牛顿-莱布尼茨公式的详细证明word版本

合集下载

牛顿莱布尼兹公式

牛顿莱布尼兹公式
i =1 T →0 i =1 n n
极限来判定有界函数的可积性来说,简单得多了。 常用定理9.3' 证明有界函数的可积性较方便。
7
三、 可积函数类 根据可积的准则,我们可以证明下面三种类型的函数必是可积的。 定理9.4 若f在[a, b]上连续,则f在[a, b]上必可积。 证 定理9.5 若f是区间[a, b]上只有有限个间断点的有界函数,则f在 [a, b]上必可积。 证 定理9.6 若f是区间[a, b]上的单调函数,,则f在[a, b]上必可积。 证
4
思路与方案: 1. 思路与方案 思路: 鉴于积分和与分法和介点有关, 先简化积分和. 用相应于 分法的“最大”和“最小”的两个“积分和”去双逼一般的积分和 ξi T , 即用极限的双逼原理考查积分和有极限, 且与分法 及介点 无 关的条件 。 方案: 定义上和 S (T ) 和下和 s (T ) ,研究它们的性质和当 时有相同极限的充要条件 . 达布和: 2. 达布和
b
∫ f ( x)dx = F (b) F (a).
a
称为牛顿 莱布尼茨公式,它常写成: f ( x)dx = F ( x) b = F (b) F (a ). a ∫
a
b

1
公式使用说明:
1、 在应用公式求∫ f ( x)dx 时,f ( x)的原函数必须是初等函数,否则使用
a b
公式求∫ f ( x)dx失效。即f ( x)的原函数F ( x)可由∫ f ( x)dx求出。
§8.2 牛顿—莱布尼兹公式 若用定积分定义求
b a
∫ f ( x ) dx
a
b
,一般来说是比较困难的。是否有
较简便的方法求 ∫ f ( x ) dx ?下面介绍的牛顿—莱布尼兹公式不仅 为定积分计算提供了一个有效的方法,而且在理论上把定积分与 不定积分联系了起来。

3牛顿-莱布尼兹公式

3牛顿-莱布尼兹公式

2
,
f ( x ) 0, ( x 0)
( x t ) f ( t ) 0,
F ( x ) 0 ( x 0).
0 f ( t )dt 0,
x
x
0 ( x t ) f ( t )dt 0,
故F ( x ) 在(0, ) 内为单调增加函数.
b
n
0
i 1
a
特殊和式的极限
定理1
定理2
f ( x ) 0, f ( x ) 0,
a f ( x )dx A b a f ( x )dx A
b
曲边梯形的面积
曲边梯形的面积的负值
性质5 性质6 性质7 问题的提出: 变速直线运动中位置函数与速度函数的联系 设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程. 变速直线运动中路程为
定积分的定义 存在定理 定积分的几何 意义 性质1 性质2 性质3 性质4
lim f ( i )xi f ( x )dx
b
n
0
i 1
a
特殊和式的极限
定理1
定理2
f ( x ) 0, f ( x ) 0,
a f ( x )dx A b a f ( x )dx A
则 F ( x ) a ( x ) f ( t )dt 的导数F ( x ) 为
F ( x ) d b( x ) f ( t )dt f b( x )b( x ) f a( x )a( x ) a ( x ) dx
b( x )
例1

微积分牛顿莱布尼茨公式

微积分牛顿莱布尼茨公式

微积分牛顿莱布尼茨公式牛顿-莱布尼茨公式是微积分中的基本定理之一,也称为微积分基本定理或者牛莱公式。

该公式是微积分的重要工具,用于求解定积分和微分方程等问题。

下面我将为您详细介绍和解释这一公式。

牛顿-莱布尼茨公式可以用以下方式表述:设函数f(x)在区间[a,b]上连续且可导(即f'(x)存在),则该函数在[a,b]上的定积分可以被表示为:∫[a to b] f'(x) dx = f(b) - f(a)其中,∫ 符号表示积分,[a to b] 表示积分的区间,f'(x) 表示函数 f(x) 的导数。

该公式的物理含义是:函数曲线下方的面积等于函数在区间[a,b]上的两个端点所对应的函数值之差。

让我们来看一个具体的例子来理解牛顿-莱布尼茨公式的应用。

假设有一个函数 f(x) = 2x,在区间 [1, 3] 上。

我们可以求这个函数在该区间上的定积分,即∫[1 to 3] f'(x) dx。

首先,我们需要求出函数f'(x),即函数f(x)的导数。

对于f(x)=2x,它的导数f'(x)=2接下来,我们将导数 f'(x) 代入定积分公式,得到∫[1 to 3] 2 dx。

将上限 3 和下限 1 代入函数 f(x) = 2x,得到 f(3) = 2 * 3 = 6和 f(1) = 2 * 1 = 2然后,我们将 f(3) - f(1) 代入定积分公式,得到∫[1 to 3] 2dx = 6 - 2 = 4所以,函数f(x)=2x在区间[1,3]上的定积分是4这个例子展示了牛顿-莱布尼茨公式的应用。

通过求解函数的导数,并将导数代入定积分公式,可以得到函数在给定区间上的定积分值。

当对复杂函数进行定积分时,牛顿-莱布尼茨公式可以极大地简化计算。

我们可以通过求函数的导数来得到原函数,然后将原函数代入定积分公式来求解定积分。

这种方法比直接计算定积分更加方便且高效。

需要注意的是,牛顿-莱布尼茨公式只适用于连续可导的函数。

2牛顿莱布尼兹公式

2牛顿莱布尼兹公式

lim ΔG lim f(ξ)
Δx Δx0
Δx0
x 0, x G(x) f(x).
x
sin tdt
例: 求 lim x0
0
x2
.
x
解 lim 0 sin tdt 是( 0)型不定式,用L' Hospital法则及上述定理
x0
x2
0
x
x
lim
x0
sin tdt
(
0
x2
=lim x0
0
sin tdt)
( x2 )
=lim x0
sin x 2x
1 2.
推论 如果f (t)连续,a( x), b( x)可导,则
F ( x) b( x) f (t)dt的导数F ( x)为 a( x)
F( x) d b(x) f (t)dt f b( x)b( x) f a( x)a( x) dx a( x)
求定积分问题转化为求原函数的问题.
注意 当a>b时, b f ( x)dx F (b) F (a)仍成立。 a
小结
1.积分上限函数
x
( x) f (t)dt
a
2.积分上限函数的导数 ( x) f ( x)
3.微积分基本公式
b
a f ( x)dx F (b) F (a)
牛顿-莱布尼茨公式沟通了微分学与积分学 之间的关系.
积分上限函数
积分上限函数的性质
定理:设f ( x)在[a, b]上连续,则积分上限函数
G(x) x f(t)dt在[a, b]上可导,且 a
G(x)[ x f(t)dt] f(x),(a x b) a y
证 G(x Δx) xΔx f(t)dt a

牛顿布莱尼公式推导

牛顿布莱尼公式推导

1牛顿布莱尼茨公式牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法.2牛顿布莱尼茨公式证明过程证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很小时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)3牛顿布莱尼茨公式意义牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。

它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。

它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。

牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。

牛顿-莱布尼茨公式

牛顿-莱布尼茨公式

05
牛顿-莱布尼茨公式的扩展
变上限的牛顿-莱布尼茨公式
总结词
变上限的牛顿-莱布尼茨公式是针对积分上限变化的情况进行扩展的公式。
详细描述
当积分的上限是一个变量时,传统的牛顿-莱布尼茨公式不再适用。为了解决这 个问题,变上限的牛顿-莱布尼茨公式被引入,它允许积分上限在一定范围内变 化,从而更准确地计算定积分。
感谢观看
THANKS
04
牛顿-莱布尼茨公式的证明
利用不定积分证明
总结词
通过不定积分和原函数的概念,证明牛 顿-莱布尼茨公式。
VS
详细描述
首先,根据不定积分的定义,我们知道对 一个函数进行不定积分可以得到其原函数 。然后,利用不定积分的基本性质,我们 可以将一个定积分转化为不定积分的形式 。最后,通过计算不定积分的结果,得到 定积分的值,从而证明了牛顿-莱布尼茨 公式。
要点一
总结词
通过微积分基本定理,证明牛顿-莱布尼茨公式。
要点二
详细描述
微积分基本定理指出,如果一个函数在闭区间上可积,那 么其定积分等于其在该区间上所有分割点的函数值的积分 和的极限。利用这个定理,我们可以将定积分转化为求和 的形式,其中每个项表示函数在某个分割点的函数值。通 过计算这些项的和的极限,可以得到定积分的值,从而证 明了牛顿-莱布尼茨公式。
原函数是指一个函数,其导数等于给定的函数。例如,对于函数f(x)=x^2,其原 函数为F(x)=x^3/3。
牛顿-莱布尼茨公式的重要性
牛顿-莱布尼茨公式是微积分学 中的基本定理之一,它为计算定
积分提供了一种简便的方法。
通过使用牛顿-莱布尼茨公式, 我们可以将复杂的定积分问题转 化为求原函数的问题,从而简化

牛顿-莱布尼茨公式.

牛顿-莱布尼茨公式.
F( b ) F( a ) F( xi ) F( xi 1 )
i 1
n
n
F '(i )xi f (i )xi
i 1 i 1
n
(2)
首页
×
因为f在[a,b]上连续, 从而一致连续, 所以对上述
0, 存在 0, 当 x' 、 x''∈[a,b]且 x' x'' 时,有
i
i 1 i
i 1,2,
,n ). 所以 J 0
1
1 dx ln(1 x ) ln 2. 1 x 0
当然, 也可把J看作 f ( x )
J
2 1
1 同样有 x 在[1,2]上定积分,
3 dx dx 2 x1 x
ln 2.
首页
×
是要把所求的极限转化为 注 这类问题的解题思想, 然后利用 某个函数f(x)在某一区间[a,b]上的积分和的极限, 牛顿—菜布尼茨公式计算 J
n
2)
b b a e dx e e e . a a
b x x
3)

b
a
dx 1b 1 1 . 2 x xa a b
首页
×
4) (这是图9-6所示正弦曲线 一拱下的面积,其余各题也可作
此联想.)



0
sin xdx cos x

0
2.
5) 先用不定积分法求出 f ( x ) x 4 x 2 的任一原函数, 然后完成定积分计算:

1 ) J . 2n
解 把此极限式化为某个积分和的极限式, 并转化为计 算定积分. 为此作如下变形:

5.3牛顿-莱布尼茨公式

5.3牛顿-莱布尼茨公式

(2
x
3)5
dx
2

1 3
(2
x
3)5
dx
1 2
2
1 3
(2
x
3)5
d
(2
x
3)
2
1 2x 36
12
1 3
2
1 (1 0) = 1
12
12
例7
计算
3 arctan x 0 1 x2 dx

0
3
arctan 1 x2
x
dx
3 arctan xd arctan x
0
1 arctan2 x 3
在[a,b]上具有导数,且它的导数是
x
[ f (t)dt] f ( x) a
说明
x
① 由定理1得 [ f (t)dt] f ( x) a
说明
x
① 由定理1得 [a f (t)dt] f ( x)
② 其他变限积分求导:
b
[ x f (t )dt]
f (x)
g( x)
[ a f (t)dt] f [g( x)]g( x)
2
0
1 2
3
2
0
2
18
小结
1.变限积分求导公式
2.牛顿-莱布尼茨公式
b
a
f
( x)dx
F (b)
F (a)
作业 习题5.3 1(2)(4)(6),2(1),4

F
(x)ຫໍສະໝຸດ 0 xcos(3t
1)dt
x 0
cos(3t
1)dt
cos(3x 1)
例3

d dx
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿-莱布尼茨公式的
详细证明
牛顿—莱布尼茨公式
●前言
此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。

公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。

证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。

所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂!
(Ps:如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字)
●定积分性质的证明
首先给出定积分的定义:
设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n个区间[a,x1],[x1,x2]…[x n,x n-1],其中x0=a,x n=b,第i个小区间∆x i= x i-x i-1(i=1,2…n)。

由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为∆S i=f(εi)∆x i ,为此定积分可以归结为一个和式的极
限即:
1
()lim()
n
b
a n
i
i i
f x dx f x
ε
→∞
=
=∆


收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
性质1:证明⎰b
a
c dx = C(b-a),其中C 为常数.
几何上这就是矩形的面积
性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数.
设K(x)=F(x)-G(x) 定义域为K
即对任意的x ∈K,都存在一个以|x ∆|为半径的区间,使得K(x+x ∆)=K(x)
∴函数值在K 内处处相等,K(x)=C K(x)为一直线
即: F(x)-G(x)=C
性质3:如果f(x)≤g(x),则
设k(x)=f(x)-g(x),有k(x)≤0.
即 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞
=∆=-+-++-=-=-∑⎰0()()()
()()()()()
()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ∆→''=='''∴=-=-=+∆-'∴==∆Q ()()b b a a
f x dx
g x dx ≤⎰⎰1()lim ()0n b i i a n i k x dx k x ε→∞==∆≤∑⎰
Q ()[()()]()()0b b b b a a a a k x dx f x g x dx f x dx g x dx =-=-≤⎰
⎰⎰⎰()()b b a a f x dx g x dx ∴≤⎰⎰
相关定理的证明
介值定理:设f(x)在区间[a,b]上连续,当x∈[a,b],取m为f(x)的最小值,M 为f(x)的最大值,对于任意的一个介于m,M的数C,至少存在一点ε∈(a,b),有f(ε)=C
证明:
运用零点定理:
设f(x)在[a,b]上连续,若f(a)*f(b)<0,则至少存在一点ε∈(a,b),有f(ε)=0 设x1,x2∈[a,b],且x1<x2,f(x1)=m,f(x2)=M,g(x)=f(x)-C,其中m<C<M
则:g(x1)=f(x1)-C<0 g(x2)=f(x2)-C>0
即: g(x1)*g(x2)<0 由零点定理得,至少存在一点ε∈(x1,x2),有
g(ε)=0= f(ε)-C => f(ε)=C
Ps: 在这里,零点定理在高中应该有介绍,很美妙的一个定理,在几何上有明显
的意义,通俗的理解是:有两个点,一个大于0(在x轴上方),一个小于0(在x轴下方),要用一条连续的线把它连起来,那么势必至少会与x 轴有一个交点。

严格的证明这里就不了,其实我也不太懂,有兴趣的可以上网查查.
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除 积分中值定理: 若函数 f(x)在区间[a, b]上连续,,则在区间 [a, b]上至少
存在一个点ε∈(a,b),有
几何意义:曲线所围成的面积总有一个以积分区间为长的矩形面积与之相等
设f(x)在区间[a, b]的最大值为M ,最小值为m ,即:m ≤f(x)≤M
由介值定理:在区间 [a, b]上至少存在一个点ε∈(a,b),有
积分上限函数(变上限的定积分)的定义
设函数f(x)在区间[a,b]上连续,则定积分 的值由区间[a,b]与 f(x)决定,与积分变量的记号x 无关,因此可以记为 而对于积分 ,当x ∈[a,b]时,都会有一个由积分 所确定的值与之对应,因此积分 是上限x 的函数.记为:
()()()b a
f x dx f b a ε=-⎰()()()()()b b b a a a b a b a mdx f x dx Mdx m b a f x dx M b a f x dx m M
b a ∴≤≤⇒
-≤≤-⇒≤≤-⎰⎰⎰⎰⎰()()b a f x dx f b a
ε=-⎰()b a f x dx
⎰()b a f t dt

()x a
f t dt ⎰()x a f t dt
⎰()x a
f t dt ⎰()()x
a
x f t dt ϕ=⎰
收集于网络,如有侵权请联系管理员删除
下面证明
显然,我们好自然会从左边证起,因为我们要运用φ(x)的定义,用到导数的定义,更重要的是,因为我们要落笔,而不是呆呆的看。

(因为有的人是在看,有的人是在观察,这明显存在很大的差别)
由积分中值定理,有:
(其中ε是在x 与x+∆x 之间)
这就是你想看到的,显然,当∆x->0时,ε->x
通往真相的最后一步
证明:
设F(x)为f(x)的原函数 ()()
x f x ϕ'=()00()()()()lim lim x x x a a x x f t dt f t dt x x x x x x
ϕϕϕ+∆∆→∆→-+∆-'==∆∆⎰⎰Q 00()()()lim lim a x x x x x a x x x f t dt f t dt f t dt x x +∆+∆∆→∆→+==∆∆⎰⎰⎰
()()x x
x f t dt f x ε+∆=∆⎰000
()()()lim lim lim ()x x x x x x f t dt f x x f x x εϕε+∆∆→∆→∆→∆'∴===∆∆⎰0
()lim ()()x x f f x ϕε∆→'∴==()()()
b a f x dx F b F a =-⎰
()()x
a
x f t dt ϕ= ⎰Q 也是f(x)的一个原函数
收集于网络,如有侵权请联系管理员删除
由性质2:f(x)的任意两个原函数之间相差一个常数C,有
相信你以后用它的时候会更加坚定,更加自然. End.
()()F x x C ϕ=+()()()()F b b C F a a C
ϕϕ=+ =+Q ()()()()()()b a a a F b F a b a f t dt f t dt ϕϕ∴-=-=-⎰⎰()0()()()a b b b a a a a f t dt f t dt f t dt f x dx = , ⇒=⎰⎰⎰⎰与积分变量无关而()()()b a F b F a f x dx ∴-=⎰。

相关文档
最新文档