牛顿莱布尼茨公式
偶函数牛顿莱布尼茨公式

偶函数牛顿莱布尼茨公式
牛顿-莱布尼茨公式又被称为基本定理或者牛顿公式。
它是微积分中的基本公式,用于计算定积分的值。
公式的原型可以表达为:∫[a, b] f(x)dx = F(b) - F(a)
其中,f(x)是被积函数,定义在闭区间[a,b]上,F(x)是f(x)的一个原函数。
该公式的意义在于,对于连续函数f(x)而言,其定积分可以通过求出f(x)的一个原函数F(x),再将F(x)在区间[a,b]的两个端点值相减获得。
拓展方面,在实际应用中,牛顿-莱布尼茨公式也可以用于计算定积分的面积、质量、电荷等物理量。
对于非整数次幂的函数,可以通过基本定理来计算其不定积分,从而得到它的一个原函数。
此外,基本定理也可用于计算曲线的弧长、旋转体的体积以及概率密度函数的期望值。
它在微积分和数学物理中都具有重要的应用。
牛顿莱布尼兹公式

极限来判定有界函数的可积性来说,简单得多了。 常用定理9.3' 证明有界函数的可积性较方便。
7
三、 可积函数类 根据可积的准则,我们可以证明下面三种类型的函数必是可积的。 定理9.4 若f在[a, b]上连续,则f在[a, b]上必可积。 证 定理9.5 若f是区间[a, b]上只有有限个间断点的有界函数,则f在 [a, b]上必可积。 证 定理9.6 若f是区间[a, b]上的单调函数,,则f在[a, b]上必可积。 证
4
思路与方案: 1. 思路与方案 思路: 鉴于积分和与分法和介点有关, 先简化积分和. 用相应于 分法的“最大”和“最小”的两个“积分和”去双逼一般的积分和 ξi T , 即用极限的双逼原理考查积分和有极限, 且与分法 及介点 无 关的条件 。 方案: 定义上和 S (T ) 和下和 s (T ) ,研究它们的性质和当 时有相同极限的充要条件 . 达布和: 2. 达布和
b
∫ f ( x)dx = F (b) F (a).
a
称为牛顿 莱布尼茨公式,它常写成: f ( x)dx = F ( x) b = F (b) F (a ). a ∫
a
b
证
1
公式使用说明:
1、 在应用公式求∫ f ( x)dx 时,f ( x)的原函数必须是初等函数,否则使用
a b
公式求∫ f ( x)dx失效。即f ( x)的原函数F ( x)可由∫ f ( x)dx求出。
§8.2 牛顿—莱布尼兹公式 若用定积分定义求
b a
∫ f ( x ) dx
a
b
,一般来说是比较困难的。是否有
较简便的方法求 ∫ f ( x ) dx ?下面介绍的牛顿—莱布尼兹公式不仅 为定积分计算提供了一个有效的方法,而且在理论上把定积分与 不定积分联系了起来。
如何理解牛顿莱布尼茨公式

如何理解牛顿莱布尼茨公式
牛顿-莱布尼茨公式是微积分中的重要公式之一,它将函数的导数和原函数之间建立了联系。
这个公式可以用数学符号表示为:∫ab f(x) dx = F(b) - F(a)
其中,∫ab表示区间[a,b]上的定积分,f(x)表示函数的导数,F(x)表示函数的原函数。
理解这个公式需要掌握以下几个概念:
1. 定积分:定积分是一种求曲线下面面积的方法。
它可以看作是将曲线分成无数个小矩形,然后将这些小矩形的面积加起来得到曲线下面的总面积。
定积分的符号为∫。
2. 导数:导数是函数在某一点处的斜率,它表示函数曲线在这个点处的变化率。
导数可以表示为f'(x)。
3. 原函数:原函数是导数的反函数。
即如果f(x)是函数的导数,那么F(x)就是函数的原函数。
原函数的符号为∫f(x)dx。
4. 牛顿-莱布尼茨公式:这个公式表示函数的定积分可以用函数的原函数来表示。
例如,在区间[0,1]上,如果f(x)=2x,则:
∫01 2x dx = x^2|01 = 1
而f(x)的原函数是F(x)=x^2,所以根据牛顿-莱布尼茨公式,上式也可以表示为:
F(1) - F(0) = 1-0 = 1
这个公式在微积分中有着广泛的应用,例如求曲线的弧长、求旋
转体的体积等。
掌握了这个公式,可以更深入地理解微积分的精髓。
牛顿莱布尼茨公式与积分运算

牛顿莱布尼茨公式与积分运算知识点:牛顿-莱布尼茨公式与积分运算一、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分基本定理的表述,它建立了微分学与积分学之间的联系。
公式如下:如果函数f(x)在区间[a, b]上连续,并且在区间(a, b)内可导,那么函数f(x)在区间[a, b]上的定积分可以表示为:∫(from a to b) f(x)dx = F(b) - F(a)其中,F(x)是f(x)的一个原函数,即F’(x) = f(x)。
二、积分运算的基本性质1.线性性质:设f(x)和g(x)是两个可积函数,α和β是两个常数,则有:∫(from a to b) (αf(x) + βg(x))dx = α∫(from a to b) f(x)dx + β∫(from a to b) g(x)dx2.保号性:如果f(x)在区间[a, b]上非负(非正),则∫(from a to b)f(x)dx非负(非正)。
3.可加性:如果f(x)和g(x)在区间[a, b]上可积,且它们的区间分界点相同,那么:∫(from a to b) f(x)dx + ∫(from a to b) g(x)dx = ∫(from a to b) (f(x) + g(x))dx4.换元积分法:设 Integration variable change : x = g(t),dx = g’(t)dt,则有:∫(from a to b) f(x)dx = ∫(from g(a) to g(b)) f(g(t))g’(t)dt三、积分运算的基本公式1.幂函数的积分公式:∫(from a to b) x^n dx = (1/n+1)x^(n+1) + C,其中C为积分常数。
2.指数函数的积分公式:∫(fro m a to b) e^x dx = e^x + C。
3.对数函数的积分公式:∫(from a to b) ln|x| dx = ln|x| + C。
牛顿莱布尼茨公式算面积

牛顿莱布尼茨公式算面积牛顿-莱布尼茨公式(Newton-Leibniz Formula),也称为牛顿-莱布尼茨定理,是微积分的基本定理之一。
该公式表述了定积分和原函数之间的关系,提供了一种通过求导和积分相互转换的方法。
牛顿-莱布尼茨公式的表述如下:设f(x)在区间[a,b]上连续,F(x)是其在该区间上的一个原函数,则:∫a^b f(x) dx = F(b) - F(a)其中,∫a^b f(x) dx表示f(x)在[a,b]上的定积分,F(x)表示f(x)的一个原函数。
这个公式的直接意义可以理解为:如果我们知道了一个函数的一个原函数,那么我们就可以通过计算其在两个点的值之差,求出它在这两个点之间的定积分。
牛顿-莱布尼茨公式的应用非常广泛,其中一个典型的例子就是用它求解曲线的面积。
以y = f(x)为例,我们可以通过对该曲线上两个点(a, f(a))和(b, f(b))之间的面积进行积分来计算曲线的面积。
具体来说,我们首先需要求出曲线的一个原函数F(x),然后使用牛顿-莱布尼茨公式来计算该曲线在[a,b]区间内的面积:S = ∫a^b y dx= ∫a^b f(x) dx= F(b) - F(a)其中S表示曲线在[a,b]区间内的面积,y表示曲线在x轴上的投影长度。
需要注意的是,当函数y = f(x)在[a,b]区间内有负值时,我们需要计算的面积实际上是曲线上方与x轴之间的面积,而非曲线下方与x轴之间的面积。
此时,我们需要对f(x)取绝对值,然后再进行计算。
值得一提的是,牛顿-莱布尼茨公式还可以推广到多维积分上。
具体来说,在三维空间中,如果我们知道了一个函数f(x,y,z)的一个原函数F(x,y,z),那么我们就可以通过计算其在一个三维区域内的值之差,求出该函数在该区域内的三重积分值。
这个公式的应用非常广泛,例如在物理学和工程学中经常用于计算物体的体积、质心、惯性矩等等。
总之,牛顿-莱布尼茨公式是微积分的基本工具之一,它在解决各种数学和物理问题中都起到了非常重要的作用。
牛顿莱布尼茨公式课件

则
a
f (x)dx 2
a
f (x)dx
a
0
2若f (x)为奇函数, 则 a f (x)dx 0. a
定理2 设函数f (x)为周期为T的连续函数,
则
aT
T
a f (x)dx 0 f (x)dx.
以上两个定理可以作为性质用.
例9
计算
1
2x2 x cos x dx.
1 1 1 x2
解
原式
3.微积分基本公式
b
a
f
(
x)dx
F
(b)
F
(a)
牛顿-莱布尼茨公式沟通了微分学与积分学 之间的关系.
三、定积分计算方法
(一)Newton Leibniz公式
b a
f
(x)dx
F(b)
F (a)
F ( x)
b a
(1)求原函数(即不定积分);
(2)计算F(b) F(a).
例1.计算 1 1 x2 dx.(参照第一节例26) 0
y
( x)
oa
x x x b x
定理1 设函数在区间[a , b]上连续 , 则
(x) x f (t)dt在区间[a , b]上可导,且 a x (x) (a f (t)dt) f (x).
定理2 设函数f (x)在区间[a , b]上连续 ,
则
x
(b]上的一个原函数.
1
1
1
2x2 1
x2
dx
1
1
x cos x 1 1 x2
dx
偶函数
奇函数
1
40 1
x2 1
x2
dx
1
定积分牛顿莱布尼茨公式

定积分牛顿莱布尼茨公式牛顿-莱布尼茨公式(也称为牛莱公式)是微积分学中的一个重要定理,它连接了定积分和原函数之间的关系。
该公式在微积分起源和发展中起到了关键的作用,它的发现极大地推动了微积分学的发展。
首先,我们需要明确定积分的定义。
定积分是求一个函数在一个区间上的“积累量”,它可以看作是无穷多个微小的面积的总和。
设函数f(x)在[a,b]上连续,它的一个原函数为F(x)。
根据牛顿-莱布尼茨公式,定积分的值可以通过求函数的原函数在两个端点的值之差来计算。
具体而言,公式可以表达为:∫[a,b] f(x)dx = F(b) - F(a)这个公式的含义是,函数f(x)在区间[a,b]上的定积分等于它的一个原函数F(x)在b和a处的取值之差。
这个公式可用于求解定积分,而无需使用极限定义来进行计算。
牛顿-莱布尼茨公式可以通过微积分基本定理来证明。
微积分基本定理表明,如果一个函数在一个区间上连续,那么它必然有一个原函数。
这个定理的证明涉及到反函数的构造和连续函数的一些性质,它超出了本文的讨论范围。
牛顿-莱布尼茨公式的证明主要涉及到导数和微分的基本概念。
设a 和b为两个实数,函数F(x)在[a,b]上连续且可微。
根据导数的定义,我们有:F'(x) = lim(h->0) [F(x+h) - F(x)]/h我们可以根据这个式子来近似计算定积分的值。
我们可以将区间[a,b]等分为n个小区间,每个小区间的宽度为h=(b-a)/n。
记第i个小区间为[x_i-1,x_i]。
我们将每个小区间上的函数值F(x_i)与F(x_i-1)相减后再乘以区间宽度h,得到一个近似的定积分值。
如果我们取n趋近于无穷大,这个近似值将趋近于定积分的真正的值。
具体而言,我们可以写出这个近似值为:Σ {i=1 to n} [F(x_i) - F(x_i-1)] * h这个近似值可以表示为区间[a,b]上的一个数列的和。
当n趋近于无穷大时,这个数列的和将趋近于定积分的真正值。
牛顿莱布尼茨公式以及对反常积分

牛顿莱布尼茨公式以及对反常积分牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。
因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
1.先判断积分区间内有无暇点,比如区间(0,+∞),被积函数分母有个(x-1),那么区间要分为(0,1)和(1,+∞)两个积分,如果还有就继续分。
2.现在(0,1)和(1,+∞)内无暇点,用牛顿一莱布尼茨公式计算,代入端点1,+∞时是求极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
F (i )xi f (i )xi 其中i ( xi 1 , xi ) .
i 1 i 1
n
n
于是对任意的 i [ xi 1 , xi ] ,
f ( i )Δxi ( F (b) F (a ))
i 1
n
f ( i )Δxi f (i )Δxi
n
2018年8月8日5时53分
上一页 下一页 主 页 返回 退出
2 2 2 4c) lim( ) n n 1 1 1 n n 2 n 解答参考孙涛《数学分 析经典习题解析 p74例43)
2018年8月8日5时53分
上一页 下一页 主 页 返回 退出
2) 对f 的要求可减弱为:在 [a, b] 上可积(不一定连 续). 注3 在§5 要证明连续函数必有原函数,那时定理 的条件中对F 的要求便是多余的了.
2018年8月8日5时53分
上一页 下一页 主 页 返回 退出
例1
计算下列积分
n
n 1 (1 ) n
2 2 2 4c) lim( ) n n 1 1 1 n n 2 n (四川大学01、一() 1 10分; 西南大学06三() 1 10分)
1 n
2 n
n n
2018年8月8日5时53分
上一页 下一页 主 页 返回 退出
类例: k 4d ) lim 3 n 2 k 2 (北京理工 01 、二、 10分) n k 1 n k cos n n (四川大学 00一(2 4e) lim sin )、 10分) n k n k 1 2 sin n
2018年8月8日5时53分
定理 9.1 设函数 f 在 [a, b] 上连续,且
F ( x ) f ( x ) , x [a, b] ,
则f 在 [a, b] 上可积,且
证
b
a
f ( x )dx F (b) F (a )
由定积分的定义,要证: 对任给的 > 0,
存在 > 0,使得当|| T || < 时有
2
3 2
2 0
2 8 1 2 (4 x ) . 3 0 3
2018年8月8日5时53分
上一页 下一页 主 页 返回 退出
例2 利用定积分求极限 1 1 1 lim( ) (西南大学01二(2)分, 6 n n 1 n2 2n 中科院05三10分;浙大06一(2) 10分。华上p 208例2) 解 因为 n n 1 1 1 1 1 1 , i n1 n 2 2 n i 1 n i i 1 1 n n
2
因为
1 2
3 1 (4 x 2 ) 2 C . 3
所以
2 0
2 8 1 2 x 4 x dx (4 x ) . 3 0 3
2 3 2
上一页 下一页 主 页 返回 退出
2018年8月8日5时53分
2 0
x 4 x 2 dx .
1 2 2 2 x 4 x dx 4 x d( 4 x ) 2 0
解
b a
x n dx
( n 0) ;
n1 b
a
b
x 1 x dx (b n1 a n1 ). n 1a n 1
n
b a
2018年8月8日5时53分
e dx e
x
x
b a
eb ea .
上一页 下一页 主 页 返回 退出
2 0
x 4 x 2 dx .
1 2 2 x 4 x d x 4 x d( x ) 2 3 1 2 4 x 2 d(4 - x 2 ) (4 x 2 ) 2 C 2 3
所以
n 1 1 1 1 1 lim ( ) lim i n n 1 n n 2 2n i 1 1 n n
1
1 1 dx ln( 1 x ) | 0 0 1 x
2018年8月8日5时53分
l n2 .
上一页 下一页 主 页 返回 退出
1 2 类例: 4a) 华上,p 209 # 2, 4b) lim (1 )(1 ) n n n
| f ( i )xi [ F (b) F (a )] | .
i 1
2018年8月8日5时53分
n
上一页 下一页 主 页 返回 退出
对 [a, b] 的任一分割 T = { a = x0, x1, …, xn = b }
F (b) F (a ) [ F ( xi ) F ( xi 1 )]
i 1 i 1
n
n
| [ f ( i ) f ( i )]xi | ,
i 1
n
2018年8月8日5时53分
上一页 下一页 主 页 返回 退出
f ( i )Δxi ( F (b) F (a ))
i 1
n
| [ f ( i ) f ( i )]xi | ,
i 1
n
因 f 在 [a, b] 上连续,从而一致连续,所以对任意
> 0,存在 > 0, 当 x, x [a , b], | x x | 时,
| f ( x) f ( x) | .
当|| T || < 时有
n n i 1 i 1
| f ( i )xi ( F (b) ( F (a )) | | f ( i ) f (i ) | xi , xi xi (b a ) .
2018年8月8日5时53分
n
n
i 1
i 1
上一页 下一页 主 页 返回 退出
因此
b
a
f ( x )dx F (b) F (a ) .
注1 在应用牛顿—莱布尼茨公式时,F ( x ) 可由
求不定积分的方法求得.
注2 定理的条件可适当减弱,例如: 1) 对F 的要求可减弱为:在 [a, b] 上连续, 在 (a, b) 可导,且 F ( x ) f ( x ) , x (a, b)