.【分析】由众数定义求出x值,再根据中位数定义求出中位数.9、【答案】B【考点】直角三角形斜边上的中线,勾股定理,正方形的判定,切线的性质,弧长的计算【解析】【解答】解:∵O为BC中点.BC=2.∴OA=OB=OC=.又∵AC、AB是⊙O的切线,∴OD=OE=r.OE⊥AC,OD⊥AB,∵∠A=90°.∴四边形ODAE为正方形.∴∠DOE=90°.∴(2r)2+(2r)2=.∴r=1.∴弧DE===.故答案为B.【分析】根据O为BC中点.BC=2.求出OA=OB=OC=;再根据AC、AB是⊙O的切线,得出四边形ODAE 为正方形;由勾股定理求出r的值,再根据弧长公式得出弧DE的长度.10、【答案】A【考点】坐标确定位置,二次函数的性质【解析】【解答】解:∵y=x2-2x+m2+2.∴y=(x-1)2+m2+1.∴顶点坐标(1,m2+1).∴顶点坐标在第一象限.故答案为A.【分析】根据配方法得出顶点坐标,从而判断出象限.11、【答案】C【考点】勾股定理,三角形中位线定理,正方形的性质,相似三角形的判定与性质【解析】【解答】解:取DF、CF中点K、H,连接MK、NH、CM,作MO⊥NH(如下图).∵四边形ABCD是边长为6的正方形,BE=4.∴AE=DF=2,CF=BE=4.∴△DGF∽△BGE∴==.∴GF=2,EF=4.又∵M、N、K、H、都是中点,∴MK=GF=1,NH=EF=3.KF=DF=1,FH=CF=2,∴MK=OH=1.KH=MO=3∴NO=2.在Rt△MON中,∴MN= == .故答案为C.【分析】取DF、CF中点K、H,连接MK、NH、CM,作MO⊥NH(如上图);由正方形ABCD是边长和BE 的长可以得出AE=DF=2,CF=BE=4;再由题得到△DGF∽△BGE,利用相似三角形的性质可以求出.GF=2,EF=4;再根据三角形中位线可以得出MO=3,NO=2;利用勾股定理即可得出答案.12、【答案】A【考点】图形的剪拼【解析】【解答]解:依题可得:至少要知道三个小矩形的周长,就可以知道大矩形的长和宽,从而求出大矩形的面积.故答案为A.【分析】由题意就可以知道n=3.二、<b >填空题(每小题4分,共24分)</b>13、【答案】-2【考点】立方根【解析】【解答】解:∵(-2)3=-8.∴−8 的立方根是-2.故答案为-2.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.14、【答案】x=1【考点】解分式方程【解析】【解答】解:去分母得:2(2x+1)=3(3-x).去括号得:4x+2=9-3x.移项得:4x+3x=9-2.合并同类项得:7x=7.系数化为1得:x=1.经检验x=1是分式方程的解.故答案为:x=1.【分析】将分式方程转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解。

2021宁波中考数学试卷及答案

2021宁波中考数学试卷及答案

2021宁波中考数学试卷及答案一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1. 计算3-(-2)的结果为( )[单选题] *A.-6B.6C.-5D.5(正确答案)答案解析:D2. 下列各选项中,两个图形成轴对称的是()[单选题] *A. B. C. D.(正确答案)3. 下列运算正确的是()A.8a3÷ 4a=2a2B.(a3b)−2=a3b−2C.a+2a=2a2D.(a−1)2=a2−1 [单选题] *A.(正确答案)B.C.D.4. 如图,已知直线l1、l2、l3两两相交,且l1⊥l3,若∠α=50°,则∠β的度数为()[单选题] *A.120°B. 130°C. 140°(正确答案)D. 150°5. 如图,在菱形ABCD中,O、E分别是AC、AD的中点,连接OE,若AB=3,AC=4,则tan∠AOE的值为( )[单选题] *A. B.(正确答案) C. D.6. 在平面直角坐标系中,将函数y=-2x+4的图象向左平移3个单位长度后与坐标轴围成的三角形面积为()A.14B. 12C.1D.2 [单选题] *A. B. C.(正确答案) D.7. 如图,在△ABC中,DE是边BC的垂直平分线,CD平分∠ACB,若AD=4,BD=5,则AC的长为()[单选题] *A.3B.4C.5D.6(正确答案)8. 如图,抛物线y=ax2+bx+c (a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( )[单选题] *A.0(正确答案)B.-1C.1D.2二、填空题(共5小题,每小题3分,计15分)9. 分解因式:ax2−a= [填空题] *_________________________________(答案:a(x+1)(x-1))10. 八边形的对角线共有条. [填空题] *_________________________________(答案:20)11. 《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺;如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长尺? [填空题] *_________________________________(答案:36)12.若反比例函数y=kx(k≠0)的图象与正比例函数y=ax(a≠0)的图象有两个交点A(m,2)和B(3,n),则m+n的值为________. [填空题] *_________________________________(答案:-5)13.如图,点O为矩形ABCD的对称中心,AB=4,AD=3,过点O作EF⊥BD分别交AB、CD于点E、F,则AE的长为________.[填空题] *_________________________________(答案:7/8)14. 如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,点P在边AC上,⊙P的半径为1.若⊙P与边BC和边AB都没有公共点,则线段PC长的取值范围是 .[填空题] *_________________________________(答案:1<CP<19/3)15. 两个袋子分别装有3个白色乒乓球和4个红色乒乓球,从中任取一个,共有2种取法.( ) [单选题] *正确错误(正确答案)16. 从3名候选学生中,选出1人任班长,1人任团支书,共有6种选举结果.( ) [单选题] *正确(正确答案)错误17. 用1,2,3这三个数字组成5个无重复数字的两位数.( ) [单选题] *正确错误(正确答案)18. “打开电视,正在播放《新闻联播》”是必然事件.( ) [单选题] *正确错误(正确答案)19. 任意抛掷一枚均匀的硬币,前9次都是正面朝上,当掷第10次时,正面朝上的概率是100%.( ) [单选题] *正确错误(正确答案)20. 某小组有男学生5人,女学生4人.从中选一人去参加座谈会,共有( )种不同的选法. [单选题] *A. 4种B. 5种C. 9种(正确答案)D. 20种21. 3位同学准备去学校饭堂吃午饭,学校饭堂有2个,则不同的去法共有( )种. [单选题] *A. 2+3=5种B.2×3=6种C.3×3=9种D.2×2×2=8种(正确答案)22. 下列事件中,不可能发生的事件是( ). [单选题] *A.明天气温为30℃B.学校新调进一位女教师C.大伟身长丈八(正确答案)D.打开电视机,就看到广告23.一个事件发生的概率不可能是( ) [单选题] *A.0B. 1/2C.1D.3/2(正确答案)。

2021年浙江省宁波市中考数学试卷(附答案详解)

2021年浙江省宁波市中考数学试卷(附答案详解)

2021年浙江省宁波市中考数学试卷1.在−3,−1,0,2这四个数中,最小的数是()A. −3B. −1C. 0D. 22.计算a3⋅(−a)的结果是()A. a2 B. −a2C. a4D. −a43.2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000用科学记数法表示为()A. 32×107B. 3.2×108C. 3.2×109D. 0.32×1094.如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.5.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x−(单位:环)及方差S2(单位:环 2)如下表所示:甲乙丙丁x−9899S2 1.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A. 甲B. 乙C. 丙D. 丁6.要使分式1有意义,x的取值应满足()x+2A. x≠0B. x≠−2C. x≥−2D. x>−27.如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为()A. √33B. √32C. 1D. √628. 我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A. {x +y =510x +3y =30 B. {x +y =53x +10y =30 C. {x +y =30x 10+y 3=5D. {x +y =30x 3+y 10=59. 如图,正比例函数y 1=k 1x(k 1<0)的图象与反比例函数y 2=k 2x(k 2<0)的图象相交于A ,B 两点,点B 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A. x <−2或x >2B. −2<x <0或x >2C. x <−2或0<x <2D. −2<x <0或0<x <210. 如图是一个由5张纸片拼成的平行四边形ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张矩形纸片EFGH 的面积为S 3,FH 与GE 相交于点O.当△AEO ,△BFO ,△CGO ,△DHO 的面积相等时,下列结论一定成立的是( )A. S 1=S 2B. S 1=S 3C. AB =ADD. EH =GH11. −5的绝对值是______. 12. 分解因式:x 2−3x =______.13.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为______ .14.抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC,BD分别与⊙O相切于点C,D,延长AC,BD交于点P.若∠P=120°,⊙O的半径为6cm,则图中CD⏜的长为______ cm.(结果保留π)15.在平面直角坐标系中,对于不在坐标轴上的任意臥点A(x,y),我们把点B(1x ,1y)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=2x(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为______ .16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为______ ,sin∠AFE的值为______ .17.(1)计算:(1+a)(1−a)+(a+3)2.(2)解不等式组:{2x+1<93−x≤0.18.如图是由边长为1的小正方形构成的6×4的网格,点A,B均在格点上.(1)在图1中画出以AB为边且周长为无理数的▱ABCD,且点C和点D均在格点上(画出一个即可).(2)在图2中画出以AB为对角线的正方形AEBF,且点E和点F均在格点上.19.如图,二次函数y=(x−1)(x−a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.20.图1表示的是某书店今年1∼5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1∼5月的营业总额一共是182万元,观察图1、图2,解答下列问题:(1)求该书店4月份的营业总额,并补全条形统计图.(2)求5月份“党史”类书籍的营业额.(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.21.我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D′的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC=140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)22.某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流理超过多少兆时,选择C方案最划算?23.【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2√5,AD=2AE,求AC的长.24.如图1,四边形ABCD内接于⊙O,BD为直径,AD⏜上存在点E,满足AE⏜=CD⏜,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=√3,求△FGD的周长.2②求CG的最小值.答案和解析1.【答案】A【知识点】有理数大小比较【解析】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是−3.故选:A.画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.本题考查的是有理数的大小比较,利用数形结合比较出有理数的大小是解答此题的关键⋅.2.【答案】D【知识点】同底数幂的乘法【解析】【分析】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3⋅(−a)=−a3⋅a=−a4.故选:D.3.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:320000000=3.2×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【知识点】简单组合体的三视图【解析】解:从正面看,底层是一个比较长的矩形,上层中间是一个比较窄的矩形.故选:C.根据主视图是从正面看得到的视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是正视图,注意圆柱的主视图是矩形.5.【答案】D【知识点】算术平均数、方差【解析】解:甲、丙、丁射击成绩的平均环数较大,∵丁的方差<甲的方差<丙的方差,∴丁比较稳定,∴成绩较好状态稳定的运动员是丁,故选:D.根据平均环数比较成绩的好坏,根据方差比较数据的稳定程度.本题考查的是方差和算术平均数,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,数据越稳定是解题的关键.6.【答案】B【知识点】分式有意义的条件有意义,则x+2≠0,【解析】解:要使分式1x+2解得:x≠−2.故选:B.直接利用分式有意义则分母不等于零,即可得出答案.此题主要考查了分式有意义的条件,正确掌握分式有意义的条件是解题关键.7.【答案】C【知识点】含30°角的直角三角形、三角形的中位线定理【解析】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∵∠B =45°,BD =√3,∴AD =BD =√3,∵∠C =60°,∴DC =ADtan60∘=√3√3=1,∴AC =DC =2,∵E ,F 分别为AB ,BC 的中点,∴EF =12AC =1.故选:C .由直角三角形的性质求出AD =BD =√3,由锐角三角函数的定义求出DC =1,由三角形的中位线定理可求出答案.本题考查了直角三角形的性质,三角形中位线定理,锐角三角函数,熟练掌握三角形的中位线定理是解题的关键. 8.【答案】A【知识点】由实际问题抽象出二元一次方程组、数学常识【解析】解:设清酒x 斗,醑酒y 斗,依题意得:{x +y =510x +3y =30. 故选:A .设清酒x 斗,醑酒y 斗,根据“拿30斗谷子,共换了5斗酒”,即可得出关于x ,y 的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.【答案】C【知识点】一次函数与反比例函数综合【解析】解:由反比例函数与一次函数相交于点A 、B ,可得点A 坐标与点B 坐标关于原点对称.故点A 的横坐标为−2.当y 1>y 2时,即正比例函数图象在反比例图象上方,观察图象可得,当x<−2或0<x<2时满足题意.故选:C.先根据点A与B关于原点对称,得出A横坐标,再找出正比例函数落在反比例函数图象上方的部分对应的自变量的取值范围即可.本题考查了反比例函数与一次函数交点问题,找出A点横坐标是解题关键.属于基础题型.10.【答案】A【知识点】等腰直角三角形、矩形的性质、平行四边形的性质、全等三角形的判定与性质【解析】解:如图,连接DG,AH,过点O作OJ⊥DE于J.∵四边形EFGH是矩形,∴OH=OF,EF=GH,∠HEF=90°,∵OJ⊥DE,∴∠OJH=∠HEF=90°,∴OJ//EF,∵HO=OF,∴HJ=JE,∴EF=GH=2OJ,∵S△DHO=12⋅DH⋅OJ,S△DHG=12⋅DE⋅GH,∴S△DGH=2S△DHO,同法可证S△AEH=2S△AEO,∵S△DHO=S△AEO,∴S△DGH=S△AEH,∵S△DGC=12⋅CG⋅DH,S△ADH=12⋅DH⋅AE,CG=AE,∴S△DGC=S△ADH,∴S△DHC=S△ADE,∴S1=S2,故选:A.如图,连接DG,AH,过点O作OJ⊥DE于J.证明S△DGH=S△AEH,S△DGC=S△ADH,可得结论.本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的性质,矩形的性质等知识,解题的关键是证明S△DGH=S△AEH,S△DGC=S△ADH.11.【答案】5【知识点】绝对值【解析】解:根据负数的绝对值是它的相反数,得|−5|=5.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解题的关键是掌握绝对值的性质.12.【答案】x(x−3)【知识点】因式分解-提公因式法【解析】【分析】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.直接提取公因式x,即可得出答案.【解答】解:原式=x(x−3),故答案为:x(x−3)13.【答案】38【知识点】概率公式【解析】解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为3.8.故答案为:38先求出球的总个数,再根据概率公式即可得出摸出一个球是红球的概率.本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】2π【知识点】弧长的计算、垂径定理、切线的性质【解析】解:如图所示,连接OC ,OD ,OP ,∵AC ,BD 分别与⊙O 相切于点C ,D ,故∠OCP =∠ODP =90°,又OC =OD ,OP =OP ,则Rt △OCP≌Rt △ODP(HL).∵∠P =120°,∴∠OPC =∠OPD =60°,∴∠COP =∠DOP =30°,∴∠COD =60°.∴CD ⏜的长为l CD ⏜=nπr 180=60°×π×6180=2π.故答案为:2π.连接OC ,OD ,OP ,可利用HL 证明Rt △OCP≌Rt △ODP ,从而可得出∠COD 的度数,最后利用弧长公式求解答案即可.本题考查了切线的性质、全等三角形的判定、弧长的计算,求出∠COD 的度数是解题的关键. 15.【答案】14或32【知识点】反比例函数图象上点的坐标特征、矩形的性质、反比例函数系数k 的几何意义【解析】解:设点A 的坐标为(m,2m ),∵点B 是点A 的“倒数点”,∴点B 坐标为(1m ,m 2),∵点B 的横纵坐标满足1m ⋅m2=12, ∴点B 在某个反比例函数上,∴点B 不可能在OE ,OC 上,分两种情况:①点B 在ED 上,由ED//x 轴,∴点B 、点A 的纵坐标相等,即m 2=2m ,∴m =±2,(−2舍去),∴点B 纵坐标为1,此时,S △OBC =12×3×1=32;②点B 在DC 上,∴点B 横坐标为3,即1m =3,∴点B 纵坐标为:m 2=16,此时,S △OBC =12×3×16=14;故答案为:14或32.设点A 的坐标为(m,2m ),由“倒数点”的定义,得点B 坐标为(1m ,m 2),分析出点B 在某个反比例函数上,分两种情况:①点B 在ED 上,由ED//x 轴,得m 2=2m ,解出m =±2,(−2舍去),得点B 纵坐标为1,此时,S △OBC =12×3×1=32;②点B 在DC 上,得点B 横坐标为3,即1m =3,求出点B 纵坐标为:m 2=16,此时,S △OBC =12×3×16=14. 本题考查了反比例函数图象上点的坐标特征,新定义的阅读理解能力,三角形面积的求法.解题关键是理解“倒数点”的定义. 16.【答案】2 √2−1【知识点】轴对称的基本性质、矩形的性质、解直角三角形【解析】解:∵BM =BE ,∴∠BEM =∠BME ,∵AB//CD ,∴∠BEM =∠GCM ,又∵∠BME =∠GMC ,∴∠GCM =∠GMC ,∴MG =GC =1,∵G 为CD 中点,∴CD =AB =2.连接BF ,FM ,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF//BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF//BG,∴∠BNF=90°,∵BF平分∠ABN,∴FA=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=2.∵FE=FM,FA=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=2−x,NG=MG−NM=1−x,∵FM//GC,∴△FMN∽△CGN,∴CGFM =GNNM,即12−x =1−xx,解得x=2+√2(舍)或x=2−√2,∴EF=BE=2−x=√2,∴sin∠AFE=AEEF =√2√2=√2−1.故答案为:2;√2−1.连接BF ,FM ,由翻折及BM =ME 可得四边形BEFM 为菱形,再由菱形对角线的性质可得BN =BA.先证明△AEF≌△NMF 得AE =NM ,再证明△FMN∽△CGN 可得CG FM =GNNM ,进而求解.本题考查矩形的翻折问题,解题关键是连接辅助线通过全等三角形及相似三角形的判定及性质求解. 17.【答案】解:(1)原式=1−a 2+a 2+6a +9=6a +10;(2){2x +1<9①3−x ≤0②, 解①得:x <4,解②得:x ≥3,∴原不等式组的解集是:3≤x <4.【知识点】平方差公式、完全平方公式、一元一次不等式组的解法【解析】(1)直接利用乘法公式化简,再合并同类项得出答案;(2)分别解不等式,进而得出不等式组的解集.此题主要考查了乘法公式以及解一元一次不等式组,正确掌握乘法公式是解题关键. 18.【答案】解:(1)如图1中,四边形ABCD 即为所求(答案不唯一).(2)如图2中,四边形AEBF 即为所求.【知识点】无理数、尺规作图与一般作图、勾股定理【解析】(1)根据平行四边形的定义以及题目条件画出图形即可.(2)根据正方形的定义画出图形即可.本题考查作图−应用与设计作图,无理数,勾股定理,平行四边形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.【答案】解:(1)由二次函数y=(x−1)(x−a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,=2.∴1+a2解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²−4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²−4x.【知识点】二次函数与一元二次方程、二次函数的性质、二次函数图象上点的坐标特征、二次函数图象与几何变换【解析】(1)根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值即可.(2)将a的值代入,结合抛物线解析式求平移后图象所对应的二次函数的表达式.本题考查了抛物线与x轴的交点,二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.20.【答案】解:(1)该书店4月份的营业总额是:182−(30+40+25+42)=45(万元),补全统计图如下:(2)42×25%=10.5(万元),答:5月份“党史”类书籍的营业额是10.5万元;(3)4月份“党史”类书籍的营业额是45×20%=9(万元),∵10.5>9,且1−3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,∴5月份“党史”类书籍的营业额最高.【知识点】折线统计图、条形统计图【解析】(1)用1∼5月的营业总额减去其他月份的总额,求出4月份的营业额,从而补全统计图;(2)用5月份的营业额乘以“党史”类书籍所占的百分比即可;(3)先判断出1−3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,再求出4月份的“党史”类书籍的营业额,与5月份进行比较,即可得出答案.本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,如粮食产量,折线统计图表示的是事物的变化情况,如增长率.21.【答案】解:(1)∵B为AD′中点,AD′,∴AB=12∵AD′=40cm,∴AB=20cm;(2)如图,过点B作BE⊥AD于点E,∵AB=BD,∴AD=2AE,∵AP平分∠BAC,∠BAC=140°,∴∠BAE=1∠BAC=70°,2在Rt△ABE中,AB=20cm∴AE=AB⋅cos70°≈20×0.34=6.8(cm),∴AD=2AE=13.6(cm),∵AD′=40cm,∴40−13.6=26.4(cm).∴伞圈D沿着伞柄向下滑动的距离为26.4cm.【知识点】解直角三角形的应用【解析】(1)根据中点定义即可求出AB的长;(2)过点B作BE⊥AD于点E,根据等腰三角形的性质可得AD=2AE,然后利用锐角三角函数可得AE的长,所以AD=2AE=13.6cm,进而可得伞圈D沿着伞柄向下滑动的距离.本题考查了解直角三角形的应用,解决本题的关键是掌握解直角三角形的方法.22.【答案】解:(1)根据题意,m=3072,n=(56−20)÷(1144−1024)=0.3;(2)设在A方案中,每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式为y=kx+b(k≠0),把(1024,20),(1144,56)代入,得:{20=1024k+b56=1144k+b,解得{k=0.3b=−287.2,∴y关于x的函数关系式为y=0.3x−287.2(x≥1024);(3)3072+(266−56)÷0.3=3772(兆),由图象得,当每月使用的流理超过3772兆时,选择C方案最划算.【知识点】一次函数的应用【解析】(1)根据题意,结合题意可得m=3072,n=(56−20)÷(1144−1024)=0.3;(2)利用待定系数法解答即可;(3)利用B方案每月免费使用流量3072兆加上达到C方案所超出的兆数即可.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【答案】(1)证明:如图1,∵AD平分∠BAC,∴∠EAD=∠CAD,∵AE=AC,AD=AD,∴△EAD≌△CAD(SAS),∴∠ADE=∠ADC=60°,∵∠BDE=180°−∠ADE−∠ADC=180°−60°−60°=60°,∴∠BDE=∠ADE,∴DE平分∠ADB.(2)如图2,∵FB=FC,∴∠EBD=∠GCD;∵∠BDE=∠CDG=60°,∴△BDE∽△CDG,∴BDCD =DEDG;∵△EAD≌△CAD,∴DE=CD=3,∵DG=2,∴BD=CD2DG =322=92.(3)如图3,在AB上取一点F,使AF=AD,连结CF.∵AC平分∠BAD,∴∠FAC=∠DAC,∵AC=AC,∴△AFC≌△ADC(SAS),∴CF=CD,∠FCA=∠DCA,∠AFC=∠ADC,∵∠FCA+∠BCF=∠BCA=2∠DCA,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴CDBC =CECF,∠DEC=∠BFC,∵BC=5,CF=CD=2√5,∴CE=CD2BC =(2√5)25=4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴AEAD =ADAC=12,∴AC=2AD,AD=2AE,∴AC=4AE=43CE=43×4=163.【知识点】四边形综合【解析】(1)由△EAD≌△CAD得∠ADE=∠ADC=60°,因而∠BDE=60°,所以DE平分∠ADB;(2)先证明△BDE∽△CDG,其中CD=ED,再由相似三角形的对应边成比例求出BD的长;(3)根据角平分线的特点,在AB上截取AF=AD,连结CF,构造全等三角形和相似三角形,由相似三角形的性质求出AC的长.此题重点考查全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质等知识,解第(3)题时,应注意探究题中的隐含条件,通过适当添加辅助线构造全等三角形和相似三角形;此题难度较大,属于考试压轴题.24.【答案】解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵AE⏜=CD⏜,∴∠ABG=∠DBC=α,∴∠AGB=90°−α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°−α,∴∠BEC=∠AGB,∵∠CEF=180°−∠BEC,∠BGD=180°−∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=√32,AD=2,∴AB=√32,AD=√3,∵AE⏜=CD⏜,∴AE⏜+DE⏜=CD⏜+DE⏜,即AD⏜=CE⏜,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB=ABBG =√32,∴∠AGB=60°,AG=12BG=1,∴EF=DG=AD−AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=12DG=12,DE=√32DG=√32,在Rt△FED中,DF=√EF2+DE2=√72,∴FG+DG+EF=5+√72,∴△FGD的周长为5+√72;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴BHCH =CHFH,设GH=x,∴BH=2−x,∴CH2=2(2−x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2−x)=(x−1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为√3.【知识点】圆的综合【解析】(1)利用直径所对的圆周角为90°和在同一圆中,等弧所对的圆周角相等,即可得结果.(2)证线段相等只需证线段所在的两个三角形全等即可.利用全等三角形的判定可得△CFE≌△BDG(ASA)可得结论,(3)①连接DE,AD⏜=CE⏜,由弧相等得出弧所对的弦相等,在Rt△ABG中,sin∠AGB=AB BG =√32,得EF=1,在Rt△DEG中,∠EGD=60°,可得EG=12,DE=√32,在Rt△FED中,由勾股定理得DF=√72,即可求得周长的值.②如图,过点C作CH⊥BF 于H,可得△BAD≌△CHF(AAS),得FH=AD,由相似三角形的判定可得△BHC∽△CHF,设GH=x,由相似的性质得CH2=2(2−x),在Rt△GHC中,由勾股定理知CG2=GH2+CH2)=(x−1)2+3,即可得最小值.本题考查圆的综合应用,解本题的关键要熟练掌握圆的性质.全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等基本知识点.。

2020年浙江省宁波市中考数学试题及参考答案(word解析版)

宁波市2020年初中学业水平考试数学试题(满分为150分,考试时间为120分钟)试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.32.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a53.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×10104.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤27.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.48.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.12.分解因式:2a2﹣18=.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B 作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.答案与解析试题卷Ⅰ一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣3的相反数为()A.﹣3 B.﹣C.D.3【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数解答.【解题过程】解:﹣3的相反数是3.故选:D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.【解题过程】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.【总结归纳】此题主要考查了同底数幂的乘除运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:1120000000=1.12×109,故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据主视图的意义和画法可以得出答案.【解题过程】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.【总结归纳】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率公式计算.【解题过程】解:从袋中任意摸出一个球是红球的概率==.故选:D.【总结归纳】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤2【知识考点】二次根式有意义的条件.【思路分析】根据被开方数大于等于0列不等式求解即可.【解题过程】解:由题意得,x﹣2≥0,解得x≥2.故选:C.【总结归纳】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F 为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.4【知识考点】直角三角形斜边上的中线;勾股定理;三角形中位线定理.【思路分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解题过程】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.【总结归纳】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解题过程】解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.【总结归纳】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解题过程】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误∵;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【总结归纳】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【知识考点】全等三角形的判定与性质;等边三角形的性质.【思路分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【解题过程】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.【总结归纳】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.试题卷Ⅱ二、填空题(每小题5分,共30分)11.实数8的立方根是.【知识考点】立方根.【思路分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解题过程】解:实数8的立方根是:=2.故答案为:2.【总结归纳】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.12.分解因式:2a2﹣18=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式2,再利用平方差公式分解因式得出答案.【解题过程】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙45 45 42S2 1.8 2.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.【知识考点】算术平均数;方差.【思路分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【解题过程】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【总结归纳】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为cm(结果保留π).【知识考点】弧长的计算.【思路分析】根据弧长公式即可得到结论.【解题过程】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.【总结归纳】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC =OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.【知识考点】勾股定理;切线的性质.【思路分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2.【解题过程】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴,故答案为:2或2.【总结归纳】本题考查了切线的性质.勾股定理,正确的理解题意是解题的关键.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,推出S△AOE=S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【解题过程】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x 轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴==3,∴=﹣3.故答案为24,﹣3.【总结归纳】本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.三、解答题(本大题有8小题,共80分)17.(本题8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【知识考点】单项式乘多项式;完全平方公式;解一元一次不等式.【思路分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解题过程】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.【总结归纳】此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.18.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【知识考点】利用轴对称设计图案;利用旋转设计图案.【思路分析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).【解题过程】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【总结归纳】本题考查利用旋转设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(本题8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【知识考点】等腰三角形的性质;解直角三角形的应用.【思路分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.【解题过程】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=ABcosB=50cos47°≈50×0.68=34,∴BC=2BH=68cm.(2)在Rt△ABH中,∴AH=ABsinB=50sin47°≈50×0.73=36.5,∴36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.【总结归纳】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.20.(本题10分)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;抛物线与x轴的交点.【思路分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.【解题过程】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴x=1,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.【总结归纳】本题考查抛物线与x轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(本题10分)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【知识考点】用样本估计总体;频数(率)分布直方图;扇形统计图;中位数.【思路分析】(1)根据基本合格人数已经百分比求出总人数即可解决问题.(2)根据圆心角=360°×百分比计算即可.(3)根据中位数的定义判断即可.(4)利用样本估计总体的思想解决问题即可.【解题过程】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×=144°.(3)这次测试成绩的中位数是良好.(4)1500×=300(人),答:估计该校获得优秀的学生有300人.【总结归纳】本题考查频数分布直方图,样本估计总体,扇形统计图,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(本题10分)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【知识考点】一元一次不等式的应用;一次函数的应用.【思路分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.【解题过程】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得,解得:,∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);(2)当y=200﹣80=120时,120=80x﹣128,解得x=3.1,由图可甲的速度为=50(千米/小时),货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B地的车速为v千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米/小时.【总结归纳】本题考查了一次函数的应用;待定系数法求函数的解析式,根据数形结合得到甲乙相应的速度以及相应的时间是解决本题的关键.23.(本题12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.【知识考点】相似形综合题.【思路分析】(1)证明△ADC∽△ACB,得出,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段,则BF2=BE•BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段,则DE=EF,可求出DG,则答案可求出.【解题过程】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.【总结归纳】此题是相似形综合题,主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,正确掌握相似三角形的判定方法是解题关键.24.(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【知识考点】圆的综合题.【思路分析】(1)由角平分线的定义可得出结论;(2)由圆内接四边形的性质得出∠FDC+∠FBC=90°,得出∠FDE=∠FBC,证得∠ABF=∠FBC,证出∠ACD=∠DCT,则CE是△ABC的外角平分线,可得出结论;(3)①连接CF,由条件得出∠BFC=∠BAC,则∠BFC=2∠BEC,得出∠BEC=∠FAD,证明△FDE≌△FDA(AAS),由全等三角形的性质得出DE=DA,则∠AED=∠DAE,得出∠ADC =90°,则可求出答案;②过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,证得△EGA∽△ADC,得出,求出,设AD=4x,AC=5x,则有(4x)2+52=(5x)2,解得x=,求出ED,CE的长,求出DM,由等腰直角三角形的性质求出FM,根据三角形的面积公式可得出答案.。

中考数学试题及答案宁波

中考数学试题及答案宁波一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…B. √4C. πD. 0.5答案:C2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 17C. 18D. 19答案:A3. 如果一个函数的图象经过点(2,3),那么这个函数的解析式可能是?A. y = x + 1B. y = 2x - 1C. y = 3x - 6D. y = 4x + 2答案:A4. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 圆答案:D5. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A6. 下列哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A7. 一个圆的半径是3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:B8. 一个长方体的长、宽、高分别是4、3、2,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A9. 下列哪个选项是方程x² - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 6D. x = 9答案:A10. 一个数的立方根是2,那么这个数是多少?A. 6B. 8C. 9D. 27答案:D二、填空题(每题3分,共15分)11. 如果一个数的平方是25,那么这个数可能是______。

答案:±512. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是______。

答案:513. 一个数的绝对值是7,那么这个数可能是______。

答案:±714. 一个数的倒数是2,那么这个数是______。

答案:0.515. 一个数的平方根是4,那么这个数是______。

答案:16三、解答题(每题10分,共40分)16. 已知一个二次函数的图象经过点(1,0)和(3,0),且顶点的横坐标为2,求这个二次函数的解析式。

2020年浙江省宁波市中考数学试卷(含详细解析)

由图中给出的信息解答下列问题:
(1)求测试成绩为合格的学生人数,并补全频数直方图.
(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.
(3)这次测试成绩的中位数是什么等第?
(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?
22.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)
A.2B.2.5C.3D.4
8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )
A. B.
(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.
(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.
21.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).
19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.

2022年浙江省宁波市中考数学测评考试试题附解析

2022年浙江省宁波市中考数学测评考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.将方程(43)(21)1x x +-=化为一般形式,下列正确的是( ) A .28650x x +-=B . 28550x x --=C .26550x x +-=D . 26650x x -+=2.学校举行歌咏比赛,由7位评委为每名参赛选手打分,评分方法是:去掉一个最高分和 一个最低分,将其余分数的平均分作为这名选手的最后得分,评委为某选手打分(单位:分)如下:9.64,9.73,9.72,9.77,9.73,9.68,9.70,则这名选手的最后得分是( ) A .9.71分 B .9.712分 C .9.72分 D .9.73分 3.如图所示,∠l 和∠2是( )A .同位角B .同旁内角C .内错角D .以上结论都不对4.掷一枚硬币,正面向上的概率为( ) A .1B .12C .13D .145.下列计算正确的是( ) A .3303a a a a -÷==B .64642()()ab ab ab ab -÷==C .844()()()x y x y x y --÷+=+D .53532()()a a a a a -÷-=-÷=-6.关于x 的方程2(1)0x a --=的解是3,则a 的值是( ) A .4 B .-4 C .5 D .-5 7.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( )A .11 cmB .8 cmC .3 cmD .2 cm二、填空题如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数有 个.9.粮仓顶部是圆锥形,这个圆锥的底面直径为 4m ,母线是 3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡至少需要 m 2.(保留一位小数)10.写出一个开口向下,对称轴是直线 x=3,且与y 轴交点是(0,一2)的抛物线的解析 式: .11.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在D ′,C ′位置,若∠EFG=55°,则∠l= , ∠2= .12.为了缓解旱情,某市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得l0个面积相等区域的降雨量如下表: 区域12 3 4 5 6 7 8 9 10 降雨量(mm) 10121313201514151414则该县这l0个区域降雨量的众数为 mm ,平均降雨量为 mm .13.一张桌子上摆放着若干个碟子,从三个方向上看,三视图如图所示,则这张桌子上共有 个碟子.14.将x n -y n 分解因式的结果为(x 2+y 2)(x+y)(x-y),则n 的值为 . 15.若方程6=+ny mx 的两个解是⎩⎨⎧==11y x ,⎩⎨⎧-==12y x 则=m ,=n . 16.55°18′的角的余角等于 ,34°56′的角的补角等于 .17. 某班有40名学生,其中男、女生所占比例如图所示,则该班男生有 人.18.大于-3.3且小于 5的非负整数有 .三、解答题19.如图,甲站在墙前,乙在墙后,为了不被甲看到,请你在图中画出乙的活动区域.20.如图所示为点光源 N 照射下的两个竖直标杆 AB、CD 以及它们的影子 BE 和DF.(1)找出点光源N的位置;(2)Rt△ABE 与 Rt△CDF 相似吗?请说明理由.21.判断下列各组数是否成比例,若成比例请写出比例式:(1)73,143,1,2; (2)5,535,一2,10722.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.23.如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.AOB24.如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答问题:图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)25.如图所示,在Rt△ABC中,∠A=∠B,CD是∠ACB的平分线,请判定CD与AB的位置关系,并说明理由.26.下面是CBA赛季总分排名在前四位的球队各种分数统计结果:运动队名称吉林通钢八一双鹿广东宏远药业江苏同曦二分球55.Ol%54.96%55.84%53.63%三分球34.79%36.88%38.59%33.77%罚球74.3%77.71%74.O2%66.51%优势在哪里,不足之处是什么?以及在今后的训练与比赛中,要注意怎样调整?27.说说你从下图中获得了哪些信息.各电视节目最爱看的人数统计表28.用字母表示以下运算律.(1)加法交换律;(2)加法结合律;(3)乘法交换律;(4)乘法结合律;(5)分配律.29.为了方便管理,学校每年都为新的七年级学生制作学生卡片,卡片上有了位数字的编号,其中前六位数表示该生入学年份、所在班及该生在班级中的序号;末位数表示性别;1 表示男生,2表示女生. 如:2007年入学的3班32号男同学的编号为 0703321. 则2008年入学的 10班的 15号女同学的编号为多少?有一次老师捡到一张编号为0 807 021 的学生卡片,你能帮忙找到失主吗?30.如图是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点0顺时针依次旋转90°,l80°,270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!(方格纸中的小正方形的边长为1个单位长度)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.B5.C6.A7.D二、填空题8.59.18.810.2=--+(答案不唯一).y x(3)711.70°,ll0°12.14,1413.1214.415.4,216.34°42′,l45°4′17.2218.0,1,2,3,4三、解答题19.如图中斜线区.20.(1)EA 和 FC 的交点为光源N 点.(2)不相似,只有当 AB= CD,且点光源 N 在BD 的垂直平分线上,Rt△ABE才与 Rt△CDF 相似.21.(1)成比例:1423713=;(2)=22.略23.(1)(2)如图.(3)略24.方法不唯一,例如:将△ABC 以点C 为旋转中心,按逆时针方向旋转90°,再向右平移3个单位长度就得到△DEF25.CD ⊥AB ,理由略26.略27.例:男生爱看体育节目,不爱看少儿节目;女生爱看文艺节目,不爱看军事节目28.(1)a+b=b+a (2)(a+b)+c=a+(b+c) (3)ab=ba (4)()()ab c a bc ⋅=⋅ (5)()m a b c ma mb mc ++=++29.2008年入学的10班的15号女同学的编号是0810152. 编号为0807021的学生卡是2008年入学的7班的2号男同学的30.略AOB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波市2011年初中毕业生学业考试
数 学 试 题
考生须知:
1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满分为120分,考试时间为120分钟.
2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.
3.答题时,把试题卷I 的答案在答题卷I 上对应的选项位置用2B 铅笔涂黑、涂满.将
试题卷II 的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷II 各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.
4.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线
2y ax bx c =++的顶点坐标为24(,)24b ac b a a
--. 试 题 卷 Ⅰ
一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)
1.下列各数中是正整数的是
(A)1- (B ) 2 (C)0.5 (D)2
2.下列计算正确的是
(A)632)(a a = (B) 4
22a a a =+ (C)a a a 6)2()3(=⋅ (D)33=-a a 3.不等式1x >在数轴上表示正确的是
(B)
(C) (D)
4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为
(A)5106057.7⨯人 (B)6106057.7⨯人 (C) 7106057.7⨯人 (D) 7
1076057.0⨯人
5.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是
(A))2,3(- (B))2,3(- (C))3,2(- (D))3,2( -1 0 2 1 -1 0 2 1 -1 0 2 1 -1 0 2 1
A B C D E (第8题)
6.如图所示的物体的俯视图是
7.一个多边形的内角和是720°,这个多边形的边数是 (A)4 (B) 5 (C) 6 (D) 7
8.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB 的度数为
(A) 57° (B) 60° (C) 63° (D)123° 9.如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 (A)
sin h α (B)tan h α (C)cos h α
(D)αsin ⋅h 10.如图,Rt △ABC 中,∠ACB =90°,22==BC AC ,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为
(A)4π (B)42π (C)8π (D)82π
11.如图,⊙O 1 的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2 =8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现
(A)3次 (B)5次 (C)6次 (D)7次
12.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长
为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是
(A)4m cm (B)4n cm (C) 2(m +n ) cm (D)4(m -n ) cm
试 题 卷 Ⅱ
二、填空题(每小题3分,共18分)
13.实数27的立方根是 ▲ .
14.因式分解:y xy -= ▲ . 图① 图② n m (第12题)
A B C (第10题) 1O 2O A B (第11题) P (第9题) α h l (第6题) (A) (B) (C) (D) 主视方向
(第21题) 图① 图② 图③ (第18题) 1P 2P 1A 1B 2A 2B 3P x
y O 15.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:
选手
甲 乙 丙 平均数
9.3 9.3 9.3 方差
0.026 0.015 0.032 则射击成绩最稳定的选手是 ▲ . (填“甲”、“乙”、“丙”中的一个) 16.将抛物线2x y =的图象向上平移1个单位,则平移后的抛物线的解析式为 ▲ .
17.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,
若BE =6cm ,DE =2cm ,则BC = ▲ cm .
18.如图,正方形1112A B PP 的顶点1P 、2P 在反比例函数2(0)y x x
=>的图象上,顶点1A 、1B
分别在x 轴、y 轴的正半轴上,再在其右侧作正方形2232B A P P ,顶点3P 在反比例函数 2(0)y x x =
>的图象上,顶点2A 在x 轴的正半轴上,则点3P 的坐标为 ▲ .
三、解答题(本大题有8小题,共66分)
19.(本题6分)先化简,再求值:)1()2)(2(a a a a -+-+,其中5=a .
20.(本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1
个,黄球1个,红球1个,摸出一个球记下颜色后放回..
,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.
21.(本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图不能重复)
22.(本题8分)图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,观察图①、图②, (第17题) A D B E C
解答下列问
(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请
你根据这一信息将图①中的统计图补充完整.
(2)商场服装部...5月份的销售额是多少万元?
(3)小刚观察图②后认为,5月份商场服装部...
的销售额比4月份减少了.你同意他的看法吗?请说明理由.
22% 17% 14% 12% 16% 0 5% 1 2 3 4 5 商场服装部...各月销售额占商场当月销售 总额的百分比统计图 百分比 100 90 65 80 0 100
商场各月销售总额统计图 3 4 5 销售总额(万元)
月份 (第22题) 图②
图①
23.(本题8分)如图,在□ABCD中,E、F分别
为边AB、CD的中点,BD是对角线,过A点作
AG∥BD交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形.
24.(本题10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.25.(本题10分)阅读下面的情景对话,然后解答问题:
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b a ,若Rt△ABC是奇异三角形,求::
a b c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB的中点,C、D在直径AB两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.
小明:那直角三角形
中是否存在奇异三
角形呢?
老师:我们新定义一种三角形,
两边平方和等于第三边平方的
2倍的三角形叫做奇异三角形.
(第25题)
A B
C
E
O
A B
C
D
G
E
F
(第23题)
26.(本题12分)如图,平面直角坐标系xOy 中,点A 的坐标为(2,2) ,点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,连结OA 、OB 、AB ,线段AB 交y 轴于点E .
(1) 求点E 的坐标;
(2) 求抛物线的函数解析式;
(3) 点F 为线段OB 上的一个动点(不与点O 、B 重合),直线EF 与抛物线交于M 、
N 两点(点N 在y 轴右侧)
,连结ON 、BN ,当点F 在线段OB 上运动时,求△BON 面积的最大值,并求出此时点N 的坐标;
(4) 连结AN ,当△BON 面积最大时,在坐标平面内求使得△BOP 与△OAN 相似(点B 、
O 、P 分别与点O 、A 、N 对应)的点P 的坐标.
y
x (第26题) O B N A M E F。

相关文档
最新文档